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ABSTRACT

The Galactic center black hole Sagittarius A* is a variable near-infrared (NIR) source that exhibits bright flux excursions called flares. When
flux from Sgr A* is detected, the light curve has been shown to exhibit red noise characteristics and the distribution of flux densities is non-linear,
non-Gaussian, and skewed to higher flux densities. However, the low-flux density turnover of the flux distribution is below the sensitivity of current
single-aperture telescopes. For this reason, the median NIR flux has only been inferred indirectly from model fitting, but it has not been directly
measured. In order to explore the lowest flux ranges, to measure the median flux density, and to test if the previously proposed flux distributions
fit the data, we use the unprecedented resolution of the GRAVITY instrument at the VLTI. We obtain light curves using interferometric model
fitting and coherent flux measurements. Our light curves are unconfused, overcoming the confusion limit of previous photometric studies. We
analyze the light curves using standard statistical methods and obtain the flux distribution. We find that the flux distribution of Sgr A* turns over
at a median flux density of (1.1 ± 0.3) mJy. We measure the percentiles of the flux distribution and use them to constrain the NIR K-band spectral
energy distribution. Furthermore, we find that the flux distribution is intrinsically right-skewed to higher flux density in log space. Flux densities
below 0.1 mJy are hardly ever observed. In consequence, a single powerlaw or lognormal distribution does not suffice to describe the observed flux
distribution in its entirety. However, if one takes into account a power law component at high flux densities, a lognormal distribution can describe
the lower end of the observed flux distribution. We confirm the rms–flux relation for Sgr A* and find it to be linear for all flux densities in our
observation. We conclude that Sgr A* has two states: the bulk of the emission is generated in a lognormal process with a well-defined median flux
density and this quiescent emission is supplemented by sporadic flares that create the observed power law extension of the flux distribution.

Key words. Galaxy: center – black hole physics – accretion, accretion disks

1. Introduction
The supermassive black hole at the Galactic center, Sagittar-
ius A* (Sgr A*) is associated with a variable radio/(sub-)mm
source, a variable near-infrared (NIR) source, and a continuum
source in the X-ray coupled with occasional strong X-ray flares
(Genzel et al. 2010).

The NIR counterpart of Sgr A* is highly variable and not
always detected in photometry of ground-based telescopes and
space observatories. When the emission is detected, it shows a
non-Gaussian flux distribution. The power spectral density (PSD)
is best fit with a single power law slope, Γ ∼ 2, that breaks
into uncorrelated white noise for timescales longer than∼250 min
(Witzel et al. 2018). There is no evidence for quasi-periodic oscil-
lations if the light curve is studied in its entirety (Do et al. 2009);
however, individual flares may possess periodic sub-structure
? GRAVITY is developed in a collaboration by the Max Planck
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(Genzel et al. 2003). The NIR flux distribution has been modeled
with a multi-component distribution function, where the fainter
flux levels, if detected, are described by a lognormal distribu-
tion and the brighter so-called flare states follow a power law
tail (Dodds-Eden et al. 2009). However, follow-up studies of the
flux distribution have found that a power law tail is not nec-
essary and, instead, a single power law distribution or lognor-
mal distribution suffices to describe the observed distribution of
flux densities when temporal correlations are taken into account
(Witzel et al. 2012, 2018). By comparing the inferred spectral
slope from parallel observations in the NIR K and M band,
Witzel et al. (2018) favor a lognormal distribution for both
bands.

Recently, Do et al. (2019) reported a flare of unprecedented
brightness (magnitude ∼12 in Ks). They find that a flare of
this brightness is inconsistent with the long term flux distribu-
tion published in Witzel et al. (2018). They argue that this may
indicate that the accretion flow has changed, possibly due to
the pericenter passage of the star S2 or the gaseous object G2
(Gillessen et al. 2012). Alternatively, a second mechanism may
be needed for the flare state.

The X-ray flares are correlated with strong NIR flares, but the
converse is not true (e.g., Dodds-Eden et al. 2010; Witzel et al.
2012). While many dedicated multi-wavelength campaigns have
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been conducted, no clear correlation between either the X-ray
or the NIR with the (sub-)mm flux could be established. This is
possibly due to the roughly eight-hour timescale in the sub-mm
light curve being on the order of the maximum length of ground-
based observations (Dexter et al. 2014).

From a theoretical point of view, the mechanism or mech-
anisms that generate the NIR flux are not well understood.
Because the rise and fall time of flares is on the order of a few
minutes, the emitting region is constrained by the light speed to a
few Schwarzschild radii Rs. Assuming the magnetic field scales
as one over the distance with respect to Sgr A*, this constrains
the emitting region to be located within ∼10Rs of Sgr A* (e.g.,
Barrière et al. 2014).

The light curve and the slope of bright NIR/X-ray flares
have been modeled quantitatively by assuming that a popu-
lation of electrons is accelerated out of thermal equilibrium
into a power law energy distribution. In this model, a cooling
break, induced by the frequency-dependent cooling time of syn-
chrotron radiation, explains the NIR and X-ray spectral slopes
(Dodds-Eden et al. 2010; Li et al. 2015; Ponti et al. 2017). How-
ever, the mechanism that could explain such an acceleration is
not understood in a qualitative fashion. Among several alter-
natives, previous works have proposed magnetic reconnection
as a possible mechanism at work here, drawing upon analo-
gies to solar flares or coronal mass ejections (Yuan et al. 2003;
Yusef-Zadeh et al. 2006).

Time-dependent simulations attempt to model the accre-
tion flow more qualitatively. The plasma evolution is computed
by solving the magnetohydrodynamic (MHD) equations, while
accounting for general relativistic (GR) effects in the proxim-
ity of the black hole. Such time-dependent simulations have
been able to reproduce the typical observational charactaristics
of NIR light curves. Realistic light curves have been produced
in simulations where the accretion flow is misaligned with the
black hole spin (Dexter et al. 2014) through lensing of flux tubes
(Chan et al. 2015), description of the electron thermodynamics
(e.g., Ressler et al. 2017; Dexter et al., in prep.), or through
the introduction of non-thermal electrons (e.g., Ball et al. 2016;
Mao et al. 2016). However, all of these simulations are limited
by the numerical resolution, the volume size of the simula-
tion, and the uncertainty of the initial magnetic field configura-
tion. They have difficulties producing realistic outflows along the
poles and cannot produce the observed high X-ray fluxes during
flares.

Recently, the GRAVITY Collaboration (2018a) has reported
the detection of orbital motions for three bright flares. The three
flares exhibit a circular clockwise motion on the sky with typ-
ical scales of 150 µas over a few tens of minutes. This implies
a hotspot velocity of around 30 % of the speed of light. The
motion is correlated with an on-sky rotation of the polarization
angle with about the same period as the motion. Using the rel-
ativistic ray tracing code NERO, the GRAVITY Collaboration
(2020) modeled the motions with a hotspot orbiting the black
hole, with a roughly face-on inclination of i ∼ 140◦. The emit-
ting region is constrained to less than five gravitational radii in
diameter.

In this paper, we build on our previous work on the flux dis-
tribution, extending the measurements beyond the detection limit
of single-telescope observations using interferometric model fit-
ting and coherent flux measurements. The high sensitivity of
GRAVITY pushes the detection limit well beyond the peak of
the flux distribution, which allows us to establish an empirical
median flux density and variability measures. Through interfer-
ometric model fitting, we obtain the un-confused source flux

densities of Sgr A* and thereby overcome a fundamental lim-
itation of single telescope observations. Furthermore, we test the
paradigm of a single probability distribution for the flux distri-
bution and test different probability density functions (PDFs).

2. Data

There are two independent methods for extracting the flux from
our interferometric data. The first method is similar to traditional
photometry where we measure the integrated coherent flux. The
coherent flux is computed as the flux product of each baseline
consisting of a pair of telescopes, normalized by the visibility on
this baseline. The coherent flux is blind to incoherent light, that
is, speckle noise from bright nearby stars is suppressed. Explic-
itly, we compute the coherent flux as:

〈Fcoherent〉 = | 〈Avis · exp (−iφvis)〉B · 〈F〉B |, (1)

where Avis is the visibility amplitude, φvis is the visibility phase,
F is the detector flux and 〈◦〉B denotes the average over all base-
lines. To calibrate the flux density, we compute the coherent flux
of observations centered on S2. We interpolate the flux in the
time gaps between calibration observations using polynomial
fits. We use a zeroth order polynomial if there are fewer then
three calibrator measurements, a first order polynomial if there
are fewer than five calibrator measurements, and a second order
polynomial if there are five or more measurements. The coherent
flux of S2 is closely correlated with airmass. If extrapolation is
necessary, we check that it is reasonable. Explicitly, we checked
that the extrapolation does not diverge and that it resembles the
air mass trend. To account for the fact that S2 may not be per-
fectly centered with respect to the actual fiber position, we cali-
brate the visibility phase to 0◦.

The second method to measure the flux density uses a model
fitting applied to the observed interferometric quantities: the vis-
ibility modulus, the visibility squared, and the closure phase.
We can model the GRAVITY Galactic center observations with
an interferometric binary consisting of Sgr A* and the orbiting
star S2. According to the van Cittert-Zernicke theorem, the visi-
bility of an image is given by the Fourier transform of the image.
In the simple binary case, where S2 and Sgr A* are modeled as
two point sources of a given flux ratio f , separated by a certain
distance s = B · δD, the complex visibility is given by:

V(s, f ) =
1 + f e(−2πis)/λ

1 + f
, (2)

for a given baseline vector B, separation vector δD and wave-
length λ.

For real observations, this formula needs to be extended to
account for various different parameters such as the source spec-
tral slopes, potentially varying flux ratios for different baselines,
pixel response functions, etc. The full derivation of the fitting
formula can be found in Waisberg (2019).

Figure 1 shows an example of the full binary model fit to the
observed visibilities and closure phases for the night of July 28,
2018. The angular separation of S2 and Sgr A* was ∼24.7 mas.
Moreover, during the observation, a bright flare occurred for
which an orbital motion close to the innermost stable orbit was
reported in GRAVITY Collaboration (2018a). The flux density
of Sgr A* is (9.1 ± 1.3) mJy.

We chose either the coherent flux or the binary fit to measure
the flux density depending on the separation of S2 and Sgr A*.
For 2017 and 2018, strong binary signatures are present in the
data. We can therefore make use of the model fitting where the
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Fig. 1. Binary fit to interferometric quantities for the night of July 28, 2018. The three panels show the best-fit binary model to the visibility
modulus, the visibility squared, and the closure phase.

flux ratio is a direct, absolute and un-confused measurement
of the flux of Sgr A*. In 2019, S2 moved to the edge of the
interferometric field of view (IFOV), and thus fitting a binary
model becomes more difficult. Consequently, we use the inte-
grated coherent flux for 2019.

The binary flux ratios measure the un-confused flux ratio of
the two sources. This assumes that there is no third source hid-
den near Sgr A* or S2 within the ∼(2 × 4) mas interferometric
beam of GRAVITY. The 2017 and 2018 light curves of Sgr A*
are unaffected by the contribution of nearby stars overcoming
the confusion limit of previous studies. In contrast, the coherent
flux includes any possible coherent sources within the IFOV of
GRAVITY, corresponding to FWHM = ∼70 mas.

In total, our data set comprises 47 nights in 2017 to 2018
and an additional 27 nights in 2019. Prior to 2019, there are
650 exposures centered on Sgr A*, totaling to ∼54.2 h. After bad
data rejection, 461 exposures remain totaling to ∼38.4 h. In 2019
there are 324 observations, out of which 268 pass the rejection
totaling to 26.3 h.

The reduction of the individual exposures is largely unchan-
ged compared to the reduction used in GRAVITY Collaboration
(2018b, 2019). For the 2017 and 2018 data, we bin the data to
five-minute exposures in order to ensure a robust binary fit at
the lowest fluxes. For the 2019 data, where we can measure the
coherent flux directly, we use sub-exposures binned to 40 s.

We report the flux density at 2.2 µm. To obtain absolute,
dereddened fluxes, we use the extinction coefficient AKs =
2.43 ± 0.07 from Schödel et al. (2010) and Fritz et al. (2011).
We derive the flux density of S2 from the long-term photom-
etry with NACO, yielding magKs = 14.12 ± 0.076. Through-
out this work we assume that the S2 flux density is constant in
time (Habibi et al. 2017). Combining this measurement with the
extinction coefficient above, we find the dereddened S2 flux den-
sity at 2.18 µm to be 15.8±1.5 mJy. The uncertainty is dominated
by the S2 photometry and the extinction uncertainty. Therefore,
we neglect the difference in central wavelength of the NACO and
GRAVITY bands (∼0.02 µm). Both methods described above
have several peculiarities which must be tuned in the data reduc-
tion before we can produce a final light curve. The details are
given in the next two sections.

2.1. Tuning of binary flux ratios

2.1.1. Outlier contamination

Bad fits must be flagged and removed. This is critical in the
context of estimating the flux distribution: The quality of the

fit is a function of the brightness of Sgr A* and any selection
bias may affect the results. In order to minimize the flux depen-
dent bias, we reject data only based on bad observing conditions
or data with obvious telescope, facility or instrument problems.
These classifiers are flux independent, and therefore the rejection
is less critical. However, even such a blind approach may bias
the flux distribution if too many bad fits contaminate the light
curve. In order to rule out that bad fits significantly contaminate
the flux distribution, we tested different flagging schemes. We
find that our results are robust against outlier contamination (see
Appendix A).

2.1.2. Coupling correction

The flux from the different telescopes is coupled into opti-
cal fibers. Therefore, the flux ratio in the binary fits is not
only a function of the intrinsic flux ratio but also of the
fiber coupling response function. We approximate the fiber
coupling response function as a two-dimensional Gaussian in
the field, centered on the fiber center (Perrin & Woillez 2019;
GRAVITY Collaboration 2018b). We have chosen files in which
the fiber is centered on Sgr A*. Since the distance between S2
and Sgr A* changes with time, the flux ratio is modulated by
this movement. We correct for this modulation by multiplying
the flux ratio by the response function. To account for position-
ing errors of the fiber, we compute the coupling factor using the
measured fiber position with respect to S2.

In 2017, for each telescope, the respective fiber position was
often offset by a few mas. This complicates the correction and
makes the 2017 light curve sensitive to this effect. In 2018,
the fiber positioning was optimized. Furthermore, S2 was closer
to Sgr A* and the binary separation changes less. As a conse-
quence, the fiber coupling correction is less critical in this year.

2.2. Tuning of coherent flux measurement

In 2019, S2 moved to the edge of the ∼70 mas IFOV of GRAV-
ITY. However, throughout 2019, the S2 contribution was on the
order of a few percent. It is thus necessary to subtract S2’s
contribution.

We can model the flux that is coupled into the fiber using
the fiber coupling response function used for the binary. How-
ever, at the edge of the IFOV, the relation starts to break down.
This is especially critical for low fluxes of Sgr A* for which the
contribution of S2 is comparably large.
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Fig. 2. Light curve of Sgr A* as observed by GRAVITY in the years 2017, 2018, and 2019 with time gaps removed.

To improve the coupling correction, we use the measured
binary flux ratio: We fit the flux ratio for each file and divide
the fitted flux through the coherent flux of that file. Since S2’s
contribution is constant during the night, its contribution can be
estimated by dividing the binary flux ratio by the coherent flux
and averaging this ratio. The median S2 contribution is around
4% or ≈0.4 mJy. We correct the coherent flux by subtracting each
night’s median S2 flux from the individual exposures.

2.3. Determination of noise

The uncertainty of the binary flux ratios includes the fit uncer-
tainty. However, systematics dominate the errors. Consequently,
to determine the noise in our light curve, we use two proxy meth-
ods. We use the 2019 light curve which has a higher tempo-
ral sampling of eight times 40 s per five-minute exposure. We
subtract a polynomial fit from each five minute exposure. We
determine the noise from the standard deviation of the residuals.
The second approach uses the difference between the 0◦ and the
90◦ polarization for each exposure. We find a consistent power
law dependency between the rms and the flux density for both
methods:

σ(F) = 0.3 × F0.67. (3)

We find that a single power law slope suffices to describe the
noise. We do not find evidence for a flattening of the noise
towards lower fluxes, which would indicate a transition to detec-
tor read-out noise. The details of this analysis are presented in
Appendix B.

3. Results

Figure 2 shows the light curve observed in the years 2017, 2018,
and 2019. Figure 3 shows the derived flux distribution for the
respective years. We choose our histogram bin width and the bin
number using Scott’s normal reference rule (Scott 2015). This
choice is motivated by the fact that the data was well described
by a lognormal parameterization in previous studies and our
choice of log bins.

For correlated data, as in our light curve, the σ = 1/
√

N
estimator for the bin uncertainty underestimates the errors (e.g.,
Vaughan et al. 2003). For this reason, we chose block bootstrap-
ping to estimate the histogram uncertainty. We created 100 surro-
gate light curves by copying the original data and dropping 50%

Fig. 3. Flux distribution of Sgr A*: The thick blue line is the flux dis-
tribution combining all three observation years. The grey line combines
the flux distribution of 2017 and 2018, while the light blue line is the
flux distribution of 2019.

of the observation nights. We redrew the observations nights
with replacement from the original data. The choice for blocks
of observation nights ensures that the light curve is uncorrelated.
We estimate the uncertainty of each histogram bin from the stan-
dard deviation of the histogram created from the bootstrapped
light curves and quadratically add the 1/

√
N estimate. For 2017

and 2018 we have defined a formal detection significance ratio
based on the ratio of significance of a single source model com-
pared to the binary model. If this ratio is below 1, we count the
flux density point in the flux density bin where it is observed, but
we quadratically add its density contribution to the bin’s error.

Sgr A*’s light curve is correlated and, thus, the flux den-
sity histogram is not strictly a measure of the averaged prob-
ability density. As a consequence, if Sgr A* spends less than
a correlation time in a certain flux density bin, it is expected
that the detection frequency is biased. Because adjacent points in
the light curve are correlated, a single high flux density value is
likely to be preceded and followed by additional high flux den-
sities. A histogram of such a section of the light curve would
overestimate the detection frequency of these high flux densities.
Conversely, a section of the light curve containing no high-flux
density excursions would lead to an underestimated detection
frequency of high flux densities. For observations that last much

A2, page 4 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037717&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037717&pdf_id=3


GRAVITY Collaboration: The flux distribution of Sgr A*

Table 1. Percentiles of the flux distribution: empirical flux density percentiles of the light curve for the two measured polarizations.

Percentiles [mJy]: 2017 5% 14% 50% 86% 95%

0◦ Polarization 0.21 0.29 1.0 2.5 5.0
90◦ Polarization 0.20 0.26 0.6 1.7 3.0
Average 0.21 ± 0.01 0.28 ± 0.02 0.8 ± 0.3 2.1 ± 0.6 4.0 ± 1.4
Percentiles [mJy]: 2018 5% 14% 50% 86% 95%
0◦ Polarization 0.35 0.48 1.2 2.8 5.0
90◦ Polarization 0.31 0.43 0.9 2.3 5.1
Average 0.33 ± 0.03 0.46 ± 0.04 1.1 ± 0.2 2.6 ± 0.4 5.0 ± 0.1
Percentiles [mJy]: 2019 5% 14% 50% 86% 95%
0◦ Polarization 0.26 0.43 1.2 5.3 12.1
90◦ Polarization 0.34 0.60 1.6 5.6 11.4
Average 0.30 ± 0.06 0.5 ± 0.12 1.4 ± 0.3 5.5 ± 0.2 11.8 ± 1.3
2017, 2018 and 2019 average 0.28 ± 0.07 0.4 ± 0.1 1.1 ± 0.3 3.4 ± 1.7 6.9 ± 3.8

Notes. The averages reported are the mean of the polarization, the error is computed from the difference of the polarizations. The 5% and 14%
quantiles of 2017 are affected by instrument systematics and thus are given only for completeness. We note that the polarization angle is with
respect to the instrument and is not de-rotated to reflect the on-sky polarization.

longer than the correlation timescale, the observed detection fre-
quency converges to the true value.

While we expect that the block bootstrap captures this effect
to some extent. However, it is not clear if it can estimate the
errors if more than one physical process in the source is present
which may be on or off in different observations. As a conse-
quence, for flux density bins above 3 mJy, we conservatively
increase the histogram errors by multiplying them by a weight
factor. The weight factor is computed by dividing the total obser-
vation time for a given flux density bin by a correlation time
guess of 120 minutes. While this is shorter than the correlation
time estimate in, for instance, Witzel et al. (2018), it is longer
than the usual length of the perceived flares and, consequently, a
conservative estimate for a two-process scenario.

It is noteworthy to add that we almost always detect Sgr A*
for all three years. Using our most conservative estimate, we
find 17(>3σ) or 6(>1σ) non-detections in 2017 and 2018 (see
Appendix A for details). Furthermore, despite the large separa-
tion, and consequently the minimal flux coupling of S2, we can
almost always fit a binary in 2019. Using reconstructed images
we find that Sgr A* is always detected in 2019 (GRAVITY Col-
laboration, in prep.). This illustrates that the flux distribution
is right-skewed in log space, and flux densities below 0.1 mJy
occur only very infrequently.

3.1. The empirical flux distribution

Since we almost always have a detection of Sgr A*, the empir-
ical percentiles can serve as an assumption-free description of
the flux distribution. Using the percentiles shown in Table 1,
we updated the spectral energy distribution (SED) of Sgr A* as
shown in Fig. 4. The uncertainty on the flux density percentile is
computed from the difference in the two polarizations, which is
believed to be largely instrumental.

Comparing the polarization-averaged flux density per-
centiles, the 2017 and 2018 50%, 86%, and 95% percentiles
are consistent. Because the 2017 light curve is limited by the
fiber coupling correction (see Sect. 2.1.2), the low percentiles of
2017 cannot be compared with those of the following years. On
the other hand, the low flux density percentiles (5% and 14%)
of 2018 and 2019 are consistent with each other. The 50% per-
centile for 2019 is marginally consistent with its 2017 and 2018
counterpart.

Fig. 4. SED of Sgr A*: the radio and sub-mm data are from
Falcke et al. (1998), Bower et al. (2015, 2019), Brinkerink et al. (2015),
Liu et al. (2016). The far infrared data is from Stone et al. (2016) and
von Fellenberg et al. (2018). The NIR M-band data is the median flux
density inferred from the lognormal model of Witzel et al. (2018). The
NIR K-band data is the GRAVITY flux density: the thick point is the
median flux density, and further flux density percentiles are annotated.
Also shown are the NIR and X-ray flux density spectrum of a bright
simultaneous flare observed by Ponti et al. (2017), the quiescent X-ray
flux density is determined from Baganoff et al. (2003).

This is consistent with an unchanged low and median flux
distribution in all years covered by GRAVITY observations. The
high flux density percentiles (86% and 95%) of the 2019 data are
not consistent with their counter parts from the previous years.
This increase in observed flux density is caused by the detection
of six bright flares (FSgrA ∼ FS2) in 2019. The increase in the flux
density percentiles is significant with respect to the measurement
uncertainty. In the flux distribution we have estimated the bin
uncertainty conservatively to account for the correlation in the
light curve and the effect of two potential states. In consequence,
the flux distribution of 2017 and 2018 is consistent with the 2019
flux distribution.

Table 1 lists separately the percentiles for both 0◦ and 90◦
polarizations as well as the average. It is not clear if the appar-
ent differences between the two polarization are of physical ori-
gin, since the polarization angle is measured with respect to the
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instrument and not the on-sky orientation. In consequence, the
differences may reflect additional systematic uncertainties rather
than the intrinsic polarization of the source.

3.2. Analytic distribution function

We fit the flux distribution histogram with several analytic
probability density functions (PDFs). These distributions have
been selected according to four criteria: non-Gaussianity, right
skewedness, historical usage, and physical motivation. These can
be grouped into four families of PDFs:

1. The lognormal distribution: This distribution is frequently
used in active galactic nuclei (AGN) and X-ray binaries: The
lognormal distribution results from many unresolved subpro-
cesses which are Gaussian and amplify each other into a sin-
gle observable. Thus the lognormal distribution results from
the product of the Gaussian subprocesses (e.g., Uttley et al.
2005). This model has been applied to Sgr A* in all past stud-
ies of the NIR flux distribution (see, e.g., Dodds-Eden et al.
2009; Witzel et al. 2012, 2018; Hora et al. 2014).

2. The power law distribution: power law distributions are com-
monly observed in nature and find a possible explanation in
the frame work of self-organized criticality: Self-organized
critical systems are systems in which a constant influx of
energy breaks down to smaller scales; the power is some-
times associated with the dimensionality of the system or the
degrees of freedom (Aschwanden et al. 2016). Such distribu-
tions have been discussed in the context of Sgr A* to explain
a possible flare state, the distribution of NIR emission as a
whole and the distribution of X-ray flares (Dodds-Eden et al.
2009; Witzel et al. 2012; Li et al. 2015).

3. The family of exponential distributions: Exponential distri-
bution functions such as the Gamma distribution are a gen-
eralization of the Poisson process, in which a waiting time
between two events is relevant. Such distribution functions
have not previously been used to describe the flux distribu-
tion of Sgr A*. However, they are conceptually attractive for
accretion flows since the flux density at any time depends on
the influx of energy and on the intensity of the flares that had
come before.

4. Composite distributions: If there are two processes creating
the flux, the observed PDF is the convolution of the PDF of
each process. Such a two state scenario has been proposed by
Dodds-Eden et al. (2009) to overcome the apparent tension
of a single lognormal and the high flux flares. In their sce-
nario, the bulk of the emission is created from a lognormal
process, and a power law tail is allowed to explain the high
flux flares. We adopt this parameterization, but we note that,
in principle, many combinations of PDFs could be imagined
to explain such a two state scenario.

Before these model PDFs can be fitted to the flux distribution, the
effects of measurement noise have to be taken into account. In
contrast to single telescope photometric studies, the light curve
measured by GRAVITY is unconfused. Prior to 2019, the flux
density reported is the direct ratio of S2 and Sgr A* and is thus
unconfused. This assume that there is no third source within the
GRAVITY beam (FWHM ∼ (2×4) mas). In 2019 we have mea-
sured the integrated coherent flux density in the IFOV, which
is blind to the background contribution of bright nearby stars
and the galaxy. Furthermore we have subtracted the contribu-
tion from S2, which is the closest and brightest star in the IFOV.
Using deep images obtained from stacking several observation
nights yields an upper limit for the brightness of a potential third

Fig. 5. Distribution fits: the observed flux distribution is fitted with a
lognormal PDF. The blue line shows the disfavored single lognormal
distribution, the red region line indicates the excess flux density com-
pared to the best-fit distribution. We chose the bin number according
to Scott’s rule and we chose a logarithmic binning. The error bars are
computed from Poisson statistics and a block boot strap: see Sect. 2 for
details.

source of ∼0.3 mJy. We therefore assume that Sgr A* is the only
flux contributor in 2019. This assumption is assessed in further
detail in Appendix A. Consequently, we can model the flux dis-
tribution without the assumption of a Gaussian background.

In the presence of observational noise, the intrinsic PDF of
Sgr A* will be affected by the PDF of the noise, that is, the intrin-
sic distribution function is convolved with the noise distribution.
In order to compare our data to a model PDF, we bin the model
PDF to match the flux density bins of the observed flux distri-
bution. To address this mathematically, we integrate the noise
smoothed model PDF over each histogram bin:

P(F) =
1

Fmax − Fmin

Fmax∫
Fmin

∞∫
0

Pint(t, . . . ) · N(τ, F′, σ(τ)) dτ dF′,

(4)

where F is the flux density of the bin center, and . . . substitutes
for the intrinsic parameters of the PDF. Since the histogram is
normalized to 1, but not all possible flux density states have
been observed, we renormalize the observed distribution func-
tion. Assuming the empirical noise relation obtained for the 2019
observations holds for the other years as well, we can model the
noise as a Gaussian N(Fobs, σ(Fobs)), where σ = 0.3 × F0.67.

3.2.1. Lognormal and power law flux distributions

We find that a single lognormal distribution is not sufficient to
describe the data. The flux distribution is log-right skewed. Con-
sequently the log-symmetric lognormal distribution cannot fit
the tail of the distribution at high flux densities. A lognormal fit
to the noise-convoluted distribution function is given in Fig. 5.

Similarly, the detection of the mode of the flux distribution
rules out a simplistic power law model with P(F > Fmin) =
(α+1)/Fmin ·F−α and P(F < Fmin) = 0. Nevertheless, the power-
law-like tail for flux densities larger than the mode of the flux
distribution allows for a variety of models in which high flux
densities are described by a power law and the flux densities
beyond the mode of the distribution are described by a different
parameterization. One such model, the tailed lognormal model
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proposed by Dodds-Eden et al. (2011) will be discussed in the
following subsection.

3.2.2. Exponential distribution functions

We test the Gamma distribution and the Weibull distribution as
model distributions for Sgr A*. We find that neither distribution
can describe the observed flux distribution. However, when tak-
ing their inverse form (i.e., P(F) = Γ(1/F)) both distribution
functions give a good fit to the observed flux distribution. The
grey and the dark blue curves in Fig. 6 show the best-fit inverse
Gamma and inverse Weibull PDFs to the flux distribution.

The Gamma function arises from Poisson processes with a
distribution of wait times between successive events. This pic-
ture makes them initially attractive for modeling the infrared
variability as a recurrent flaring process. However, the inverse
Gamma function is the same distribution with a random variable
corresponding to the reciprocal of the flux density. This quan-
tity can be understood as a timescale with units [s erg−1], that is,
the time it takes for a certain amount of energy to be released.
It is difficult to imagine a physical scenario in which the flux
from Sgr A* can be explained by a succession of events corre-
sponding to an increase in the characteristic emission timescale
of the accreting material. We are not aware of any discussion in
the literature of such a process. In the absence of a physically
motivated model, we do not therefore consider the inverse expo-
nential description of the flux distribution.

3.2.3. Composite distribution functions

We find that a piecewise function consisting of a lognormal dis-
tribution joined to a power law tail for flux densities greater
than a transition flux density yields a good fit to the flux dis-
tribution. Such a distribution function has been proposed by
Dodds-Eden et al. (2010) and has been interpreted in the follow-
ing sense: The quiescent low flux density states are associated
with a lognormal distribution. The lognormal flux distribu-
tion is motivated in analogy to the flux distribution of many
accreting compact objects such as X-ray binaries or AGN (e.g.,
Uttley et al. 2005). On top of the quiescent phase, there exists a
secondary process which creates the flux density tail responsible
for the highest flux densities, which coincide with the observed
flaring events. The transition flux density marks the flux density
at which the observed fluxes are dominated by the secondary
process. We fit the distribution function with the parametriza-
tion proposed by Dodds-Eden et al. (2010) and find that such
a prescription yields a very good fit to the data (see the light
blue curve in Fig. 6). Such a parametrization is useful to illus-
trate a flux distribution composed of multiple components; how-
ever it is not rigorous in a statistical sense: A two-process sce-
nario would be described by the convolution of the individual
processes. However, we include it here as a proxy for models
in which the flares are described by a separate physical process
from the low-flux density state.

3.2.4. Comparison of the distribution fits

Table 2 summarizes the least squares distribution fits presented
in Figs. 5 and 6. We assess the four competing models using dif-
ferent standard model comparison formulae. We have disfavored
the inverse exponential distribution functions, because we do not
find a straight forward physical model.

In all model comparisons, the visual perception that the
lognormal distribution fails to produce the high flux density

Fig. 6. Same as Fig. 5, for distribution functions which describe the
observed distribution well.

tail is reflected, despite the larger number of parameters of
the tailed lognormal model. For instance, the difference in the
small-sample corrected Akaike information criterion1 (AICc)
between lognormal and the tailed lognormal model is ∆AICc =
46.1−17.4 = 28.7, indicating a very strong evidence in favor of
the tailed model.

3.3. The rms–flux relation

Using the mean and the standard deviation of the 40 s bins
of each five minute exposure, we establish the rms–flux rela-
tion for this time scale range. We do not use the integrated
power spectrum to determine the rms, but compute the rms as
rms = 1/(N − 1)

∑N(xn − 〈x〉)2. The relation is plotted in Fig. 7.
In order to correct the rms for the noise in the measurements, we
subtract in quadrature the standard deviationσ of the polynomial
subtracted light curve to account for the observational errors.

Every time series generated from a skewed distribution
exhibits a relation between the rms and the mean flux density of
a subset of the series (e.g., Witzel et al. 2012). Since the rms of
a time series is related to its power spectrum through Parceval’s
theorem, the rms–flux relation allows to probe the power spec-
trum at different mean flux density levels (in the time domain).

Vaughan et al. (2003) and Uttley et al. (2005) have argued
that in the case of a multiplicative lognormal process creating
the light curve, the rms–flux relation is linear on all relevant time
scales. Witzel et al. (2012) have reported that Sgr A* exhibits an
rms–flux relation which is linear to first order. The NACO instru-
ment used by Witzel et al. (2012) is sensitive to timescales on the
order of minutes to a few hours. This is too short a time span to
effectively probe the variability of Sgr A* at all relevant time
scales; it is shorter than the typical NIR quiescent state correla-
tion time measurements, for instance of 423+82

−57 min (Witzel et al.
2018). The same of course applies to GRAVITY, since it is also
a ground-based instrument. Consequently, the line of argument
used for X-ray binaries, for example, by Uttley et al. (2005) can-
not be repeated for Sgr A* to show a multiplicative process and
a lognormal flux distribution. Furthermore, this interpretation
has recently been challenged by Scargle (2020), who argues that
both a lognormal and a rms–flux relation can be created in a shot
noise scenario.

1 For correlated data, the model selection criteria are expected to be
over or underestimated. We have ignored this effect.
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Table 2. Comparison of a lognormal, tailed lognormal, inverse Gamma and Weibull distribution.

Distribution name Functional Best fit values χ2
red BIC AICc

LogNormal
1
√

2π

1
xσln

× exp
−(log x − µln)2

(2σln)2 µln = (0.08 ± 0.04) 1.69 52.4 46.1
σln = (0.77 ± 0.03)

µln = (−0.21 ± 0.23)

LogNormal + Tail
{
LN(x) x ≤ xmin
cLN(xmin)F−α/x−αmin x > xmin

σln = (0.53 ± 0.13) 0.63 29.2 17.4
α = (2.08 ± 0.12)
xmin = (1.1 ± 1.9)

Inverse Gamma
βα

Γ(α)x(α+1) e(−β/x) α = (1.76 ± 0.14) 0.57 22.1 15.8
β = (1.49 ± 0.14)

Inverse Weibull β αβx(β+1)e(−(α/x)β) α = (0.78 ± 0.03) 0.44 18.7 12.4
β = (1.41 ± 0.07)

Notes. The table lists: name, functional, best fit values, χ2, Bayesian Information Criterion (BIC) and the small sample corrected Akaike Informa-
tion Criterion (AICc). The dimensionless parameters describing flux densities are in mJy.

Nevertheless, if the power spectrum were different for the
higher flux flares, the rms–flux relation could serve as a tool
to disentangle low and high flux density states. We find that
the rms–flux relation is approximately linear. The best-fit lin-
ear function has a slope of 1.0 ± 0.05 and an abscissa offset of
0.15 ± 0.01 [mJy]. The red points in Fig. 7 are rms estimates for
the six nights for which a bright flare occurred. These points fol-
low the same rms–flux relation as the low flux density points.
Consequently, we find no significant evidence for changed vari-
ability during flares. Furthermore we find no flattening of the
rms–flux relation towards the lowest fluxes. This rules out a sce-
nario in which the lowest fluxes are dominated by a second Gaus-
sian source or instrumental limitations.

The rms–flux relation can serve as a powerful tool to quan-
tify the variability. It is easily obtained from computing rms in
time domain. This avoids the biases introduced by gaps in the
light curve inherent to variability studies in frequency domain.
To demonstrate this we compare the observed rms–flux relation
to the relations obtained from two simulations from Dexter et al.
(2020). The simulations describe the SED of Sgr A* well. Both
have a duration of roughly 27 h, assume a black hole spin of
a = 0.5 and an inclination of i = 25◦ with respect to the
observer. They differ in the ratio of magnetic to gas pressure.
For the SANE (Standard And Normal Evolution) simulation the
gas pressure dominates. In the MAD (Magnetically Arrested
Disk) simulation the magnetic pressure dominates. Furthermore
they differ in the description of sub-grid electron heating: The
first simulation uses a turbulence-like description and the sec-
ond simulation uses a description based on magnetic reconnec-
tion description. The details of both simulations are described in
Dexter et al. (2020).

We find that both simulations describe the overall variabil-
ity of Sgr A* well. The SANE/Turbulence simulation matches
the observed variability better, whereas the MAD/Reconnection
simulation slightly under-produces the observed mean flux den-
sity and variability. This is of course a consequence of the chosen
parameters, but demonstrates the use of the rms–flux relation as
an observationally very simple, yet very powerful, tool to con-
strain models of Sgr A*.

4. Discussion

We find that the flux distribution of Sgr A* turns over at a flux
density of around 0.6 mJy and the empirical median flux den-
sity is approximately 1 mJy. This bulk of the emission, in the
quiescent state, is consistent with remaining through the years
of 2017, 2018, and 2019, indicating no immediate effect of the
pericenter passage of S2.

In 2019, we observed six bright flares from Sgr A*. These
bright flares cause the flux distribution to extend in a power-law-
like fashion for flux densities above ∼2 mJy. We fit the flux distri-
bution with different model PDFs taking into account the effect
of observational noise and the binning of the data. Here, the
analysis is supported by the fact that our light curves are uncon-
fused. This makes statistical modeling of the background unnec-
essary. A single power law PDF model is not favored because
the flux distribution turns over. It is clear that a bent or broken
power law can describe the observed flux distribution. However,
without a physically motivated statistical model for the emis-
sion of Sgr A*, such a bent power law does not offer any valu-
able information. Similarly, we find that distributions of inverse
exponential type can describe the log-right skewed flux distri-
bution. However, the inverse form of the distribution function
implies a inverse dependence of the flux density to the intrin-
sic random variable. We associate the inverse flux density to a
process-inherent time scale, however we cannot identify such
a process. Recently, Scargle (2020) has reviewed a family of
flare-like models for astronomical light curves. These models
are seemingly able to create arbitrarily shaped flux distributions
and linear rms–flux relations. However, a detailed analysis of the
implication of such models is beyond the scope of this paper.

An alternative to intrinsically log-right-skewed distributions
are composite flux distributions. To account for the excess flux
density, we allow for an additional power law tail at high flux
densities. The tailed lognormal distribution represents a two-
state system in which the quiescent emission is created in the
first process and the flares cause the power law tail.

We study the variability of the light curve using the rms–flux
relation. We find the rms–flux relation to be linear for the probed

A2, page 8 of 12



GRAVITY Collaboration: The flux distribution of Sgr A*

Fig. 7. Left: rms–flux relation of Sgr A*: The rms variability of five minute segments of the light curve as a function of the mean flux density in
the time bin. The light curve has a data point every 40 s, the rms is computed in the time domain and corrected for the measurement noise σ. The
red points show the relation for mean flux densities above 3 mJy for the six nights with bright flares. The dark blue line is a linear fit, where the
rms values have been weighted using the noise flux density relation determined in Sect. 2.3. This accounts for the increasing noise at higher flux
densities. Right: comparison of the observed rms–flux relation to the relation computed from two GRMHD simulations presented in Dexter et al.
(2020). The top plot compares the observed relation (black points) to a simulation with a SANE disk (gas pressure dominated) in which electron
heating is achieved through a turbulence-like description (dark blue points); bottom plot compares the observations (black points) to MAD disk
simulation (dynamically important magnetic fields) in which electron heating is achieved through magnetic-reconnection-like description (dark
blue points).

time scale of 40 s to five minutes. Intriguingly, we do not observe
a change in the rms–flux relation during the flares.

Based on our finding of a tailed lognormal flux distribu-
tion we favor a NIR emission scenario which consists of two
components: A quiescent lognormal mechanism that is usually
dominant and a separate flare mechanism. Besides the evidence
brought forward in this work and previous works on the flux
distribution, there are several additional arguments favoring two
distinct NIR states for Sgr A*.
1. X-ray flares and NIR flares are coupled. The converse is not

true (e.g., Dodds-Eden et al. 2009).
2. There is no detectable X-ray quiescent state, which would

be clearly associated with the NIR counterpart (e.g.,
Genzel et al. 2010).

3. Strong NIR flares are polarized. The degree of polarization
increases with flux density (e.g., Eckart et al. 2006).

4. The spectral index of the flares changes with observed
brightness. For flares, the spectral index is ανFν

∼ 0.5, but
this value decreases to ανFν

∼ −2 during the quiescent phase
(Gillessen et al. 2006).

5. Do et al. (2019) detect a 70 mJy flare which is inconsistent
with the lognormal flux distribution model of Witzel et al.
(2018), but consistent with a power law tail (G. Witzel, priv.
comm.).

6. Three bright NIR flares have been observed with GRAV-
ITY which show orbital motions. The timescale of the
motion is on the same order as the flare duration. Simi-
larly, the observed polarization degree and orientation are
correlated with the flare duration and astrometric motion
(GRAVITY Collaboration 2018a).

5. Summary

In this paper, we build on our previous work on the flux dis-
tribution into the lowest and highest flux density domains. We
detected Sgr A* in more than 95% of our observations and we
conclude that:

1. The median flux density (1.1 ± 0.3 mJy) as well as the flux
density percentiles are robustly measured.

2. The Sgr A* SED is constrained by using the measured
flux density percentiles. Because we measure flux densities
beyond the peak of the flux distribution, we do not have to
assume an analytic model for the flux distribution as in previ-
ous works (e.g., Dodds-Eden et al. 2010; Witzel et al. 2018).

3. The lower percentiles and the median of the flux distribution
are stationary within our error estimates and systematic limi-
tations. However, in 2019, we find an increase for the higher
percentiles of the light curve. This is due to the observation
of six bright flares.

4. A single lognormal or power-law-like flux distribution is
ruled out. This is because the flux distribution turns over and
is log right skewed with a powerl-law-like fall off at flux den-
sities higher than ∼2 mJy.

5. The flux distribution is well described by composite distribu-
tion functions, such as the tailed lognormal parameterization
proposed by Dodds-Eden et al. (2010).

6. GRAVITY is the first instrument that allows the study of the
variability of the light curve both at fluxes beyond the mode
of the flux distribution, as well as the variability of the bright
flares. Using the rms–flux relation, we search for a change
in variability during flares. We find a linear rms–flux relation
that holds for both quiescent and flare states.

7. We conclude that a tailed lognormal PDF describes both the
flux distribution and the rms–flux relation. The two-stated
model implied by this parameterization is consistent with all
other observational characteristics of the light curve. We thus
favor this model over other single-state, right-skewed distri-
bution functions that lack physical motivation.

Ultimately, the detection of an extreme and unprecedentedly
bright flare by Do et al. (2019) and our observations of six addi-
tional bright flares in 2019 may indicate that the accretion flow
has been altered by the pericenter passage of S2 and/or G2. How-
ever, we do not find evidence that the median or mode of the flux
distribution has significantly changed in 2019. In consequence, if
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there are indeed two processes generating the faint quiescent and
flaring states, the pericenter passage of S2 or G2 can only have
affected the process generating the flares. In light of this con-
straint, it would be highly interesting to study the sub-mm light
curve of Sgr A*: Since the sub-mm emission is dominated by
a population of thermal electrons it measures the particle den-
sity and the magnetic properties of the innermost region. Con-
sequently any change in the sub-mm flux distribution in 2019
compared to the previous years may help in understanding the
NIR emission scenario.

GRAVITY will continue observing Sgr A* in the years to
come, which will allow for a long-term analysis of the light
curve at all flux density levels. This will make it possible to test
the long term stationarity of the light curve and possibly yield
insights into the changes of the accretion rate.
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Appendix A: Detection limit

A.1. Binary fits

Data selection plays a crucial role when working with flux ratios
obtained by fitting a binary model. We rigorously reject data
which has been observed under bad conditions or with instru-
ment malfunctions. In addition, bad fits should be removed from
the sample. We must make sure that the Markov chain Monte
Carlo (MCMC) fit has converged. Furthermore, in the case of
non- or spurious detections one must ensure that the fit result
does not reflect the initial conditions. Most importantly, one must
pay special attention that fits are not rejected because of low flux
as this skews the resulting flux distribution. To ensure that the
fitted flux ratios are sound we define four different data selection
schemes which we benchmark against each other:
1. Manual data rejection: all fit results are visually inspected

and the data is qualified according to the quality of the fit
and the data.

2. Astrometric outlier rejection: We calculate the best fit orbit,
using all data. We than reject 20% of the data that is most out-
lying, based on the inverse variance weighted distance from
orbit position and the fit position.

3. Significance of binary rejection: We compare a binary fit to
a single point source fit. If the significance binary model is
less than 3σ better than the point source, the data is rejected.

4. No rejection: We use all data points regardless of their appar-
ent quality.

All of these selection criteria can partially be flux-dependent,
even when no data are rejected2. To reduce this bias, we redraw
the rejected data from the measured accepted data. Such a sim-
ple bootstrapping does not take into account the correlation in
the light curve, and the data should be re-drawn from self-similar
parts of the data (block bootstrapping Künsch 1989). However,
in our case, the light curve is not long enough to have sampled
many high flux states, so a self-similar redrawing from high and
low flux states did not alter the results. We thus opt for the sim-
pler bootstrapping approach.

We find that the manual data rejection (1.) the astrometric
outlier rejection (2.) and no rejection yield (3.) consistent results.
Only the significance of binary rejection (4.) deviates from the
other rejection schemes. In the first three cases, the flux distribu-
tion of the rejected data closely follows that of the accepted data.
In contrast, the significance of binary rejection scheme shows a
strong correlation with the flux and we exclude this scheme. We
conclude that the data rejection is mostly unbiased for the man-
ual rejection, the outlier rejection and no rejection. We thus use
the simplest scheme, with no rejection, to derive our results.

To asses the detection limit we use different tools. First the
convergence of the MCMC chains for the binary fits was checked
and proper convergences was ensured. We visually checked that
binary features are detectable in the visibility amplitude, the
squared visibilities and the closure phases.

To obtain qualitative criteria if Sgr A* is detected, we explic-
itly checked all files with a measured flux density below 0.3 mJy.
We compared the fitted position with the theoretical position
based on the orbit. We find that the fitted positions derived at
low fluxes do not perform differently from the observations with
higher fluxes.

2 While the signal-to-noise ratio of Sgr A* is flux dependent, the qual-
ity of the data is not. For instance, if bad data systematically cause the
fits to have artificially high fluxes, those flux bins will be overrepre-
sented in the resulting flux distribution.

A third qualifier is significance of a binary against a single
source model. For the first polarization, we find twelve exposures
with a significance below 3σ and five exposures with a signifi-
cance below 1σ. For the second polarization, 17 exposures fall
below a significance of 3σ, and six files below 1σ. Notably, only
one file from 2018 shows a significance below 3σ.

We further investigate the files with low fluxes in order to
ensure that the binary signal that is observed stems from Sgr A*
and not from another source within the IFOV. We do this by
simplifying the fitting procedure and only allow for the binary
flux, a visibility scaling and the background flux. We keep the
binary separation fixed and run fits over a finely sampled grid
with 10 000 points ±10 mas around the best fit position. Because
this is computationally expensive we only check one file per
year. Since it is expected that a transient background source is
visible at least for a few months, this is enough to ensure that the
measured signal is not caused by a transient background source.

We find that in both the 2017 and 2018 tested cases, there
is significant flux at the separation of Sgr A* and S2. While
there are several degenerate solutions with similar intensity, the
fit at the SgrA*–S2 separation has the lowest χ2. Furthermore,
because S2 and Sgr A*’s positions are very well determined
from the orbit fitting (and the other, brighter measurements in
the respective nights), we ascribe the degenerate positions at
other separations to side lobes of the beam and argue that the
S2–SgrA* binary dominates the fit result.

Appendix B: Flux error model

In order to model the flux distribution with an analytic PDF
model the observational uncertainties need to be taken into
account. Noise has a smoothing effect on the flux distribution.
Each measurement is uncertain with a given probability distri-
bution, and when creating a histogram of the data, the measure-
ments may fall into a wrong bin with a probability governed by
the error PDF. In this paper we assume the noise to be normally
distributed, with a flux-dependent standard deviation. Unlike in
similar photometric studies, our noise analysis is limited by the
number of observables: The only two observables which are
readily available are S2 and Sgr A*. S2 can only be used to esti-
mate the uncertainty at very high fluxes and it is, thus, of limited
use. Furthermore we found the formal fit uncertainties to be poor
estimators of the uncertainty. Consequently, we use two empiri-
cal approaches to determine the uncertainty. In a first approach,
we use the difference between the two polarizations to estimate
uncertainty. In the second approach, we assume that the intrin-
sic light curve is a smooth function, which we can fit with a low
order polynomial. We estimate the uncertainties by measuring
the standard deviation of the residuals, after subtracting the best
fit polynomial. For the second approach we found that polyno-
mials of fourth and fifth order are sufficiently flexible to describe
the light curve.

Both approaches are limited. In the first case, only two mea-
surements determine the uncertainty, and the intrinsic polariza-
tion of Sgr A* inflate the measured uncertainty. In the second
case, the assumption of smoothness is imposed, and the order of
the polynomial can not be rigorously quantified. However, both
measurements quantitatively agree with one another in that the
rms scatter is described by a single power law of σ = 0.3 × F0.6,
see Fig. B.1. The exponent of 0.6 is consistent with the power
law description used in photometric studies of the light curve and
is consistent with a photon noise origin (e.g., Dodds-Eden et al.
2011; Fritz et al. 2011).
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Fig. B.1. Noise as a function of flux: The rms is determined from the dif-
ferences of the two measured polarizations (black points) and the resid-
uals of fourth order polynomial subtracted light curve of Sgr A*. Both
relations can be described by single power law functions, for which we
plot the best fitting realization.
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