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Summary

The study of chromosome segregation in bacteria has
gained strong insights from the use of cytology
techniques. A global view of chromosome choreogra-
phy during the cell cycle is emerging, highlighting as
a next challenge the description of the molecular
mechanisms and factors involved. Here, we review
one of such factor, the FtsK DNA translocase. FtsK
couples segregation of the chromosome terminus,
the ter region, with cell division. It is a powerful and
fast translocase that reads chromosome polarity to
find the end, thereby sorting sister ter regions on
either side of the division septum, and activating the
last steps of segregation. Recent data have revealed
the structure of the FtsK motor, how translocation is
oriented by specific DNA motifs, termed KOPS, and
suggests novel mechanisms for translocation and
sensing chromosome polarity.

Introduction

Active DNA transport plays key roles in orchestrating the
dynamics of bacterial genomes. Its involvement in acqui-
sition of foreign genes during conjugation and in segre-
gation of chromosomes during spore formation and cell
division has a direct influence on genetic diversity and
genome stability. The FtsK/SpoIIIE/Tra family of DNA

translocases is implicated in these three activities. Tra
proteins, encoded by conjugative elements, act during
conjugation (e.g. the TraSA protein from the Streptomy-
ces mobile element pSAM2) (Kendall and Cohen, 1987;
Kataoka et al., 1991; Smokvina et al., 1991), SpoIIIE is
required for complete transfer of the chromosome into the
developing spores of sporulating bacteria (e.g. Bacillus
subtilis) (Wu and Errington, 1994), and FtsK is required for
both cell division and faithful segregation of sister chro-
mosomes during vegetative cell division (Lesterlin et al.,
2004). This family of translocases act on double-stranded
DNA (dsDNA) and are highly conserved throughout
eubacteria (with exceptions to cyanobacteria) (Bath et al.,
2000; Possoz et al., 2001; Aussel et al., 2002). A homo-
logue of FtsK, HerA, is found in archaea, establishing an
FtsK/HerA superfamily of ATP-driven DNA pumps for all
prokaryotes (Iyer et al., 2004; Hanson and Whiteheart,
2005). A DNA tracking activity has been demonstrated in
vitro for SpoIIIE (Bath et al., 2000) and FtsK (Aussel et al.,
2002) and ‘single-molecule’ experiments have shown that
FtsK is a powerful translocation motor that mobilizes DNA
against high forces at extreme high speed (Saleh et al.,
2004; Pease et al., 2005).

Data emerging from in vivo and in vitro studies, mainly
performed in Escherichia coli, together with the crystal
structure of FtsK from Pseudomonas aeruginosa have
provided significant insights into the mechanism of trans-
location and how it is controlled in vivo. This review
focuses on these recent advances.

The FtsK family of DNA translocases

FtsK is a multifunctional and multidomain protein. The
N-terminal domain (FtsKN) serves to localize the protein to
the division septum and is required for cell division (Begg
et al., 1995; Draper et al., 1998; Yu et al., 1998a) while
the C-terminal domain (FtsKC) forms the translocation
motor involved in chromosome segregation. The general
structure and sequence conservation of FtsK is shown in
Fig. 1. FtsKN is ~200 residues long and poorly conserved
at the sequence level. It, however, invariably contains
transmembrane helices that tether the protein to the cell
membrane specifically at the division septum (Fig. 1)
(Dorazi and Dewar, 2000), where it is proposed to interact
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with several other cell division proteins (Di Lallo et al.,
2003). Unlike FtsKC which forms multimers (see below),
the tertiary structure formed by FtsKN is unknown, render-
ing a general model for the structure of septum-borne
FtsK difficult to draw. An attractive hypothesis is that FtsKN

requires other division proteins and/or the process of
septum closure itself to oligomerize, which may restrict
the formation of active FtsKC multimers to a certain stage
of septum closure, thus controlling FtsK activity
temporally. The linker domain (FtsKL) separates FtsKN

from FtsKC and extends into the cytoplasm from the divi-
sion septum. It shows high sequence and length
variability. The longest linkers (~600 aa) are found in
proteobacteria, and, in E. coli, it is required for proper

function of FtsKC activities (Bigot et al., 2004). The longer
linkers tend to be rich in proline and glutamine residues,
and many adopt coiled coils as predicted secondary struc-
tures, suggesting they might participate in the formation of
FtsK multimers and/or in interaction with other divisome
proteins (not shown; see legend of Fig. 1).

FtsKC, the signature domain of this protein, can be
further subdivided into a, b and g subdomains (Yates
et al., 2003). The a and b subdomains form the DNA
pump (Massey et al., 2006) while the g subdomain con-
trols translocation by recognition of KOPS (see below)
motifs in the DNA and interacts with and controls other
proteins involved in segregation (i.e. the Xer recombina-
tion machine, see below and Yates et al., 2006). The
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Fig. 1. Pseudomonas aeruginosa FtsK domain organization and conservation.
A. Images of the crystal structure of hexameric FtsK from P. aeruginosa (a and b domains) (Massey et al., 2006) and of the NMR structure of
the g domain (Sivanathan et al., 2006). The top view shows the six subunits (in unique colours) that form the hexamer. The side views and (B)
are colour-coded according to sequence similarity when comparing FtsK across eubacteria with deeper red indicating higher conservation
[obtained using ProtSkin (http://www.mcgnmr.ca/ProtSkin)]. It clearly illustrates the cleft between the a and b domains and the conservation of
residues lining the central channel (cross-section). The KRKA loop that interacts with XerD and helix-3 that is involved with KOPS recognition
are indicated within the g subdomain.
B. A schematic of the general domain organization of FtsK using STRAP (http://www.charite.de/bioinf/strap) superimposed on annotated motifs
for P. aeruginosa’s FtsK. Motifs within the C-terminal domain highlight the regions of high- and low-sequence conservation; the residues lining
the central channel (upon hexamerization), the RecA fold b-strands and the regulatory domains within g (motifs A and B) are among the
highest conserved regions, while the residues on the outer surface of the hexamer, the handle and the g-linker vary considerably.
C. A schematic of an FtsK sequence alignment (Deprez et al., 2005) with secondary structure prediction using. FtsK homologue was selected
from a BLAST in all sequenced bacterial genomes with a cut-off at 1.e-100. The three main domains are annotated for P. aeruginosa FtsK. Gaps
litter the linker domains (linker and gL), highlighting their variable length. The transmembrane helices of the N-terminal and the a-helices and
b-strands of the C-terminal are strongly conserved. The handle region (H) within the C-terminal domain is prevalent only in proteobacteria.
Predicted coiled coil structures in the linker domain are restricted to the long linkers and are thus not shown.
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recently solved crystal structure of P. aeruginosa’s FtsK
(consisting of only the a and b subdomains) revealed
that six FtsKC domains oligomerize to form a ring that
can accommodate dsDNA (Massey et al., 2006). The a
subdomains form a smaller ring atop a larger b ring
(Fig. 1). Note that the crystallized FtsK is truncated of
FtsKN, FtsKL and of the g subdomain, and was solved as
double head-to-head hexamers that interact via a
‘handle’ domain (Fig. 1A). However, a double hexamer is
difficult to reconcile with functional data, in particular
because g, which is almost directly linked to b, must
contact the DNA and thus be positioned in the vicinity of
the central channel. Consistent with this view, the handle
domain is not conserved (Fig. 1B and C). The b subdo-
main contains the core RecA-like fold (with Walker
P-loop and B motifs) that is common to AAA+ proteins
(ATPases Associated with various cellular Activities), and
generates the force required for DNA translocation. It is
both the conservation of several sequence motifs and
distinct b-strand order and structural arrangement within
the RecA-like domain (distinct from other P-loop
ATPases), as well as the ability to translocate dsDNA
that defines the FtsK/SpoIIIE/Tra family of DNA translo-
cases (Fig. 1).

FtsK is the fastest known DNA pump, with translocation
rates of up to 7 kb s-1 (Saleh et al., 1996; Pease et al.,
2005). Contrary to previously described translocases (i.e.
Eco124i; Stanley et al., 2006), FtsK does not rotate to
track the grooves of dsDNA during translocation, but
rather rotates only once per 150 bp translocated (Saleh
et al., 2005). Comparing structures of ATPgS-bound FtsK
(in a hexamer) and ADP-bound FtsK monomers suggests
a conformational change between the a and b subdo-
mains upon ATP hydrolysis that would correspond to a
1.6 bp displacement of DNA (Massey et al., 2006). This
displacement would position the DNA helix to contact the
same position on the following subunit of the hexamer
with only moderate rotation required. Based on these
observations, Massey et al. (2006) have proposed a
‘rotary inchworm’ model for translocation in which each
subunit of the translocase would hydrolyse ATP sequen-
tially around the hexamer (see also Strick and Quessada-
Vial, 2006).

At the tail end of FtsKC, the g subdomain forms a
winged helix–turn–helix (wHTH) that is attached to the b
domain via a flexible linker. wHTH folds are commonly
associated with DNA binding, while some participate in
protein–protein interactions (Gajiwala and Burley, 2000).
The g domain utilizes both functions and acts as a
regulatory domain, with loop1 forming an epitope that
interacts with the recombinase XerD and helix3 recog-
nizing specific DNA motifs, the KOPS (see below)
(Ptacin et al., 2006; Sivanathan et al., 2006; Yates et al.,
2006).

There are instances of two to three conserved FtsK
motor domains (ab domains) occurring within a single
ORF (identified from whole genome sequencing). Such
arrangement might promote the formation of active
motors. Several of these ORF also encode further spe-
cialized domains, suggesting that the FtsK motor domains
may provide the translocation activity required to assist
different processes. Striking examples include FtsK motor
domain(s) fused to a phage integrase or a forkhead-
associated domain (ORFS SC6A9.34 and Cthe-
DRAFT_1197 from Streptomyces coelicolor and
Clostridium thermocellum respectively).

FtsK is part of the divisome

The co-ordinated action of about 15 proteins is neces-
sary for E. coli cell division (for review see Goehring and
Beckwith, 2005; Vicente et al., 2006). These proteins
localize at midcell and assemble into a multiprotein
complex termed the septal ring or divisome. Septation
then occurs by constriction of the divisome-associated
membranes. FtsK is part of the divisome and studies
with truncated forms revealed that only FtsKN is essen-
tial for septum formation in E. coli; its absence provokes
the formation of long cell filaments with no septum con-
striction (Draper et al., 1998; Wang and Lutkenhaus,
1998).

FtsK is among the first divisome proteins to localize at
midcell and its localization is required for the recruitment
of other divisome components (Wang and Lutkenhaus,
1998; Yu et al., 1998a; Chen and Beckwith, 2001). Over-
expression of some divisome proteins (FtsQ, FtsN or
co-overproduction of FtsZ and FtsQ together with a
mutant form of FtsA) partially suppresses the lethality
due to a deletion of FtsK, suggesting that it primarily
serves to stabilize the divisome prior to septation
(Draper et al., 1998; Geissler and Margolin, 2005; Goe-
hring et al., 2006). The added fact that neither of the two
FtsK homologues in B. subtilis (SpoIIIE and YtpT) is
essential (Sharpe and Errington, 1995) further suggests
that FtsK does not play a conserved active role during
divisome assembly. Nevertheless, overexpression of
other cell division proteins in ftsK-deleted cells is not
sufficient for normal division in E. coli; suppressed
strains still exhibit cell chains (filaments with deep
septum constrictions) indicative of a defect in septum
closure (Draper et al., 1998; Geissler and Margolin,
2005). SpoIIIE has been proposed to play a role in the
late stages of membrane fusion during spore formation
in B. subtilis (Sharp and Pogliano, 2003; Liu et al.,
2006). FtsK may play an analogous role in E. coli.
Although poorly understood, the observations that FtsK
interacts genetically with DacA and may interact physi-
cally with FtsI, both involved in peptidoglycan synthesis,
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may be relevant to this role (Begg et al., 1995; Draper
et al., 1998; Di Lallo et al., 2003).

While not essential for growth, deletion of all or part of
FtsKL and of FtsKC also interferes with septum formation
as judged by the appearance of cell filaments and cell
chains (Yu et al., 1998b; Recchia et al., 1999; Bigot et al.,
2004). These defects cannot be entirely explained by the
inactivation of chromosome dimer resolution, indicating
that FtsKC and FtsKL both play a role in cell division (Bigot
et al., 2004).

The early divisome components, including FtsK, are
often observed localized at midcell of cells without con-
stricted septa (Wang and Lutkenhaus, 1998). This delay
between localization of early divisome proteins and
septum constriction does not reflect the time required to
assemble late divisome proteins. Indeed, all proteins
recruited after FtsK assemble simultaneously at the time
of septation (Aarsman et al., 2005). This leaves a broad
window for action by FtsK towards the end of the cell cycle
(Wang et al., 2005). However, chromosome dimer resolu-
tion seems to occur late in the cell cycle, concomitantly
with septum constriction (Steiner and Kuempel, 1998a).
This raises the question of the state of FtsK from its
recruitment to midcell to activation of dimer resolution,

and may indicate that FtsK activity is controlled by the late
completion of divisome assembly or even by septum
constriction.

FtsK sorts sister chromosomes

Segregation of bacterial chromosomes involves multiple
processes acting at different stages of the cell cycle on
specific chromosome regions (for reviews see Sherratt,
2003; Gitai et al., 2005; Espeli and Boccard, 2006). In
E. coli, FtsK acts in the region where replication termi-
nates (ter) at the last stage of chromosome segregation,
which is concomitant with constriction of the division
septum (Steiner and Kuempel, 1998a; Steiner et al.,
1999). At this stage, two kinds of physical links, intercat-
enation links and chromosome dimers, may persist
between sister chromosomes. FtsK controls the removal
of these links and couples it with cell division (Fig. 2).

Intercatenation links are resolved by topoisomerase IV
(Topo IV), a type II topoisomerase composed of two sub-
units, ParC and ParE (Adams et al., 1992; Peng and
Marians, 1993). The activity of Topo IV is temporally and
spatially regulated (Espeli et al., 2003a,b). Active Topo IV
is formed preferentially during the last stages of the cell

FtsK

KOPS
5'-GGGNAGGG

TopoIV

XerCD/dif

closing septum

Fig. 2. Segregation of the ter region during chromosome dimer resolution. The drawing represents the central part of a dividing cell. The
closing division septum, septum-associated FtsK hexamers, Topo IV, the XerCD/dif complex and some KOPS are indicated. Only FtsKC is
represented as hexamers. FtsKN’s and FtsKL’s roles are symbolized by an interaction of FtsKC with the septum membrane. Top left: sister
chromosomes are dimeric and intercatenated and chromosomal DNA is stretched across the septum. FtsK binds to this DNA in an oriented
manner by recognizing KOPS and translocates towards XerCD/dif complexes. This process sorts the ter region of sister chromosome to either
side of the septum and helps decatenation by Topo IV. Top right: FtsK reaches the XerCD/dif complexes and contacts XerD to induce
recombination. Bottom right: the dimer is resolved and FtsK finishes sorting sister chromosomes, allowing septum closure without
chromosome damage (bottom left).
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cycle, from termination of replication to cell division. The
ParC subunits appear colocalized with the replication
machinery. However, it also interacts with FtsKC, stimulat-
ing Topo IV activity in vitro. In contrast, the ParE subunits
appear distributed in the DNA-free space of the cell. K.
Marians and co-workers (Espeli et al., 2003a) have sug-
gested that FtsK acts to capture ParC after disassembly
of the replisome. Free ParE could then associate with the
ParC–FtsK complex to reconstitute active Topo IV. This
ensures the spatial and temporal regulation of decatena-
tion activity. However, the fact that Topo IV is essential
whereas FtsKC is not strongly suggests that decatenation
by Topo IV can occur in the absence of FtsK.

In addition to catenation links, the sister chromosome
may be dimeric (reviewed in Lesterlin et al., 2004; Fig. 2).
In E. coli, chromosome dimers form by homologous
recombination between sister chromosomes during repli-
cation. This occurs in about 15% of the cells during growth
in standard laboratory conditions (Steiner and Kuempel,
1998b; Perals et al., 2000). The dedicated safeguard
system, XerCD/dif, consists of two tyrosine recombinases,
XerC and XerD, which act at a specific site located in ter,
dif. Dimer resolution depends on FtsKC, which plays at
least two distinct role in this process (Fig. 2) (Capiaux
et al., 2002; Yates et al., 2003; Bigot et al., 2004). FtsK
loads onto DNA stretches in the vicinity of the closing
septum and translocates DNA towards the duplicated dif
sites. This sorts sister chromosomes on either side of the
septum and may aid decatenation by Topo IV. Chromo-
some mobilization finally allows the formation of a produc-
tive recombination synapse between XerCD/dif
complexes. This may involved either bringing the two
XerCD/dif complexes together in a productive conforma-
tion or remodelling a pre-existing synapse to an active
conformation. Recombination is then activated by a direct
interaction between FtsKC and XerD, which activates XerD
catalytic activity (Massey et al., 2004; Yates et al., 2006).
This interaction is mediated by the extreme C-terminal
subdomain of FtsK, FtsKg (Fig. 1) (Yates et al., 2006). The
FtsK-XerCD/dif system may also be directly involved in
chromosome decatenation as successive rounds of
recombination can remove catenation links in vitro (Ip
et al., 2003). XerCD/dif may also control Topo IV activity as
a preferential region for Topo IV action exists in the imme-
diate vicinity of dif (Hojgaard et al., 1999). Surprisingly, this
activity depends on XerC and XerD but not on FtsKC. It is
thus conceivable that XerCD and Topo IV are parts of a
multiprotein complex acting to separate sister ter regions,
the formation of which does not strictly depend on FtsK.

FtsK reads the polarity of the chromosome

A key implication of the general model presented in
Fig. 2 is that FtsK has to find its way to the dif site. In

vivo data indicate that the loci entrapped in the septum
in the case of a dimer are included in a restricted but
rather long part of the chromosome, up to 400 kb around
dif, called the FtsK domain (Corre and Louarn, 2005; C.
Pages and F. Cornet, in preparation). These data
strongly suggest two levels of active positioning of the
ter region. The first is global positioning of a large ter-
minal domain close to the septum. This does not require
FtsK and is independent of dimer formation. The second
involves precise positioning of the XerCD/dif complexes
by translocating FtsK. FtsK thus loads onto DNA several
kilo base pairs away from the dif site and must translo-
cate towards dif to avoid unproductive activity. While it
has been known for a long time that dimer resolution
requires the correct orientation of the sequences flank-
ing dif (Cornet et al., 1996; Kuempel et al., 1996; Corre
et al., 2000; Perals et al., 2000), the demonstration that
this orientation controls FtsK translocation and the iden-
tification of the DNA motifs involved are recent discov-
eries (Corre and Louarn, 2002; Bigot et al., 2005; Levy
et al., 2005; Pease et al., 2005). FtsK recognizes short
DNA motifs, termed KOPS (FtsK Orienting Polar
Sequences), 5′-GGGNAGGG-3′, which are over-
represented on the chromosome and strongly biased for
their orientation towards dif. This biased distribution of
KOPS is conserved in bacteria closely related to E. coli
and analyses of other bacterial genomes generally
reveal other motifs with KOPS-like distribution, suggest-
ing that the control of FtsK by KOPS is conserved in
bacteria (Eisen et al., 2000; Levy et al., 2005; Hendrick-
son and Lawrence, 2006). Indeed, this is reminiscent of
the other skewed sequence whose role has been
described thus far, the Chi motif. Chi are recognized by
RecBCD complexes translocating from a dsDNA end
and switch RecBCD activity from DNA degradation to
the creation of RecA-associated single stranded loops
that are used for strand exchange during homologous
recombination (Taylor et al., 1985; Dixon and Kowalc-
zykowski, 1993; Dohoney and Gelles, 2001; Spies et al.,
2003). Motifs unrelated to the E. coli Chi motif but with
Chi activity have been reported in other bacteria (El
Karoui et al., 1998; Sourice et al., 1998; El Karoui et al.,
1999). The control of DNA trafficking by short motifs with
biased distribution thus appears as a general feature in
bacteria. Both KOPS and Chi skews contribute to the
global replichores orientation, which accounts for a
general organization of bacterial chromosomes following
the replication origin to dif axis and now appears as a
major player in chromosome structure and dynamics.

Although FtsK may load on any piece of dsDNA tested
so far, KOPS are preferred sites of loading and are
thought to orient translocation at this step (Fig. 3) (Bigot
et al., 2006). KOPS also block and eventually reverse
the direction of translocation when encountered from
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their 3′ end (Fig. 3) (Bigot et al., 2005; Levy et al., 2005).
This blockage is not total in in vivo and in vitro assays,
strongly suggesting that KOPS recognition by FtsK is
stochastic (Bigot et al., 2005). Indeed, it is estimated
that FtsK50C, the truncated version of FtsK used in vitro,
stops only in 60% of the case when it encounters a
single KOPS from its 3′ end. This probability may be
close to optimal for FtsK to rapidly locate dif, giving that
the orientation bias of the KOPS on the chromosome is
not total (Levy et al., 2005). KOPS are recognized by the
winged-helix g subdomain (Ptacin et al., 2006;
Sivanathan et al., 2006). Notably, this subdomain also
contains the KRKA motif that interacts with XerD and is
connected to the ab motor by a flexible linker (Fig. 1). g
may thus binds KOPS-containing DNA to orient loading
of the ab motor. Translocating with g at the front end of
the motor then positions this subdomain to interact with
KOPS or a XerD-bound dif site.
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