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ABSTRACT

Four models of increasing complexity were tested and compared to simulate snow water
equivalent at the local scale in the Moroccan High Atlas range. A classical temperature index
model (TI) and three enhanced temperature index models that respectively include the potential
clear-sky direct radiation (HTI), the incoming solar radiation (ETI-A) and net solar radiation (ETI-B),
were subjected to annual and multi-annual calibration and cross-validated over the period
2003-2010. When calibrated yearly, the ETI models could be better transferred to other years,
whereas all models, including the simple Tl model, showed good transferability when calibrated
over a longer period that includes inter-annual climate variability. No strong and recurrent
relationships emerged between yearly calibrated model parameters and annual climate condi-
tions. However, strong parameter compensation was observed for the enhanced models, which
can be explained partly by the collinearity of air temperature and solar radiation causing
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equifinality of model parameters.

Introduction

In arid and semi-arid regions, snowfall and rainfall in
mountainous areas constitute an important source of
water for domestic, industrial and agricultural use
(Viviroli and Weingartner 2004, Bales et al. 2006). In
such contexts, hydrological processes are extremely
heterogeneous due to the marked temporal variability
in hydro-climatic conditions combined with the strong
topographic gradients and diverse land cover distribu-
tions (Cudennec et al. 2007, De Jong et al. 2008,
Muiioz et al. 2012, Fayad et al. 2017). According to
model projections, future climate conditions in these
areas will strongly affect water availability due to a
reduction of snowfall and rainfall amounts, and snow-
pack depletion driven mainly by warmer temperatures
(Barnett et al. 2005, Lopez-Moreno et al. 2009, 2017).
The Atlas Mountains of Morocco, considered to be a
water tower for the surrounding arid plains, produce a
large proportion of the water supply for agriculture activ-
ities, dam storage, hydropower production and aquifer
recharge (Chehbouni et al. 2008, Jarlan et al. 2015). In
winter and spring, a significant part of the precipitation is
stored temporarily as snow, which controls river runoff
during the snowmelt period (Boudhar et al. 2009a). As in
other semi-arid mountain ranges of the world, the snow

models; semi-arid climate;
High Atlas; Morocco

cover is highly variable at annual and inter-annual time
scales (Marchane et al. 2015, Boudhar et al. 2016), which
greatly affects the storage capacity of catchments and the
hydrological contribution of snowmelt to total runoff. In
the Tensift River basin, where the present study was
conducted, snowmelt was found to contribute 15-50%
of the annual river discharge in the main headwater
catchments, this proportion varying between hydrologi-
cal years and among catchments (Boudhar et al. 2009a).
In this context, estimating snow accumulation and
snowmelt contribution to runoff is highly relevant for
water management purposes. The traditional approaches
used to calculate snowmelt range from simple empirical
models (e.g. Kustas and Rango 1994, Hock 2003) to more
sophisticated, physically-based models that resolve the
full energy balance at the snow surface (Tarboton and
Luce 1996, Liston and Elder 2006, DeWalle and Rango
2008, Herrero and Polo 2016). These latter models
describe all major processes controlling snowpack evolu-
tion and quantify melt as the residual of the energy
balance equation. They require a large amount of input
meteorological variables, usually at an hourly time step,
which are typically either not available or scarce in high
mountain catchments. In such conditions, conceptual
models with lower data requirements are preferred.
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Several previous studies have shown that degree-day
models, which depend solely on air temperature, provide
satisfactory estimates of melting rates in various locations
and climates (Singh and Jain 2003, Schneider et al. 2007,
Boudhar et al. 2016, Fassnacht et al. 2017). The strong
correlation between air temperature and snowmelt can be
explained by the dependence of the sensible heat and
atmospheric long-wave radiation fluxes to air temperature
(Ohumura 2001, Hock 2003). Despite their simplicity,
these models generally perform well both at the point
scale and within distributed or lumped hydrological mod-
els (Binley et al. 1997, Li and Williams 2008, Abudu et al.
2012, Kampf and Richer 2014, Tayal Senzeba et al. 2015,
Hublart et al. 2016). Even so, melt factors in degree-day
models can vary significantly in time due changes in
energy flux partitioning between the snow surface and
the atmosphere, and spatially in response to topography
and land cover (Fassnacht et al. 2017). The net solar
radiation generally contributes between 50 and 90% of
the energy available for snowmelt (e.g. Willis et al. 2002,
Mazurkiewicz et al. 2008). As such, air temperature and
solar radiation have been the two main meteorological
variables used to predict snowmelt rates (Brubaker et al.
1996, Richard and Gratton 2001, Hock 2003). Many
attempts have been made to improve the physical founda-
tion of empirical melt models and enhance their perfor-
mance by incorporating additional predictive variables
such as wind speed, vapour pressure or radiation
(e.g. Zuzel and Cox 1975, Willis et al. 1991, Kustas and
Rango 1994, Rango and Martinec 1995, Franz et al. 2010).
These models have been referred to broadly as “enhanced”
temperature index models and represent a trade-off
between simple degree-day models and explicit energy
balance models (Hock 2003). Most enhanced melt models
include a solar radiation term, either in the form of poten-
tial clear-sky direct (Hock 1999), global (Kustas and Rango
1994) or net (Pellicciotti et al. 2005) solar radiation. These
enhanced models have often been found to outperform
classical degree-day methods on a daily or even hourly
basis (Hock 2005, Homan et al. 2011, Raleigh and
Lundquist 2012).

When used within hydrological models, parameters of
empirical melt models are often calibrated at the same time
as the hydrological parameters, which can give rise to
equifinality problems and hamper the transferability of
model parameters (Beven 1993, 2006). This motivates the
use of additional data, such as measured snow depth, to
calibrate snowmelt parameters independently from hydro-
logical parameters. There are, however, indications that the
parameters of simple temperature index models can
depend strongly on the climatic conditions of the calibra-
tion period, calling into question their transferability over
time (Gabbi et al. 2014, He et al. 2014). This is in fact to be

expected from simple melt models with few parameters,
which do not fully account for inter-annual variations in
energy flux partitioning between the atmosphere and the
snow surface. The problem of climate dependency of
model parameters is likely to be more acute when the
period of data available for calibration is short, which can
require recalibration of the models for individual sub-
periods (Huss et al. 2009). The formulation of “enhanced”
melt models seeks to address this shortcoming partly by
considering additional processes while maintaining a sim-
ple model structure and a low data requirement. The
increased physical realism of enhanced models may help
to alleviate the climate dependency of the calibrated para-
meters, however at the cost of increased model complexity,
i.e. the number of parameters to be calibrated.

In contrast to calibrated empirical melt models,
physically-based models with minimal or no calibra-
tion have been found to be more transferable over time
and space, with only a small decrease in model perfor-
mance (Carenzo et al. 2009). These models are there-
fore less dependent on climate conditions and can be
more reliably extrapolated over time (Gabbi et al
2014). However, due to their more complicated struc-
ture and higher data requirements, these models are
more difficult to apply within distributed hydrological
models, and hence are less often used for this purpose.

The application of empirical melt models in semi-arid
regions is further complicated by snow sublimation.
Several studies have shown that sublimation can consider-
ably reduce the energy available for melt in such regions
(e.g. Hock 2003, Froyland 2013, Gascoin et al. 2013,
MacDonell et al. 2013, Herrero and Polo 2016), which
can complicate the melt-temperature relationship and the
calibration of simple empirical melt models. The semi-arid
climate conditions of the Atlas Mountains favour snow
sublimation, which can represent a non-negligible fraction
of annual snow ablation. Based on energy balance calcula-
tions in earlier studies, the sublimation ratio (total subli-
mation/total ablation) was found to be as high as 44% on
the south slopes of the Atlas (Schulz and de Jong 2004),
while on the north slopes this ratio was found to be lower,
varying between 7 and 20% depending on the year
(Boudhar et al. 2016). This large difference in sublimation
ratios is consistent with the fact that the northern, wind-
ward side of the Atlas intercepts moist air masses from the
Atlantic Ocean, while the leeward side is relatively more
depleted in moisture and more arid (Knippertz et al. 2003,
Schulz and de Jong 2004).

There have been few studies that have looked at the
respective performance of empirical models in semi-
arid mountainous areas, and explicitly explored the
issues of coefficient transferability over time and their
dependency on climate conditions. These issues are



important in order to guide model calibration practices
in the context of limited data availability, which often
plagues remote mountain sites such as the Atlas. Such
models could become particularly useful in the opera-
tional framework of water management, given the lack
of weather data in the High Atlas to run energy-bal-
ance models. Therefore, the aim of the present study is
twofold: (1) to evaluate the performance of four sim-
plified approaches, ranging from a simple degree-day
method to enhanced degree-day methods that include
the incoming radiation and albedo, to simulate snow
water equivalent (SWE) at the station scale over the
period 2003-2010 in the Moroccan High Atlas range;
and (2) to assess the models’ transferability over time
and the climate dependency of the model parameters,
using different calibration/validation strategies.

Study area and data

This study was carried out in the High Atlas Mountain
range, located in central Morocco (Fig. 1). This range
reaches its maximum elevation at the summit of Jbel
Toubkal, the highest mountain of North Africa, at
4174 m as.l.

The area has a semi-arid climate with two contrasted
seasons: a wet season from October to May and a dry
season from June to September. Because of the oro-
graphic effect, the High Atlas Mountains receive more
precipitation than adjacent lowlands, with approximately
50% falling as snow (Boudhar et al. 2016). Annual
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cumulative precipitation can exceed 800 mm at high
elevations, due to orographic uplift of cold and moist
air masses from the North Atlantic Ocean. Precipitation
falls mostly as snow above 1400 m a.s.l. during winter and
spring, generally from November to early May (Boudhar
et al. 2009a). The monthly precipitation climatology as
recorded between 1988 and 2010 at the Club Alpin
Francais (CAF) manual weather station, located 3 km
from the study site at 2600 m a.s.l. is shown in Figure 2
(a); the median monthly precipitation was lowest in July
(7 mm) and reached a maximum of 69 mm in March.
Higher precipitation generally occurred between January
and April, but with marked inter-annual variability, espe-
cially during the season transitions (January and March),
with inter-quartile ranges of 102 and 71 mm, respectively.
In contrast, precipitation is scarce and less variable from
July until early September. According to a long-term
analysis of snow-covered area using remote sensing data
(Marchane et al. 2015), snow cover dynamics in the High
Atlas mountains is strongly heterogeneous and exhibits
marked annual, seasonal and even weekly variability in
response to meteorological variability.

The meteorological data used in this study were
recorded every 30 min by the automatic weather station
(AWS) at Oukaimeden-SM, in operation since 2003. The
station is located at an altitude of 3200 m a.s.l, on the
northern side of the High Atlas in the headwaters of the
Rheraya sub-catchment and about 70 km south of
Marrakech city (Fig. 1). Recorded data include precipita-
tion, air temperature, snow depth, albedo, shortwave

Oukaimeden CAF

#Oukaimeden sM o

[ 25 5 10
Km

Figure 1. Location of the High Atlas mountain range and Oukaimeden CAF and Oukaimeden-SM weather stations.
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Figure 2. Precipitation and air temperature climatology at the study site (see Fig. 1 for locations). (a) Monthly distribution of
precipitation (snow and rainfall) recorded between 1988 and 2010 at the Oukaimeden CAF station (2600 m a.s.l.). (b) Monthly
distribution of air temperature recorded between 2003 and 2009 at the Oukaimeden-SM automatic weather station (3200 m a.s.l.).

radiation and wind speed. Detailed information on the
meteorological instrumentation is given by Boudhar et al.
(2016). The mean annual temperature registered at the
Oukaimeden-SM AWS between 2003 and 2009 was 11°C,
while daily temperature could reach —20°C in winter and
25°C in summer (Fig. 2(b)).

Continuous snow depth was measured by a sonic dis-
tance sensor. The 2006/07 and 2008/09 years were
excluded from the analysis due to unreliable snow data,
leaving a total of five hydrological years for analysis. The
weather station has an unheated tipping-bucket raingauge,
which yields unreliable snow precipitation data in winter
and therefore was not used in this study. While the CAF
station has more reliable manual observations of precipita-
tion (see Fig. 2(a)), it is located 600 m lower than
Oukaimeden-SM and could not be confidently extrapo-
lated to the study site. Radiation measurements also suffer
from a large data gap before 2009 due to a sensor change.
As a result, parameterizations for the global radiation and
snow albedo were developed and calibrated in 2009/10 and
then applied to the whole period, as described in the
Methods section.

Methods
Snow mass balance

The snowpack mass balance can be expressed by the fol-
lowing equation (e.g. King et al. 2008, Herrero et al. 2009):

dSWE/dt =P - M —E+ W (1)

where dSWE/dt is the change in snow mass per unit
time (d), P is the snow precipitation rate (accumula-
tion), E is the sum of sublimation and evaporation
rates at the surface, M is the melt rate, and W is an
advective wind transport term, which can be positive
(deposition) or negative (erosion).

As continuous SWE measurements are not available at
this site, the SWE records previously estimated by
Boudhar (2009b) were used in this study. Boudhar
(2009b) converted the snow depth records to SWE
using the snow density parameterization of Verseghy
(1991):

p,(t+At) = (ps(t) — pmax) X exp {‘rfAt/‘r}
+pmax (2)

where p_ is the snow density, p,_ . is the maximum snow
density, set to 300 kg m™, At = 1 d, and 7 / T is the
characteristic time (0.24/4800 s~ ). The fresh snow density
(P in kg m ™) was calculated by (Pomeroy et al. 1998):

= 67.92 4 51.25 X exp{T,/2.59} 3)

pnew

where T,is air temperature in °C. A mean snowpack
density, p., was calculated at each time step as the
average of the old (p )and new snow (p, ., ) densities
weighted by their respective depths. A 0.5 kg m™
°C™" h™! density increase was also applied during melt-
ing conditions (T,>0) to include the effect of melt-
water refreezing on snowpack density. If the resulting
density value rises above p .., Equation (2) is not



applied and the density is limited to a maximum of
450 kg m >, based on observations. The density can still
decrease afterward following fresh snowfall. Snow
depths (mm) were converted to SWE (mm) at each
half-hour time step using:

SWE = p,/p,, % snow depth (4)

where p,, is the density of water (1000 kg m™>). The
parameterization was previously calibrated using in situ
snow density measurements at the Oukaimeden-SM
AWS site and found to give fair results with
R* = 0.72 and RMSE = 40 mm (Boudhar 2009b).
Daily estimated SWE averages were further used in
this study and are referred to as “estimated SWE” in
the remainder of the text.

As reliable precipitation data were not available at
this study site, and also because this study focuses on the
performance of different snowmelt calculations for
simulating SWE and not the simulation of accumula-
tion, the observed snow accumulation was used to drive
the models instead of measured precipitation. This
means that on days with observed accumulation
(dSWE/dt > thres), precipitation (P) is inferred from
Equation (1) using the observed accumulation, the cal-
culated melt (M), if any, and sublimation (S) for that
day. A detection threshold (thres) of 1 mm w.e. (~ 1 cm
snow depth), which corresponds to the measurement
uncertainty of the ultrasonic snow depth sensor, was
used to discriminate accumulation from measurement
errors. Using the observed accumulation also effectively
prevents introducing model uncertainties due to gauge
undercatch errors, which typically plague snowfall mea-
surements in mountainous environments (Fassnacht
2004, Rasmussen et al. 2012), and errors due to rain/
snow discrimination, ultimately avoiding the problem of
the melt algorithms compensating these errors during
calibration. The melt models were calibrated on the
estimated SWE records rather than on ablation esti-
mated from daily negative SWE changes, in part because
day-to-day changes in measured snow depth from ultra-
sonic gauges can be noisy, and also because surface
lowering can lag behind melting (Pellicciotti et al
2005). As winter precipitation data were not used, any
rainfall effects on snowmelt were not considered in the
simple melt models used here, and this may represent a
potential source of error in melt calculations. Rain-on-
snow events are complicated processes that would
require the application of a physically-based, multi-
layered snow model (e.g. Wiirzer et al. 2016), which is
beyond the scope of this study.

To take into account sublimation losses, a constant,
mean daily sublimation rate (E), previously calculated via
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an energy balance model at the Oukaimeden-SM AWS site
(Boudhar et al. 2016) has been used in the model formula-
tion. A distinct mean daily sublimation rate was used for
each hydrological year, as reported by Boudhar et al
(2016). The use of a constant sublimation rate removes
the positive bias in melt that would arise if sublimation
losses were not accounted for. However, variations in the
daily sublimation rate may still be a source of error in the
simulated daily melt rates. The influence of mean sublima-
tion rate on yearly calibrated model coefficients is investi-
gated later in this paper.

Filtering of wind erosion events

Snow redistribution by wind (W in Equation (1)) can be
signiﬁcant in mountainous terrain (Liston et al. 2007,
Gascoin et al. 2013). The probability of blowing snow
increases with wind speed and decreases with snow age
and air temperature (Li and Pomeroy 1997). Since the
models were forced with measured snow accumulation,
any snow deposited by wind was already accounted for.
However, as the simple snowmelt routines do not
account for snow erosion, any such events would intro-
duce errors in the models and exaggerate the simulated
melt rates. While the estimated SWE records at the
Oukaimeden-SM AWS site did not appear to be parti-
cularly affected by snow transport during the years
studied, even small erosion events during certain years
could strongly bias the calibration of the melt models.
As our objective is to compare model performance and
obtain representative melt parameters, a filtering step
was introduced to identify potential wind erosion events
and exclude them from the calibration of the melt equa-
tions. Parameterizations for blowing snow probability
such as the one proposed by Li and Pomeroy (1997)
were developed from, and for, hourly data and are thus
not directly applicable to daily data. The filtering step
used instead identifies anomalous rises in ablation rate
followed by an equally rapid decline over a one or two-
day period. The change in ablation rate over time was
calculated as the second differential of the estimated
SWE record. A threshold of 15 mm d', called the
wind factor (WF), was used to discriminate “anoma-
lous” rises in ablation rates from normal conditions.
This means than if the ablation rate rose and fell by
more than 15 mm d~' over a one- or two-day period
the ablation event was deemed highly probably to have
been caused by wind erosion. In addition, because blow-
ing snow probability decreases sharply over melting
snow, only events with negative air temperatures were
retained. This also decreases the chance that the filtered
ablation events were caused by a rain event. The
wind factor, WF, must be specified based on visual
interpretation of the d*SWE/d#* plots, as shown in
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Figure 3. Filtering of wind erosion events from the daily SWE measured in 2007/08. (a) Anomalous increases in ablation rate are
identified as those days that successively cross the lower (~WF) and upper (+WF) wind factor threshold within a 1- or 2-day period
(circles), which was determined from the second derivation of SWE (d*SWE/dt?) d?SWE/dt2. (b) Detected erosion events super-

imposed on the SWE record.

Figure 3(a). Days that vary below -WF and
above +WF within one or two days are flagged as prob-
able wind erosion events. The detected events corre-
spond well with those that were visually identified on
the SWE record (Fig. 3(b)). Sixteen events (days) were
detected, which represent 2% of snow days over the 5-
year period. Using a nonparametric Mann-Whitney U
(rank sum) test we found that the wind speed was sig-
nificantly higher, the snow age significantly younger,
and the air temperature significantly lower for the 16
erosion events compared to the remaining snow days,
while no significant difference was found for relative
humidity (p < 0.05). This increases our confidence that
these ablation events resulted from wind erosion. Melt
was not simulated during these events and the estimated
SWE was used during the calibration of the melt
equations.

It is worth noting that using the observed accumula-
tion and filtering out wind erosion events will yield the
best SWE simulations possible by the melt models. Our
goal here is to obtain the best melt model parameters,
whose calibration is the least affected by precipitation
data quality and/or any snow erosion. Applying these
parameters within distributed or lumped hydrological
models will thus ensure that melt is correctly simu-
lated, understanding that errors in precipitation data
and/or wind redistribution would further affect the
spatial simulation of snow cover and result in reduced

model performance compared to the point-scale appli-
cations described here.

Snowmelt models

Four models of increasing complexity were used to
simulate snowmelt at the Oukaimeden-SM weather
station site. Model formulation ranged from the
simple, classical degree-day method to different
“enhanced” degree-day methods. Each model is out-
lined below.

Classical temperature index (TI) melt model
Temperature index models or so-called degree-day
models are considered the most classical method for
melt modelling due to the widespread availability of
air temperature data and their computational sim-
plicity. These models also perform generally well,
being generally classified amongst the most efficient
models used for melt modelling (Hock 2003). The
model has a single coefficient or factor of propor-
tionality, called the “degree-day factor” (DDF, in
mm °C™' d7):

(5)

M— DDF x T, Ty> Tt
0 T, < Ty



where M is the melt rate (mm d '), T, is daily mean air
temperature (°C) and Ty is a threshold temperature
beyond which snowmelt is supposed to occur, fixed at
0°C in this study.

Hock’s temperature index melt model (HTI)

To enhance the classical model (TI), the potential
incoming direct solar radiation (I,o) for clear-sky con-
ditions was added as proposed by Hock (1999). In this
structure, the melt factor (MF) varies seasonally
according to Ipo

M= { (MF + RF X Lyot) T

0 T, < Ty (©)

where M is daily melt (mm d™h, Ipot is the potential
clear-sky incoming direct solar radiation (W m™?), and
MF and RF are two empirical coefficients, respectively
the melt factor and radiation factor (expressed in
mm d™' °C™" and m* mm W' d' °C”!, respectively).

The potential, clear-sky direct solar radiation is cal-
culated as a function of solar geometry, topography
and a constant vertical atmospheric transmissivity
(Hock and Noetzli 1997, Hock 1999):

It = Ip (Rp/R) x yaPPoes2) 5 cosp (7)

where I is the solar constant (1368 W m™?), R,, and R
are the mean and actual Sun-Earth distance, ya is the
vertical clear-sky atmospheric transmissivity (-), P is
the atmospheric pressure in Pa and P, is standard
atmospheric pressure (101 325 Pa), Z is the solar
zenith angle, and 6 is the incidence angle of the Sun
on the surface. The ratio P/P, accounts for the effect
of altitude (lower air pressure yields higher solar
radiation) and the introduction of cos Z in the expo-
nent expresses the variation of the path length with
Sun altitude (Hock 1999). The vertical clear-sky trans-
missivity, ya, was calibrated by minimizing the root
mean square error (RMSE) between I,,; and the glo-
bal radiation measured on clear days, during the year
2009/10 with reliable measurements. “Clear” days
were classified as those having a mean daily radiation
value larger than 80% of the radiation at the top of
the atmosphere (TOA). A constant direct (diffuse)
fraction of solar radiation of 85% (15%) was assumed
for the selected clear days (e.g. Hock and Holmgren
2005). An optimal ya value of 0.75 was found
(RMSE = 149 W m % NSE = 0.92).

Enhanced temperature index (ETI-A) melt model

The enhanced temperature index melt model includes
global radiation (incoming shortwave radiation), which
is an important energy source for melt (Hock 2005).
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This model separates melting induced by solar radia-
tion from that induced by temperature-dependent
energy fluxes (Pellicciotti et al. 2005):

M_{TFxTa+SRFm><ITa>TT ®)

0 Ta < TT

where I is incoming shortwave radiation (W m2), TF is
the temperature factor (mm d™' °C™") and SRF;, is the
radiation factor (m* mm W' d™!). The index “in” stands
for incoming shortwave radiation, to differentiate from
the ETI-B model, described next.

Enhanced temperature index (ETI-B) melt model
The ETI-B model structure is similar to ETI-A, but
considers the net shortwave radiation instead of only
the incoming shortwave radiation. This model, pro-
posed by Pellicciotti et al. (2005), is considered the
most physically-based of all the aforementioned melt
models, as it includes the variability in snow albedo:

M { TF X Ty + SRFue (1 —a)I T,>Tr ©)

0 Ta < TT

where « is albedo and I the incoming shortwave radia-
tion (W m™2), and TF andSRF,,; are two empirical coef-
ficients, respectively the temperature factor and net
shortwave radiation factor (expressed in mm d' °C™
and m®> mm W' d™).

Forcing variables and model calibration

As previously mentioned, some meteorological vari-
ables were not available or limited at the
Oukaimeden-SM AWS and were thus parameterized.
These parameterizations are detailed below.

Global radiation

The temperature index models based on incoming and
net solar radiation (Equations (8) and (9)) require
reliable measurements of global radiation, which in
our case were only available for the 2009/10 season.
Hence parameterizations for global radiation and
albedo (see next section) were sought in order to
apply the ETI-A and -B models to the full period.
Global radiation was parameterized using the calcu-
lated potential clear-sky direct solar radiation and an
R ratio:

R = G/l (10)

where R is the ratio between the global radiation (G) and
the potential clear-sky direct solar radiation (Ipet), and
accounts for the effects of clouds and diffuse radiation
(Hock 1999, Hock and Holmgren 2005). If measured
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global radiation exceeds the calculated direct radiation
(R > 1), the difference indicates the amount of diffuse
radiation. Conversely, measured global radiation less
than calculated (R < 1) is caused by cloud cover.
Atmospheric conditions, especially cloud cover, sur-
rounding topography and the Sun position are the
major parameters influencing the R ratio. As variations
in R are predominantly due to clouds the R ratio is akin
to, but different from, the “cloud factor” used in other
studies (e.g. Pellicciotti et al. 2011). In our case, since the
clear-sky transmissivity is assumed constant, the R ratio
also reflects variations in air humidity and aerosol
concentration.

Since reliable global radiation measurements were
only available for one year, and in order to use modelling
approaches as simple as possible, methods relying on
commonly observed data (i.e. temperature, humidity
and precipitation) were used to parameterize unmeasured
variables such as the R ratio and albedo. A parameteriza-
tion of the R ratio was sought based on its relationship
with two potential predictor variables: (i) the daily tem-
perature range, which has previously been found to be a
good indicator of cloud cover, and (ii) relative air humid-
ity, which could reflect the attenuation by both water
vapour and clouds (e.g. Dai et al. 1999, Pellicciotti et al.
2005). Several linear and nonlinear regression equations
were tested with AT and RH as sole predictors, and with
both variables as potential predictors.

Albedo

Snow albedo is an important factor governing the amount
of solar energy absorbed by the surface. Since albedo
measurements were only available for 2009/10 at the
study site, the albedo parameterization developed by
Brock et al. (2000) was used to simulate albedo for the
whole study period. The parameterization assumes that
snow albedo () decays as a function of time and air
temperature:

a; = p1 — p2(log,,(PDD)) (11)

where PDD (mm °C™" d7') is the positive degree-day
sum since the last snowfall. The parameter p; represents
a typical maximum albedo value for fresh snow, which in

this study was fixed to 0.8 based on observations. The
parameter p, was calibrated on daily albedo observa-
tions, by varying its value within a range between zero
and one. Prior to calibration, raw hourly albedo observa-
tions were filtered to remove values with solar elevation
angles less than 20°, or with reflected radiation less than
20 W m ™% This step removed all night-time values as
well as early/late daytime values, when low Sun angles
can cause large error in radiation measurements
(Abermann et al. 2014). The resulting daytime albedo
data were averaged to daily values.

Model calibration and validation

All melt model parameters were subjected to calibra-
tion. A systematic calibration procedure was used,
which consisted in varying each parameter value within
ranges determined from previous studies (Hock 2003,
Pellicciotti et al. 2005, Gabbi et al. 2014). The para-
meter ranges were then extended if necessary, i.e. if the
optimum value found was on the range boundary. The
parameter ranges and increments used for the calibra-
tion step are listed in Table 1.

The SWE simulations were made at a daily time step
during the snow season, from September to May, and
compared with the measured SWE. Simulations were
evaluated using the Nash-Sutcliffe efficiency measure
(NSE). The optimum parameter values were chosen as
those maximizing the NSE criterion during the calibra-
tion period, and the model performance was assessed
during the independent validation period.

Two different approaches were adopted for model
calibration and validation: annual and multi-annual
calibration. The first approach, annual calibration, con-
sisted in successively calibrating the models on each
single year and validating on the remaining years. This
is a variant of the split sample (SS) calibration/validation
procedure (Kleme$ 1986), which consists in dividing the
period into two independent sub-periods for calibration
and validation. This approach was used to examine the
performance of each model when calibrated on a single
year of measurements, and to detect possible model
overfitting (e.g. Wagener et al. 2003) and its impact on
model performance, as well as possible climate depen-
dency of yearly-calibrated coefficients.

Table 1. Parameter ranges and value increments (4) used for the calibration of the four empirical models.

Model Parameter Description Unit Range A
Tl DDF Degree-day factor mm d~' °C”’ 0.00-6.00 0.1
HTI MF Melt factor mmd~'°C”’ 0.00-6.00 0.1
RF Potential radiation factor m?mm W' d7" o’ 0.00-0.05 0.0025
ETI-A TF Temperature factor mm d™' °C”’ 0.00-6.00 0.1
SRF;, Global radiation factor m? mm w™' d7! 0.00-0.12 0.005
ETI-B TF Temperature factor mm d~' °C”’ 0.00-6.00 0.1
SRF et Net shortwave radiation factor m? mm w™' d™! 0.00-0.16 0.005




In the second approach, multi-annual calibration,
models were successively calibrated on all 4-year
sub-periods and validated on the left-out year. This
“leave-one-year-out”  cross-validation = procedure
allows the incorporation of natural climate variability
in the calibration, and thus should reduce the depen-
dence of parameters on climate conditions of the
calibration period (Kleme$ 1986, Coron et al. 2012).

Parameter sensitivity

Sensitivity analysis is often used to calibrate model
parameters and assess how parameter uncertainty
affects model performance, i.e. how model perfor-
mance changes when moving away from an optimal
parameter set (e.g. Paton et al. 2013). The sensitivity of
the model performance, as measured by the NSE cri-
terion obtained during multiyear calibration, to para-
meter variations within their calibration range, was
examined graphically for the four melt models studied.

Results
Calibration variables

Global radiation
A positive relationship was found at Oukaimeden
between the R ratio and AT, and a negative relationship
between R and RH, however with a significant amount
of scatter (Fig. 4).

Based on the coefficient of determination (R*) and
variance ratio (F) tests, a second-order polynomial
regression with relative humidity as sole predictor was
found to be the best parsimonious predictive model of
the R ratio (R* = 0.52, RMSE = 0.19) (Fig. 4(b)):
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R= —0.000054RH? — 0.0024RH + 1.3 (12)

Previous studies (Dai et al. 1999) have reported signifi-
cant relationships between AT and cloud cover. On the
Arolla and Gorner glaciers, in the Swiss Alps, Pellicciotti
et al. (2011) found significant relationships between AT
and computed daily cloud transmittance factors, with AT
explaining 33-48% of the cloud transmissivity, depend-
ing on the year and location. They also found significant
but weaker relationships between RH and cloud trans-
missivity (R = 13-41%). They used the AT relationship
to parameterize the effect of cloud attenuation on the
incoming shortwave radiation. In our case, including
the diurnal temperature range did not improve the
model and this term was thus neglected. Hence, while
only half the variance of R is explained by Equation (12),
this results is in line with, and even superior to, previous
findings and consequently can add significant predictive
power to the ETT models, as found for example, by
Pellicciotti et al. (2005).

Albedo

Globally, the agreement between modelled and mea-
sured albedo is fair during the snow season, except
during peak events, where the simulated albedo does
not reach some peaks due to the fixed value of p; at 0.8
(Fig. 5). A calibrated value of 0.21 was found for the p,
coefficient, with RMSE of 0.098 and NSE of 0.80.

Model calibration and validation

Annual calibration
All models performed equally well during annual calibra-
tion (NSE > 0.93) (Fig. 6(a)). However, validation statistics

0 20 40 60 80 100
RH (%)

Figure 4. Scatter plot of the R ratio against (a) daily temperature range (A7) and (b) relative humidity (RH) with second-order

polynomial fit (see Equation (12)).
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Figure 5. Measured and modelled daily mean albedo at Oukaimeden-SM station in 2009/10.
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Figure 6. Comparison of the performance of the four melt models using annual calibration. (a) Nash-Sutcliffe efficiency (NSE)
coefficient for annual calibration (left) and mean NSE across years (right); (b) 4-year-out validation NSE corresponding to each
calibration year in (a) (left) and mean validation NSE across years (right).

show that the model performances outside the calibration
period, and hence the parameter transferability, is very
unequal among years and models, with the mean valida-
tion NSE across years varying from 0.56 to 0.74 (Fig. 6(b)).
The two models that include radiation (ETI-A) and albedo
(ETI-B) show overall better performance in the validation
mode (mean NSE of 0.68 and 0.74, respectively) than the
TI and ETI models (mean NSE of 0.56). Hence, when
calibrated on a single year both ETT models show better
time transferability than the TT and HTI models, and the
ETI-B model stands out as the best model. The generally
poor transferability of yearly models can be observed

further in Figure 7: the spread of SWE simulated by models
calibrated yearly on other years is sometimes considerable
(grey envelope), although it is reduced for the ETI models
compared to both TI and HTI models. All models present
the worst prediction performance, and hence worst trans-
ferability, when calibrated in 2005/06 and 2009/10, espe-
cially for the TI and HTI models (Fig. 6(b)). These two
years were the two wettest in terms of mean relative
humidity and peak SWE and also ranked first and third,
respectively, in terms of total precipitation measured at the
lower CAF station (Table 2, Fig. 7). Closer inspection of
the simulated SWE record in 2005/06 shows that no



2003-2004 2004-2005

HYDROLOGICAL SCIENCES JOURNAL . 11

2007-2008 2009-2010

Observations

Annual calibration

]

SWE (mm)

Multiannual calibration

Predicted by other
yearly models

aaa.

11 12 01 02 03 04 05 06 11 12 01 02 03 04 05 06 11 12 01 02 03 04 05 06 11 12 01 02 03 04 05 06 11 12 01 02 03 04 05 06

ETI-B

§\Can N8

Month

Figure 7. Simulated vs observed SWE using the four melt models for the 2003-2010 period. Each row corresponds to one model
and each column to a hydrological year. Black dots: observations; red line: annual calibration (Method 1); blue line: multi-annual
calibration (Method 2); shaded area: range of SWE simulated by models calibrated yearly on other years.

melting was simulated in early February, while the
observed SWE decreased; the cause of this error is unclear
but could arise from an unfiltered erosion event, or from
errors propagated from the conversion of snow depth to
SWE. The positive bias introduced in the simulated SWE
in winter was compensated by a higher-than-observed
melt rate in the spring (Fig. 7). The opposite situation
arose in 2009/10: melt rates appear exaggerated in winter
and are compensated by slower-than-observed melt rates
in the spring. In both instances, these biases in annual
calibration resulted in poor model transferability.
Interestingly both ETI models, while also showing a
degraded performance, still performed significantly better
than the TT and ETT models during those two years, which
suggests that these humid years were also probably more
cloudy and that models including a global radiation term
are better suited to represent the varying energy inputs
associated with changing cloud cover between years.

Multi-annual calibration

Calibrating the models on 4-year periods forces the models
to better represent inter-annual climate variability, which
results in a poorer model fit than yearly-calibrated models
(mean calibration NSE across years = 0.84-0.88 versus
0.93-0.94, Figs 6(a) and 8(a)). However, the independent
validation, as performed with the leave-one-year-out
cross-validation, shows that models are more transferable,
as seen by the larger mean NSE across years (0.79-0.82)

(Fig. 8(b)) and reduced variability in model performance
compared to annual calibration (Fig. 6(b)). Models cali-
brated on multi-annual periods (blue lines in Fig. 7) yield
reasonable SWE simulations for independent years, com-
pared to the spread in transferred yearly-calibrated models
(blue lines vs grey envelopes in Fig. 7).

Each model was recalibrated on the full 5-year
period and annual melt rates computed (Table 3).
Annual melt rates are on average higher for the HTI
and ETI-A models than for the ETI-B and TI mod-
els, but ETI-B shows less variation between years
than the other models, suggesting that including
variations in snow albedo helps to better constrain
inter-annual variations in melt rates. The sublima-
tion ratio, using the prescribed sublimation rates (see
Table 2), averaged 5.3 = 1.6% over the 5-year period.
Due to the oversimplified representation of sublima-
tion in the models, the inter-annual variability is
most likely underestimated.

Parameter sensitivity and variability

Model parameter sensitivity was analysed in terms of
model error as measured by the NSE criterion obtained
from multi-annual calibration on the whole 5-year
dataset (Fig. 9). For two-parameter (enhanced) models,
NSE contour plots allow assessing the effect of varying
each model parameter on the calibration performance
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Table 2. Mean climate conditions and sublimation rates calculated for days with snow on the ground. RH: relative humidity; TP: total
precipitation.

Year RH (%) Air temp.(°C) TP? (mm) Peak SWE (mm) Wind speed (m s Sublimation® (mmd™")
2003/04 429 1.18 466 240 2.54 0.26
2004/05 523 -1.92 168 229 2.72 0.18
2005/06 55.1 0.61 503 430 2.91 0.29
2007/08 445 0.74 291 214 2.84 0.21
2009/10 52.6 0.93 312 360 2.67 0.17

2 at CAF station. ® from Boudhar et al. (2016).
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Figure 8. Comparison of the performance of the four melt models using multi-annual calibration. (a) Nash-Sutcliffe efficiency (NSE)
coefficient for each 4-year calibration sub-period (left) and mean calibration NSE by model (right); and (b) validation NSE on the year
left out from the calibration subset in (b) (left) and mean leave-one-year-out validation NSE by model (right).

Table 3. Mean daily melt rates for each year, calculated using the 5-year calibrated models. The constant daily sublimation rates
listed in Table 2 were used to calculate the sublimation ratios. SD: standard deviation.

Melt All models
Year Tl (mm d7) HTI (mm d7") ETI-A (mm d7") ETI-B (mm d™") Mean sublimation ratio + SD (%)
2003/04 5.6 6.1 6.1 5.0 49+ 04
2004/05 28 2.7 34 34 6.2+ 07
2005/06 49 53 53 53 56+ 0.2
2007/08 33 33 37 35 7+03
2009/10 5.6 5.7 5.8 5.2 2.7 +0.1
Mean + SD 44 + 1.3 46 £ 1.5 48 £ 1.2 45+ 1 53+ 1.6

of the SWE simulations. The optimal parameter sets
obtained from annual calibration were also overlain on
NSE contour plots to investigate their variability with
respect to the multi-annual calibration optimum. The

temperature and radiation-related parameters resulting
in a high NSE criterion. The optimum is clearest for
the ETI-B model (Fig. 9(d)).

Optimal parameters obtained from annual calibration

three enhanced models are seen to be equally sensitive
to both temperature and radiation. However, while an
optimum was found for all models using multi-annual
calibration, equifinality is also apparent for the two-
parameter models, with different combinations of

(Method 1) show considerable inter-annual variability,
with the respective contributions of the radiation and
temperature terms changing between years for a given
model (Fig. 9). Several of the optimal annual parameter
sets are found along the high NSE diagonal band found
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Figure 9. Sensitivity of model performance to parameter variations (see Table 1). The model performance is assessed with the NSE
criterion using calibration over the full 5-year period. (@) TI model; (b) HTI model; (c) ETI-A model; (d) ETI-B model. Optimal
parameter values from multi-annual calibration are indicated by a black dot; yearly calibrated parameters are overlain onto the

contour plot and indicated by asterisks (¥).

from multi-annual calibration, which suggests that at
least some of the inter-annual variability in annual coeffi-
cients could be due to equifinality. However, deviations
also occur, especially for the additive ETI models, which
also suggests that the respective contributions of tempera-
ture and radiation to snowmelt may change between
years in response to climatic conditions, as found for
example by Gabbi et al. (2014).

The inter-annual variability of model parameter
values resulting from the annual calibration (Method
1) is further investigated in Figure 10. The temperature
factor of both the TT and HTI models exhibit a similar
tendency over the five studied seasons, increasing until
2005/06 and decreasing afterward. The pattern is dif-
ferent for the ETI models. Both models show a max-
imum TF value (3 mm d™' °C™") in 2007/08. The TF
factor is nil in 2004/05 for ETI-A and in 2005/06 for
both models. The radiation factor (SRF;,, SRF,.) varies
inversely with the temperature factor. Whether these
annual variations in model parameters are related to
climate conditions prevailing in a given year, or are
simply caused by overfitting the models in each single
year and/or parameter compensation (i.e. equifinality)
is investigated in the next section.

Relationship between annual parameters and
climate

The dependence of model parameters on climatic con-
ditions was investigated using simple bivariate correla-
tion analysis between the yearly-calibrated model
parameters and annual averages of measured meteor-
ological variables (air temperature, relative humidity,
total precipitation, wind speed) as well as with the
mean daily sublimation rate used in the model formu-
lation (Table 2). The averages were calculated for days
with snow on the ground only. The scope of this
analysis is evidently limited by the small number of
observations (5 years), but is nonetheless instructive to
reveal possible climate control on annual parameter
variations. The TF and SRF;, factors in the ETI-A
model show statistically significant (p < 0.05) negative
and positive correlation with relative humidity, respec-
tively. The same pattern is found for the ETI-B model,
albeit with weaker correlations (p < 0.10). For the three
enhanced models the temperature and radiation factors
are inversely correlated, reflecting the pattern seen in
Figure 10. This parameter compensation is strongest
for the HTT and weakest for the ETI-B model.
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Figure 10. Yearly calibrated model parameters for the (a) T, (b) HTI, (c) ETI-A and (d) ETI-B models for five hydrological years.

Discussion
Model performance and transferability

Taken together our results show that when calibrating
models on a restricted dataset such as a single year of
measurement, a situation not uncommon at remote sites,
enhanced additive models such as ETT are more transfer-
able than simpler models such as TI and HTI, which are
predominantly temperature-based models (Fig. 6). At a
point scale, the sole effect of including a potential radiation
term in the HTT is to progressively augment the TF factor
as solar radiation increases toward its summer maximum.
But explicit consideration of the atmospheric transmissiv-
ity (via the R ratio in both ETT models), and of snow albedo
in the ETI-B, appears to better capture the intra-season
variability in melt rate arising from changes in the con-
tributions of shortwave radiation versus temperature-
dependent longwave and sensible heat fluxes to the snow
surface energy balance. The fact that the additive ETI
models are better transferred from one year to another is
somewhat surprising given the significant variability of the
yearly calibrated parameters. The explanation may reside
in the fact that several combinations of the temperature
and radiation factors give similarly acceptable model per-
formance (Fig. 9), i.e. equifinal solutions (Beven 2006), and
hence a given combination of parameters fitted to one

particular year has a good chance to give acceptable pre-
dictions when applied to a different year. Conversely, the
simpler temperature-dependent TI and HTI models are
less able to represent changes in energy fluxes induced by
varying cloud cover and albedo, and will thus exacerbate
model overfitting when calibrated on short intervals, mak-
ing them less transferable between years.

However, when calibration is performed on a
longer period that incorporates at least some inter-
annual climatic variability, all models perform equally
well, and no model clearly stands out as optimal
(Fig. 8). It is noteworthy, however, that the simplest
model TI has the second highest performance
(NSE = 0.81) behind the ETI-B model (NSE = 0.82).
These results are in agreement with those of
Pellicciotti et al. (2005), who suggested that ETI mod-
els are more transferable over time, whereas e.g.
Réveillet et al. (2016) concluded instead that TI mod-
els are the most efficient models overall for predicting
snow and ice melt on glaciers, when calibrated on a
long period (>10 years). Our results tend to corrobo-
rate these findings, i.e. that simple TT models, when
calibrated on a period long enough to capture inter-
annual climate variability, offer good performance at
the station scale, comparable and even superior to
some enhanced models.



Parameter variability and climate dependency

Our results showed pronounced inter-annual variability in
yearly-calibrated model parameters. Lang and Braun
(1990) and Hock (2003) report that, under otherwise simi-
lar conditions, degree-day factors are expected to increase
in response to increased solar radiation input and
decreased albedo, and that higher shares of sensible heat
flux in the heat balance are generally associated with low
degree-day factors and vice versa. No such simple relation
emerged between the temperature factor of the TI model
and climate conditions at the Oukaimeden site. For the
ETI-A model, and the ETI-B model to a lesser extent, a
positive and negative correlation emerged between relative
humidity and the radiation and temperature factor, respec-
tively. Inter-parameter correlations show that radiation
and temperature factors in enhanced models compensate
each other; this effect is most pronounced for the HTI
model, which is rather expected since both factors are used
as the multiplier of the temperature (see Equation (6)),
different from the two ETT models.

Strong parameter compensation (equifinality) was
observed for all the enhanced models (Fig. 9,
Table 4). The same compensation between tempera-
ture- and radiation-based parameters was previously
reported and discussed by Gabbi et al. (2014) and
Réveillet et al. (2016). However, Gabbi et al. (2014)
attributed inter-annual variations in parameters to cli-
mate conditions, finding for the ETI-B model that the
temperature factor was higher and the radiation factor
lower in years with reduced solar radiation. They inter-
preted this relationship as resulting from a decreased
influence of solar radiation, and respective increased
influence of incoming longwave and sensible heat
fluxes on melt during more humid and cloudy years,
in line with previous findings by Carenzo et al. (2009).
No such relationship emerged in our analyses; more-
over, more humid conditions, which are associated
with reduced solar radiation via the R ratio parameter-
ization (see Equation (12)), were found to promote a
larger radiation factor and smaller temperature factor
in the ETI models, which is opposite to the aforemen-
tioned results found by Gabbi et al (2014).
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Interestingly, the correlation between relative humidity
and both TF and SRF is reduced in the ETI-B model
when the albedo is considered (Table 4).

In light of these results, we suggest that much of the
inter-annual variability in the yearly-calibrated coeffi-
cients is due to model overfitting errors in a given year.
Including a solar radiation term (incoming or net) seems
to reduce this phenomenon and allows the calibrated
models to be better transferred to other years. This
improved transferability is in part inherited from the
equifinality of the temperature and radiation factors,
whereas several pairs of parameters give similarly accep-
table predictions. However, it also implies that para-
meters are not well defined, and hence that year-to-year
climate variations and/or measurement errors can cause
significant differences in the contributions of the melt
and radiation factors to snowmelt. This phenomenon
may be explained by the partial collinearity of air tem-
perature and incoming solar radiation, an aspect that has
been overlooked in the literature when discussing the
calibration of empirical melt models. In statistics, colli-
nearity is a phenomenon in which one predictor variable
in a multiple regression model can be linearly predicted
from the others with a substantial degree of accuracy. It
does not reduce the predictive power or reliability of the
model as a whole, at least within the sample data, but will
increase the uncertainty of model parameters. In such
situation the standard error for the regression coefficient
of a given predictor increases by a factor equal to /VTF,
where VIF is the variance inflation factor of the predictor,
equal to 1/(1 — R?), and R? is the coefficient of determi-
nation of the regression of the predictor against all other
predictors (e.g. Draper and Smith 1998). Variables with
VIF > 5 are typically flagged as collinear. The presence of
collinear variables in a linear model makes the model
more prone to overfitting, i.e. the model coefficients can
vary significantly between different calibration samples.
However, such a model can still yield good predictive
performance outside the calibration interval, especially
if the collinearity between the predictors is maintained.
Strictly, statistical theory does not apply in this case as the
model parameters were not derived using the least square
method. Nonetheless, the linear structure of the additive

Table 4. Pearson correlation coefficients between climatic variables and annual model parameters.

Tl HTI ETI-A ETI-B

Climatic variables & parameters DDF TF RF TF SRFi, TF SRF et
Air temperature (°C) -0.19 -0.38 0.61 0.41 -0.37 -0.03 -0.06
Relative humidity (%) 0.47 0.31 -0.31 -0.93** 0.93** -0.87* 0.88*
Total precipitation (mm)? 0.74 0.68 -0.64 -0.11 0.47 -0.18 0.52
Wind speed (m ) 0.39 0.20 0.10 0.08 0.15 -0.25 0.39
Sublimation (mm d™") 0.65 0.64 -0.44 0.40 0.04 0.24 0.16
Inter-parameter correlation na. -0.95%* -0.87* -0.86*

2 at CAF station. **p < 0.05; *p < 0.10.
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ETI models and the systematic calibration procedure that
minimizes prediction errors is much akin to the multiple
regression framework. Over the whole study period, air
temperature was found to be positively and significantly
(p < 0.01) correlated with the potential (r = 0.44), global
(r = 0.65) and net shortwave (r = 0.74) radiation, con-
sidering only the days with snow on the ground. This
gives VIF factors of 1.73 and 2.21 for the ETI-A and
ETI-B models, respectively. This is of course to be
expected, as apart from the heat flux from advected air
masses the air temperature depends on the longwave
radiation emitted from the surface and upward convec-
tion of sensible and latent heat, all of which depend, albeit
in a complex manner, on the surface shortwave radiation
balance. Hence, air temperature and solar radiation
“share” a significant fraction of the snowmelt predictive
power and as such are partly redundant predictors. The
VIF factors point only to moderate, but still significant,
collinearity of these two variables in the linear ETT mod-
els. This may confuse the identifiability of parameters and
increase their uncertainty when calibrated on short inter-
vals. This collinearity explains the parameter compensa-
tion and equifinality observed in this study (Fig. 10,
Table 4) and probably that observed in previous ones
(Gabbi et al. 2014). The fact that both ETI models were
found to be better transferred to other years when cali-
brated yearly can be explained on the one hand by the
true, non-redundant predictive contribution of the solar
radiation term, and on the other by the fact that the
collinearity between air temperature and solar radiation
is maintained in other years.

Conclusion

This study presented an application of four empirical
melt models at a remote study site in the Moroccan
High Atlas. A classical simple degree-day model (TI)
and three “enhanced” melt models combining air tem-
perature and different solar radiation terms (HTI, ETT-
A and ETI-B) were tested and compared. Owing to the
lack of long-term meteorological data, especially short-
wave radiation and albedo, simple parameterizations
were developed to represent these variables in the
snowmelt models. The shortwave radiation was para-
meterized using the calculated potential clear-sky direct
solar radiation multiplied by a bulk atmospheric trans-
missivity term (R ratio). A good relationship was found
between the R ratio and relative humidity, which
allowed estimation of the global solar radiation over
the entire period. The snow albedo was parameterized
with a simple temperature-dependent function (Brock
et al. 2000), which showed satisfactory performance
against available measurements. Hence, the snowmelt

models tested grow in complexity and physical realism
from the simple, one-parameter TI model to the two-
parameter ETT-B model, which includes parameteriza-
tions for atmospheric transmissivity and surface albedo
while conserving a parsimonious data requirement,
which is crucial for applications in the high Atlas.
The four models were subjected to different cross-cali-
bration-validation methods over the 2003-2010 per-
iod, and the parameter sensitivity and model
transferability over time were assessed. The main
results and conclusions of our work are as follows:

(1) When calibrated on a yearly basis, all models
performed well (NSE > 0.93) in calibration mode
but the enhanced additive models performed bet-
ter in validation mode (NSE = 0.68-0.74) than the
TI and HTI models (NSE = 0.56) and were thus
deemed to be better transferable over time.

(2) The leave-one-year-out cross-validation proce-
dure showed that models are more transferable
when calibrated on a longer period that includes
some inter-annual climate variability; all models
performed well in validation mode (NSE = 0.78-
0.82), with the ETI-B model (NSE = 0.82) only
slightly outperforming the simpler TI model
(NSE = 0.81). Hence, temporal variations in
snowmelt could be adequately reproduced
when sufficiently long periods are available for
calibration of the TI model, as suggested
recently by Réveillet et al. (2016).

(3) Notable annual variations were found in yearly-
calibrated model parameters and only marginal
connections emerged between yearly-calibrated
parameters and climate conditions. While the
short period (5 years) inherently precludes a
more conclusive analysis, it is suggested that the
collinearity of air temperature and solar radiation
are responsible for much of this variability; fitting
collinear variables on observations affected by
measurement uncertainties will cause large varia-
tions in calibrated parameters. This collinearity
causes parameters to compensate each other and
gives rise to equifinality between the temperature
and radiation-based factors. This same equifinal-
ity may explain why different yearly-calibrated
parameter combinations yield acceptable perfor-
mance when transferred to other years. Further
investigation of the impact of this collinearity on
the identifiability and transferability of melt
model parameters is warranted, hopefully at
sites with longer and higher quality data series.

(4) Despite the highlighted equifinality phenom-
enon, the ETT-B model stands out as the best



model overall. While its performance was only
marginally superior to the simple TI model
when calibrated on multiyear intervals, it per-
formed better than other models when cali-
brated on short (1-year) intervals. The added
value of including a radiation term for better
simulating the spatial variability of snow cover
will be assessed in upcoming work.
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