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Abstract14

Multi-satellite sensing of continental water surfaces (WS) represents an unprecedented and increasing potential for

studying ungauged hydrological and hydraulic processes from their signatures, especially on complex �ow zones

such as anabranching rivers. However the estimation of discharge from WS observations only is a very challeng-

ing, ill-posed, inverse problem due to unknown bathymetry and friction in ungauged rivers, measurements nature,

quality and spatio-temporal resolutions regarding the �ow (model) scales. This paper proposes an e�ective 1D

hydraulic modeling approach of su�cient complexity to describe anabranching river �ows from sparse multisatel-

lite observations using the HiVDI inverse method presented in [1] with an augmented control vector including a

spatially distributed friction law K(x, h) depending on the �ow depth h. It is shown on 71km of the Xingu River

(anabranching, Amazon basin) with altimetric water height timeseries that a fairly accurate upstream discharge

hydrograph and e�ective patterns of channel bathymetry and friction can be infered simultaneously. The coherence

between the sparse observation grid and the �ne hydraulic model grid is ensured in the optimization process by

imposing a piecewise linear bathymetry pro�le b(x), which is consistent with the hydraulic visibility of WS signa-

tures ([2, 3]). The discharge hydrograph Q(t) at observation times and e�ective bathymetry-friction (b(x), K(x, h))

patterns are retrieved from 8 years of satellite altimetry (ENVISAT) at 6 virtual stations (VS) along �ow. Next,

the potential of the forthcoming SWOT data, dense in space, is highlighted by infering a discharge hydrograph

and dense patterns of e�ective river bathymetry and friction; a physically consistent scaling of friction by reaches

enables to consider more dense bathymetry controls. Finally a numerical analysis shows: (i) the importance of

an unbiased prior information in the inference of a triplet (Q, b(x),K(x, h)) from WS observations; (ii) the clear

signatures of river bottom slope break in low �ows and width variations in high �ows, through the analysis of the

friction slope term, which is consistent with the �ndings of [3] from WS curvature analysis.
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1. Introduction18

Fresh water is a crucial earth's resource and its journey from the clouds to the oceans passes through the hy-19

drographic network. In order to characterize hydrological �uxes, an essential physical variable is river discharge (cf.20

Global Climate Observing system [4]) representing an integration of upstream hydrological processes. In comple-21

ment of in situ sensors networks which are declining in some regions (e.g. [5]), increasingly accurate measurements22

of hydrological and hydraulic variables, and especially river surface variabilities are now enabled by myriads of23

satellites for earth observation and new generations of sensors (e.g. [6, 7, 8, 9]).24

The forthcoming Surface Water and Ocean Topography (SWOT) wide swath altimetric mission (CNES-NASA,25

planned to be launched in 2021) will provide a quasi global river surfaces mapping with an unprecedented spatial and26

temporal resolution on Water Surface (WS) height, width and slope - decimetric accuracy on WS height averaged27

over 1 km², 1 to 4 revisits every 21 days cycle [10, 11, 12, 13, 14]. In addition to decades of nadir altimetry (e.g.28

[15, 16, 17, 18]) and imagery (e.g. [19]) on inland waters, SWOT will enable an unprecedented hydraulic visibility,29

as de�ned from hydraulic analysis in [2, 20, 3], of hydrological responses and hydraulic variabilities within river30

networks. Multi-satellite observations of water surfaces from the local to the hydrographic network scale indeed31

represent an unprecedented observability of hydrological responses through hydraulic processes signatures, especially32

on complex �ow zones such as �oodplains or anabranching rivers (see river morphology classi�cation in [21]). This33

increased hydraulic visibility represents a great potential to learn hydrodynamic behaviors and infer hydrological34

�uxes.35

The estimation of river discharge from water surface observations (elevations, top width) remains an open and36

di�cult question, especially in case of unknown or poorly known river bathymetry, friction or lateral �uxes. Several37

open-channel inverse problems are studied in a relatively recent litterature in a satellite data context with more38

or less complex �ow models and inverse methods (cf. [13] for a review). Few studies started to highlight the39

bene�ts of assimilating synthetic SWOT WS observations in simpli�ed hydraulic models with sequential methods,40

for infering in�ow discharge assuming known river friction and bathymetry [22, 23] or infering bathymetry assuming41

known friction [24, 25]. Next, low-complexity methods have been proposed for estimating river discharge in case42

of unknown bathymetry and friction based on the kinematic wave assumption [26, 27] or hydraulic geometries43

[28] or empirical �ow models ([29], see also [30]). They are tested on 19 rivers with synthetic �SWOT-like� daily44

observations in [29] and their robustness and accuracy is found to �uctuate, the importance of good prior guesses45
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is highlighted.46

The combined use of dynamic �ow models and optimization methods enables to bene�t from WS observations47

for solving hydraulic inverse problems as shown for �ood hydrograph inference in [31] from WS width time series48

used to optimize a 1D hydraulic model or in [32, 33, 34] by variational assimilation of �ow depth time series in a49

2D hydraulic model. The variational data assimilation (VDA) approach (see e.g. [35] and references therein) is well50

suited to solve the present inverse problem (see [36, 37, 1] and references therein).51

It consists in �tting the hydraulic model response to the observed WS elevations by optimizing the �input52

parameters� in a variational framework. However, altimetry measurements of WS are relatively sparse in time53

compared to local �ow dynamics. This important aspect of the inverse problem is investigated in [36] with the54

introduction of the identi�ability maps. The latter consist to represent in space-time the available information:55

WS observables, hydraulic waves and an estimation of the mis�t with the local equilibrium. These �maps� enable56

to estimate if the sought upstream discharge information has been observed or not within the downstream river57

surface deformations; also they help to estimate inferable hydrograph frequencies [36] or inferable hydrograph time58

windows [1].59

The inference of the hydraulic triplet (in�ow discharge Q(t), e�ective bathymetry b(x) and friction coe�cient K)60

from SWOT like WS observations is investigated in recent studies using 1D hydraulic and variational assimilation61

methods (e.g. [36, 38, 37, 1]). However the inference of the triplet from WS observations remains a very challenging62

inverse problem because of the correlated in�uence of temporal (discharge) and spatial (bathymetry-friction) controls63

on the simulated �ow lines. This is especially true because of the bathymetry-friction �equi�nality issue�, see the64

discussions in [27, 1]. Those recently developed VDA methods enable to infer accurately the in�ow discharge from65

water surface observables, considering unknown/uncertain channel bathymetry-friction, but from accurate prior66

information and synthetic WS observations. Note that a strong prior such as a known stage-discharge relationship67

(rating curve) downstream of a river domain as it is done in [37] can control part of the simulated �ow lines (�uvial68

regime); as a consequence the VDA process may converge to the discharge hydrograph corresponding to the imposed69

(almost exact) rating curve. In the present study the downstream boundary condition (BC) is an unknown of the70

inverse problem.71

A crucial point is the sensitivity of the triplet inference to the prior value from which the inference is started and it72

is studied in a SWOT observability context in [27, 39, 1, 40]. The sensitivity of the estimated discharge (in the triplet)73

to the prior is highlighted by recent estimates performed from AirSWOT airborne measurements on the Willamette74

River [40]. The temporal signal is well retrieved at observation times but using a biased prior hydrograph results in75

a biased hydrograph inference - see detailed investigations in [1]. In view to infer worldwide river discharges from76

the future SWOT observations, especially for ungauged cases, a hierarchical modeling strategy HiVDI (Hierarchical77

Variational Discharge Inversion) is proposed in [1]. The HiVDI approach includes low complexity �ow relations78

(under the assumption of Low Froude and locally steady-state �ows) which improves the robustness of the inferences79
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in particular if an (unbiaised) average value of Q is provided. (It may be provided by a database or a regional80

hydrological model). Note that if introducing an a-priori information such as a single depth measurement, it enables81

to reconstruct an e�ective low-�ow bathymetry see [41, 27, 1].82

All the studies mentioned above mostly address single channel natural rivers (∼ 100km in length) without lateral83

in�ows and using synthetic datasets (except in [40] with AirSWOT data). Moreover very few studies address the84

modeling of e�ective 1D channels from real satellite data (e.g. [2, 42]).85

The present paper investigates the e�ective hydraulic modeling of anabranching river �ows from real multi-86

sensor satellite observations of WS, the challenging inference of the hydraulic triplet (Q(t), b(x), K(x, h)) and its87

sensitivity to observation density in space. Anabranching rivers are characterized by complex hydraulic geometries88

relationships across �ow regimes as shown in [43] through an analysis of a metric resolution 2D shallow water89

model of an anabranching portion of the Platte River, US. The key point here is to build up a su�ciently complex90

model to describe anabranching river �ows and in coherence with the spatio-temporal scales of satellite altimetry91

measurements.92

Based on the inverse method presented in [1, 36], an e�ective hydraulic modeling strategy is adapted for tackling93

anabranching river �ows using: (i) e�ective 1D cross sections based on real multi-satellite data from low to high94

�ows (ii) a spatially distributed friction law depending on modeled water depth h. The inference of distributed95

hydraulic parameters patterns is investigated on a 71km long reach of the Xingu River (Amazone basin) from real96

altimetric observations gained on a single ENVISAT track or from synthetic SWOT observations, low identi�ability97

index (as introduced in [36] and detailed in section 4). The in�uence of the spatial density of WS observations on98

the identi�ability of spatial controls patterns (in the unknown triplet) is studied. A piecewise linear bathymetry99

representation is introduced along with a friction power law with piecewise constant parameters to put in coherence100

the observations and the �ow model grids. Their constraining e�ect on the inversions is studied with spatially101

(and temporally) sparse satellite observations. Furthermore, numerical investigations are performed to test the102

sensitivity of hydraulic inferences to prior hydraulic values and also assess the correlated in�uence of bathymetry103

and friction on the modeled �ow lines (equi�nality) across �ow regimes.104

This study is organized as follows. Section 2 presents the 1D Saint-Venant �ow model and the e�ective modeling105

approach for anabranching rivers including: (i) a spatially distributed friction law depending on the modeled �ow106

depth, (ii) the construction of an e�ective channel geometry from multi-satellite observations, (iii) an inverse method107

based on variational data assimilation. Section 3 focuses on the calibration of the e�ective model on 8 years of108

WS observations gained from ENVISAT altimeter on a single track along this anabranching river. Using this109

model as a reference, section 4 proposes detailed investigations of the hydraulic inferences from real ENVISAT110

or synthetic SWOT observations considering this anabranching river as ungauged. The discussion in section 5111

presents a numerical sensitivity analysis to the hydraulic prior and some investigations on the bathymetry friction112

equi�nality.113
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2. Modeling approach:114

This section proposes an original 1D e�ective modeling approach of adequate complexity for modeling anabranch-115

ing river �ows across (�uvial) regimes and in coherence with satellite observations. The approach is built on an116

e�ective channel cross-section derived from multi-satellite measurements and a spatially distributed friction law117

depending on the �ow depth.118

2.1. The �ow model119

River �ows are classically modeled using the 1D Saint-Venant shallow water equations involving an integration120

of the �ow variables over the cross section (see e.g. [44, 45] for detailed assumptions). In (A,Q) variables, A the121

wetted-cross section
[
m2
]
, Q the discharge

[
m3.s−1

]
, the equations read as follows [44]:122

123 
∂t(A) + ∂x(Q) = 0

∂tQ+ ∂x

(
Q2

A

)
= −gA∂xZ − gASf

(1)

where g is the gravity magnitude
[
m.s−2

]
, Z is the WS elevation [m], Z = (b+h) with b is the river bottom elevation124

[m] and h is the water depth [m]. The friction slope Sf is parameterized with the classical Manning-Strickler law125

such that Sf = |Q|Q/K2A2R
4/3
h with K the Strickler friction coe�cient

[
m1/3.s−1

]
, Rh = A/Ph the hydraulic radius126

[m] , Ph the wetted perimeter. The discharge Q is related to the average cross-sectional velocity u
[
m.s−1

]
such as127

Q = uA. A spatially distributed Strickler friction coe�cient is de�ned as a power law in the water depth h:128

129

K(x, h(x, t)) = α(x)h(x, t)β(x) (2)

where α and β are two constants. Similar approaches based on hydraulic geometry or power law resistance equations130

are developed in the litterature for predicting mean �ow velocity for example on a wide range of in situ river �ow131

measurements in [46] or else for gravel bed streams in [47]. The friction depends on the �ow depth through the132

proposed power law relation (Eq. 2) enabling a variation of the friction e�ect in function of the �ow regime for133

complex �ow zones for instance; this spatially distributed friction law is richer than a constant uniform value as it134

is often set in the literature from a-priori tables of frictions in function of river types for instance (e.g. [48]).135

Note that satellite altimetry mostly observes the downstream parts of river networks (top width W > 100m for136

SWOT), mainly in subcritical and mostly low Froude �ows at the observation scales (cf. [49, 1, 3]). The discharge137

Qin(t) is classically imposed upstream of the river channel with a discharge hydrograph. At downstream a normal138

depth is imposed using the Manning-Strickler equation depending on the unknowns (A,Q;K)out (it is classically139

integrated in the Preissmann scheme equations). The initial condition is set as the steady state backwater curve140

pro�le Z0(x) = Z(Qin(t0)); also depending on the unknowns. Note that these boundary and initial conditions141

are updated during the iterative inverse method presented in what follows. This 1D Saint-Venant model (Eq. 1)142
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is discretized using the classical implicit Preissmann scheme (see e.g. 50) on a regular grid of spacing ∆x. It is143

implemented into the computational software DassFlow (DassFlow [51]).144

2.2. E�ective anabranching river model from multisatellite data145

A L = 71km long portion of the Rio Xingu containing anabranching reaches is considered (Fig. 1, cf. [2],). WS146

observations are available at 6 virtual stations along a single ENVISAT track (#263) representing 77 samples of147

WS pro�les between mid 2002 and mid 2010 (cf. [17]); that is
{
Zobss,p

}env
S,P

with S = 6 corresponding to the locations148

of the virtual stations simultaneously observed at P = 77 times (see Tab. 1).149

An e�ective hydraulic modeling strategy of this anabranching river is proposed based on:150

� Cross-sectional water surface widths {W}jersS,2 obtained from JERS mosaics (Courtesy of GRFM, NASDA/MITI)151

in low and high �ows. The e�ective water surface width is the sum of the width of all individual river channels152

for anabranching reaches. Note that the cross section geometry of this (ungauged) anabranching river might153

be changing over a hydrological year, from �disconnected channels� in low-�ows to a �mono-channel� with154

forested �oodplains during the �ood season. The available satellite images resulted in an estimation of a155

larger e�ective top width in high-�ow.156

� An a priori river bottom {b}rV S obtained from altimetric rating curves from [52]. The authors determined157

e�ective bottom elevations by adjusting the scalar parameters γ and δ of a classical stage discharge relationship158

Q = γ(Z − b)δI1/2, with I the water surface slope gained from altimetry at large scale. They used WS159

elevations gained by satellite altimetry and discharges simulated with the large scale hydrological model MGB160

([53, 54, 55]) on the temporal window of interest - called true discharge in what follows.161

E�ective cross-sections geometries are de�ned at the 6 virtual stations with the bathymetry b given by altimetric162

rating curves and from e�ective widths such that low �ow width (resp. high �ow) is reached for the �rst (resp.163

ninth) decile of observed WS elevations for each cross section. The �nal model geometry is obtained by linear164

interpolation between these 6 e�ective cross sections on the model grid with ∆x = 50m. It is shown in Fig. 1 along165

with ENVISAT and SWOT spatial samplings. The friction law (Eq. 2) introduced above and depending on the �ow166

depth h is distributed using patches with constant values for each reach between two successive virtual stations.167

168

2.3. The computational inverse method169

This paper investigates the estimation of the hydraulic triplet (Q(t), b(x), K(x, h)) from observations of WS170

variabilities only on an anabranching river. The employed inverse method is those presented in [1] (see also [36])171

with an augmented composite control vector c; it is detailed in Appendix 7. c contains a spatially distributed172

friction coe�cient enabling to model complex �ow zones (while it is an uniform friction law K(h) in [1]). This173

de�nition of K(x, h) enables to consider more heterogeneous bathymetry controls.174
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Figure 1: Study zone (top) with ENVISAT track #263 and virtual stations (orange dots); simulated SWOT tracks #133 and #258 on
the 1st and 6th day every 21 days repeat cycle (transparent white). E�ective river bathymetry derived from altimetric rating curves
([52]) and water surface width from satellite images.

7



The principle is to estimate (discrete) �ow controls minimizing the discrepancy between Zobs the observed �ow175

line and Z the modeled one; the latter depending on the unknown parameters vector c through the hydrodynamic176

model (Eq. 1). This discrepancy is quanti�ed through the cost function term:177

178

jobs(c) =
1

2
‖Zobs − Z(c)‖2

2
(3)

see Appendix 7 for details. The control vector c contains the unknown �input parameters� of the 1D Saint-Venant179

shallow water �ow model (Eq. 1) considering e�ective cross sections (see Fig. 1). In the present study, c reads as:180

181

c = (Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN )
T (4)

where temporally and spatially distributed controls are the upstream discharge Qin,p, the river bed elevation br and182

the distributed friction parameters αn and βn.183

The subscript p denotes the observation time p ∈ [0..P ] and r denotes the reach number, r ∈ [1..R].184

αn and βn are the parameters of the friction law depending on the model state h (Eq. 2) for each patch n ∈ [1..N ]185

with N ≤ R.186

The inversion consists to solve the following minimization problem: c∗ = argmin j(c) (Eq. 9).187

This minimization, optimization problem is solved using a �rst order gradient-based algorithm, more precisely188

the classical L-BFGS quasi-Newton algorithm. The main steps of the method are illustrated in Fig. 2.189

190

3. Model Calibration191

This section presents the calibration of the e�ective hydraulic model based on the reference e�ective geometry192

de�ned above (cf. section 2.2). The observed water elevation time series
{
Zobss,p

}env
S,P

at S = 5 ENVISAT virtual193

stations are used to calibrate the friction law of the 1D Saint-Venant �ow model (Eq. 1). Since friction has a local194

and upstream in�uence on a �ow line (low Froude �uvial �ows, Fig. 10) the remaining ENVISAT time series at195

VS#6 downstream of the river domain will be used for infering the full control vector c in next section - recall that196

a normal depth is used as downstream BC (cf. section 2.1).197

A �reduced� control vector ccal = (α1, ..., αN , β1, ..., βN ) consisting in spatially distributed friction parameters198

only is considered here. In order to avoid a spatial �overparameterization� regarding the 5 water height timeseries199

available at VS, the choice is made to spatialize friction on N = 5 patches, on each reach downstream an altimetric200

VS. The inverse method presented in [1] and described in appendix (section 7) is used here with no regularization201

nor variable change for this �simple� calibration problem.202

An optimal friction distribution c∗cal is found with the inverse method and the calibrated values of αn=1...5 and203

βn=1...5 are summed up in Tab. 1. The resulting water height time series are compared to altimetric observations204
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Figure 2: Flowchart of the method using the HiVDI inverse method (Larnier et al. [1]) for variationnal calibration, adapted from
Monnier et al. [56], Monnier [57].

for each virtual station (cf. Fig. 3). The spatially distributed friction law (Eq. 2) enables a fairly good reproduction205

of the observed water level variations on this anabranching river, across a wide range of �ows, even with an e�ective206

1D model built on multi-satellite data (Fig. 3).207

A constant friction in time would lead to systematical errors for a large range of �ows as shown by the grey208

curves on Fig. 3. The calibrated friction exponents βn range between 0.482 and 1.133 except for the second reach209

(SV2-3) where a small βn is found, that is a barely constant friction across �ow regimes for this short reach (cf. Fig.210

3). The spatial pattern of αn values calibrated here corresponds to signi�cant friction e�ects, varying across �ow211

regimes, and necessary to e�ectively represent anabranching reaches using a 1D e�ective cross section. Indeed the212

lattest leads to an underestimation of the hydraulic radius Rh = A/Ph hence of the friction slope Sf = |Q|Q/K2A2R
4/3
h213

in the 1D Saint-Venant model (see section 2.1) for anabranching reaches.214

215

216

4. Inferences of distributed spatio-temporal �ow controls (Q(t),K(x, h), b(x)) from WS observations217

This section studies the challenging inference of the hydraulic triplet (discharge, bathymetry, friction) from218

multi-satellite WS observations. The anabranching Xingu River morphology represents a supplementary di�culty219

for inversions regarding the variability of local hydraulic behaviors accross �ow regimes as evidenced above by220

the calibrated friction laws (βcal 6= 0). The impact of spatial controls density and bathymetry representation is221
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Virtual station name VS#1 VS#2 VS#3 VS#4 VS#5 VS#6

Flow distance to mouth [km] 1146 1129 1124 1116 1110 1075

Flow distance from the upstream [km] 0 17 22 30 36 71

Drainage area [km2] (MGB model) 193.255 193.255 194.148 194.148 195.882 197.862

Z0 [m] (reference : EGM2008) (Paris et al. 2016) 209.6 207.1 206.9 206.5 204.3 196.5

Wlow(x) Total low �ow width [m] (derived from JERS) 1090 1540 1260 1590 930 930

Whigh(x) Total high �ow width [m] (derived from JERS) 2610 1850 1900 2240 1240 1140

Calibrated friction factor αcal(x) (downstream reach) 12.785 19.574 9.869 4.252 7.425 -

Calibrated friction exponent βcal(x) (downstream reach) 0.482 0.071 0.624 1.133 0.718 -

Table 1: Summary of the e�ective hydraulic model parameters including calibrated friction parameters αcal(x) and βcal(x) (recall
K(x, h) = α(x)hβ(x)) using 8 years of WS elevation variations (ENVISAT data) given e�ective channel bathymetry and upstream
discharge from the MGB hydrological model ([54]).

Figure 3: Calibration of variable friction K(x, h) with 8 years of ENVISAT measurements at 6 VS using the variational method with
c = (α1, ..., α5, β1, ..., β5) ; jobs = 0.07. (Bottom right) E�ective friction law in function of water depth for each VS.

10



asssessed in what follows regarding the spatial sparsity of observations. First is presented the numerical experiment222

framework, then the inferences with relatively �sparse� ENVISAT measurements and �nally those with SWOT223

synthetic observations.224

4.1. Design of the numerical experiments225

The e�ective hydraulic model described in section 2.2 and calibrated in section 3 is used as a reference (�target�)226

in the following numerical experiments. The control vector (Eq. 4) containing discharge, bathymetry and friction227

is sought with the inverse method decsribed in section 2.3 (see also appendix, section 7). It is tested �rst with real228

ENVISAT time series repesenting a relatively sparse spatial sampling of WS signatures with 6 VS on this 71km229

long river, and next with synthetic SWOT observations sampling the �ow line at ∆x = 200m (RiverObs product,230

see [58]).231

The Xingu River is observed either by a single along-stream ENVISAT track at 6 observation points (virtual232

stations) of �ow lines every 35 days, or two SWOT tracks providing dense WS observations in space twice per233

21 days repeat cycle (5 days delay, cf. section 2.2). Note that the temporal sparsity of observations (35 days234

for ENVISAT or 5 days between the two SWOT passes every 21 days) only enables to identify low hydrograph235

frequencies, at observation times (see [36] for a detailled analysis and the identi�ability maps). Indeed the hydraulic236

wave propagation time is around Twave ∼ 9h which is much smaller than the lowest satellite revisit time of 5 days.237

This propagation time is calculated using the kinematic wave velocity for rectangular channels ck = 5/3U and238

maximal high �ow velocity U = 2.17m/s from calibrated model outputs ck = 2.2m/s (second hydrograph peak239

at t = 490 days, see �ow variables on Fig. 10). Let Iindent = Twave/∆tobs be the identi�ability index de�ned240

in [36] as the ratio between �ood wave propagation time and observation time step. This leads to a very low241

temporal identi�ability index for this 71km river: Iident = 7.5× 10−2 for SWOT and Iident = 10−2 for ENVISAT.242

Consequently, only low temporal dynamics and discharge at observation times are inferable as shown in [36]; SWOT243

and ENVISAT observations are thus considered separately in the present study.244

The starting point of the VDA process in the parameter space, the so-called prior cprior (cf. section 7), consists245

in a rough hydrological prior: Q(0) = QMGB the mean discharge estimated from the MGB hydrological model,246

a spatially constant α(0) friction de�ned a priori from classical hydraulic ranges (e.g. [48]) and β(0) = 1, the247

bathymetry b(0) is de�ned as a simple straight line over the whole domain for hydraulic analysis �rst. Note that248

the sensitivity of the inference to the prior de�nition is investigated in section 5.249

In a noised observation context, we denote by δ the noise level such that ‖Zobs − Ztrue‖2 ≤ δ for all spatial250

locations r with Zobsr the observed and Ztruer the true WS elevation. A common technique to avoid over�tting noisy251

data, in the context of Tykhonov's regularization of ill-posed problems, is Morozov's discrepancy principle, (see e.g.252

[59] and references therein): the regularization parameter γ (see Eq. 7) is chosen a-posteriori such that j does not253

decrease below the noise level. In the present numerical experiments, the convergence is stopped if jobs(c) ≤ 10−1254

or if jobs is not decreased anymore for higher discrepencies.255
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4.2. Inference from spatially sparse ENVISAT snapshots256

In this section the assimilation is based on WS elevations
{
Zenvs,p

}
S,P

at S = 6 virtual stations observed simul-257

taneously by ENVISAT during 8 years every 35 days, i.e. P = 77. In this spatially sparse observation context, the258

impact of spatial controls density is investigated.259

First, we consider a �full� control vector c (cf. Eq. 4) including P = 77 in�ow discharges, all 1D model260

bathymetry points R = 1420 and N = 5 friction patches between ENVISAT virtual stations (cf. section 2.2).261

The infered in�ow discharge, bathymetry and friction are presented in Fig. 4 (case Env.a). Despite the satisfying262

value of the hydraulic controls reached at iteration 35, the descent is still possible as shown by jobs decreasing of263

about 20% at iteration 96. Allthough it enables to �t the observations according to the a priori convergence criteria264

de�ned in section 4.1, the solution found after the VDA process is not very accurate nor realistic as shown by peak265

�ow underestimations and signi�cant oscillations of the identi�ed friction and bathymetry. The spatial sparsity of266

observations prevents to infer these relatively dense bathymetry controls; in this case the considered inverse problem267

is underconstrained.268

In order to better constrain the inverse problem in case of sparse spatial observability, a bathymetry represen-269

tation is consistently introduced at the scale of the observation grid and applied to the �ner �ow modeling grid.270

Based on the physical analysis of the SW model (Eq. 1) behaviour and the WS signature of bathymetry/friction271

controls (see [20, 60, 3]), a linear bathymetry interpolation is used between the successive couples of bathymetry272

controls de�ned at observation points only. The resulting bathymetry b̃(x) ∈ C0(R), ∀x ∈ [0, L] is piecewise linear273

and strongly constrains the bathymetry pro�le between the sought bathymetry points - instead of using only a weak274

constraint jreg(c) = 1
2 ‖b”(x)‖22 in the optimization process (cf. appendix 7) as done in the next section 4.3 with275

spatially dense SWOT observations. Using this bathymetry constraint with R = 6 bathymetry controls de�ned at276

each ENVISAT virtual station results in 5 reaches and N = 5 friction patches are consistently applied to each. This277

leads to a more robust and accurate inference as shown in Fig. 5 (case Env.b). The discharge infered for 8 years278

is fairly correct (RMSE = 520 m3/s, Nash = 0.95) and relatively realistic bathymetry/friction patterns are found,279

with some compensations between spatial controls locally in space, which is further analyzed in what follows.280

The impact, on the infered parameters, of searching a spatially uniform friction law is tested with the piecewise281

linear bathymetry representation used above. The resulting discharge inference is fairly correct (RMSE = 608 m3/s,282

Nash = 0.93) and interestingly the bathymetry spatial pattern is well retrieved but shifted above the reference one283

(cf. Fig. 6) (case Env.c). The infered friction coe�cients are α = 22.621, β = 0.217, which represents a lower284

friction e�ect on most �ow regimes regarding the calibrated ones (cf. Tab. 1). These infered e�ective friction285

law and bathymetry patterns, leading to somehow e�ective stage-discharge relationships locally given the infered286

hydrograph and its propagation, enable to approximate the observed WS variations (jobs = 1.269 ) but with a less287

accurate �t than with spatially distributed friction (jobs = 0.118). Note that in this case of lower model complexity288

an underestimation of the low �ow discharges occurs.289
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Figure 4: Identi�cation of (Q(t),K(x, h), b(x)) with ENVISAT observations and overparameterized c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN

)T
with P = 77, R = 1420, N = 5, bathymetry regularization weight γ = 10−3;

jobs = 0.098 at iteration 35 (top) and jobs = 0.077 at iteration 96 (bottom) (Env.a)

Figure 5: Identi�cation of (Q(t),K(x, h), b(x)) with ENVISAT observations and e�ective c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN

)T
with P = 77, R = 6, N = 5 with a piecewise linear bathymetry b(x)

reconstruction, γ = 0; jobs = 0.118 at iteration 51. (Env.b)

Recall that the observations consist in real measurements of WS elevations gained by nadir altimetry on290

anabranching reaches of the Xingu River. The complexity of the forward-inverse modeling approach, in coher-291

ence with the spatial sparsity of the observation grid, enables to approximate satisfactorily the one of the observed292

anabranching �ow. The additionnal constraint provided by spatially dense �ow lines observations is investigated in293

the next section with SWOT synthetic data.294

295

296

297

298
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Figure 6: Inferrence of Q(t), b(x) and spatially uniform K(h) = αhβ with ENVISAT WS observations and e�ective c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α, β

)T
, P = 77, R = 6, no bathy γ = 0; jobs = 1.269 at iteration 54. The identi�ed friction coe�-

cients are α = 22.621, β = 0.217. (Env.c)
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Figure 7: Identi�cation of (Q(t),K(x, h(x, t)), b(x)) with SWOT-sge observations and e�ective c =(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αN , β1, ..., βN

)T
with P = 276, R = 1420, N = 1419, γ = 10−3; jobs = 0.099 at itera-

tion 41. (SWOT.a)

4.3. Inference from spatially dense SWOT snapshots299

In this section the full hydraulic control c (cf. Eq. 4) is infered by assimilating SWOT-like observations. Those300

noisy data are computed using the SWOT hydrology simulator applied to �ow lines from the e�ective hydraulic301

model calibrated above (cf. section 3). The SWOT spatio-temporal pattern over the studied river is obtained302

by overlapping the river centerline and the expected SWOT orbit and swaths (cf. Fig. 1). Finally the synthetic303

SWOT-like observables consist in WS elevations
{
ZSWOT
obs

}
r,p

with p ∈ [1..P ] and P = 276 generated on the �ne304

scale model grid i.e. r ∈ [1..1420].305

The in�ow discharge, bathymetry and friction are infered by assimilating SWOT WS observations
{
ZSWOT
obs

}
r,p

306

on the same spatial grid as that of the numerical hydraulic model with cprior1. The estimates are presented on307

Fig. (7). The infered discharge hydrograph is accurate (RMSE = 391 m3/s, Nash = 0.97) and bathymetry/friction308

patterns are relatively well retrieved. Using SWOT spatially distributed observations and piecewise constant friction309

enable to constrain the inference of bathymetry controls at a �ne spatial resolution (model grid). The inverse310

method includes: (i) a regularization term jreg in the cost function (Eq. 7); (ii) covariance matrices acting as311

spatial or temporal smoothers/regularizations (cf. Eq. 12 in appendix). The infered discharge and spatially312

distributed controls are slightly more accurate than previously in a comparable inversion scenario with sparse313

ENVISAT observations in space and piecewise linear bathymetry constrain (case Env.b, cf. Tab. 2 and Fig. 5).314

Note that the friction is sought by reaches which enables to consider more dense bathymetry controls. Again,315

the compensation between spatial controls appears locally in space but enables the best �t to the distributed316

measurements of WS elevations given the infered discharge (jobs = 0.099).317

318

5. Discussion and numerical investigation of the bathymetry-friction equi�nality319

This section discusses the challenging inference of spatially and temporally distributed river �ow controls from320

water surface observations through numerical investigations. Indeed, the considered �ow controls (Q(t), b(x),321
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K(x, h)) have a correlated in�uence and can produce undiscernable signatures in the modeled �ow lines therefore322

leading to an ill-posed inverse problem (cf. [27, 1] for investigations on this �bathymetry-friction equi�nality� in a323

comparable data-inversion context). The hydrograph is responsible for �ow variability in time, hence enabling to324

retrieve the temporal dynamics of the observed �ow lines [36, 1].325

Given altimetric measurements of WS variabilities and the �rst guess cprior1, the regularized inverse method326

enables to infer a complex control vector composed of temporally and spatially distributed controls of the 1D327

SW model (Eq. 1). In the numerical experiments above, the discharge hydrograph Q(t) is accurately infered at328

observation times but because of the ill-posedness of the inverse problem, compensations can occur between the329

sought parameters and especially between the spatial controls - the bathymetry b(x) and the distributed friction330

parameters α(x) and β(x). These infered friction laws and bathymetry patterns - simultaneously infered with the331

discharge hydrograph - correspond to �e�ective rivers� enabling to �t the observed variability of �ow lines.332

Note that the spatial density of SWOT data enables to constrain �ow controls that are relatively dense in space,333

here on a complex anabranching �ow case using the e�ective 1D river representation and a friction law pattern334

depending on water depth. Improving the physical segmentation, parameterization and sparse representation of335

river networks and �ow signatures (e.g. [3]) seems of great importance to take advantage of the forthcoming SWOT336

observations along with other data.337

Importantly, as already pointed out in the VDA inferences performed with the DassFlow model using SWOT like338

data in [36, 1] and AirSWOT data in [40], the accuracy of the inferred discharge depends on the quality of the prior.339

In other words spatially distributed WS observations enable to depict spatio-temporal signatures and eventually340

propagation dynamics but a quantitative biais remains regarding �uxes, from the river reach to the network scale.341

In the following subsection the in�uence of the prior value on the quality of the inferences with spatially342

distributed controls is investigated �rst. Next, is proposed a numerical analysis of the sensitivity of the friction343

slope (source term) Sf in the Saint-Venant equations (Eq. 1) to the �ow controls (triplet) that are embeded in it344

(Manning-Strickler parameterization).345

5.1. Sensitivity to the prior guess346

The sensitivity of the inference to the quality of the prior guess of the control vector cprior is investigated here347

for the most challenging inverse problem with spatially and temporally distributed controls and sparse ENVISAT348

data. First the in�ow prior is varied of ±30% around the mean true discharge; the river bottom elevation and349

friction priors are set as previously in cprior1. The infered hydraulic controls are presented in Fig. 8 and various350

inference scores are summed up in Tab. 2. For each in�ow prior, the temporal variations of the in�ow hydrograph351

are very well retrieved as shown on Fig. 8 - runs Env.b2 and Env.b3. However a biased in�ow prior results in a352

biased hydrograph estimate (with correct temporal variations at observation times) which is coherent with results353

of [1, 40]).354
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Figure 8: Sensitivity test to the prior discharge QMGB ± 30% ; identi�cation (var change) of (Q(t),K(x, h), b(x)) with ENVISAT

observations c =
(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αS , β1, ..., βS

)T
with P = 77, R = 6, N = 5 and with a piecewise linear b(x) and

S = R = 5. �Estimate� (case Env.b) jobs = 0.118 at iteration 51, �Estimate2� (case Env.b21) jobs = 0.125 at iteration 41, �Estimate3�
(case Env.b21) jobs = 0.125 at iteration 25.

Next, the sensitivity to the prior bathymetry and friction is tested. The prior bathymetry is infered with the355

low-complexity system proposed in the hierarchichal HiVDI model chain ([1]) for ungauged rivers. It consists in356

estimating an e�ective prior bathymetry from WS observables using the low Froude model and prior discharge from357

a hydrological model (QMGB here) and prior friction (α(0), β(0)). Two prior guesses cman1 and cman2 are considered358

with prior friction under/over-estimations compared to calibrated ones (cf. Fig. 9). As shown on Fig. 9, the359

inference in case Env.b31 (blue) results in an accurate estimation of discharge, very similar to Env.b (purple). It is360

started from a prior guess cman1 that underestimates river bottom elevation and overestimates the spatially averaged361

friction e�ect compared to calibrated values (cf. Fig. 9, bottom). In that case, �tting WS elevations enables to infer362

an e�ective river channel (bathymetry and friction) but also to infer a fairly realistic upstream temporal control363

(discharge hydrograph). Using the prior guess cman2 that overestimates both river bottom elevation and spatially364

averaged friction e�ect results in a comparable �t to the observed WS elevations. However this correct �t stems from365

the compensation between an infered e�ective channel of reduced conveyance capacity (comparable friction e�ects366

but overestimated bed levels) and consequently an infered hydrograph with underestimated low-�ow discharges (in367

yellow).368

369

370

5.2. Spatio-temporal sensitivity of the friction term371

The considered �ow controls (Q(t), K(x, h), b(x)) of the 1D Saint-Venant shallow water equations (Eq. 1)372

have a complex non linear in�uence on the modeled �ow lines and consequently on the �t to the observed ones -373

the lattest being evaluated globally in space and time with the current inverse method given the observation cost374

function (Eq. 3). The variation of momentum expressed by the second �ow equation is due to a pressure source375

term −gA∂xZ (including the longitudinal variation of �uid-to-�uid pressure, the longitudinal variation of lateral376
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Figure 9: Sensitivity test to the prior friction and bathymetry estimated using the �Manning� method from [1] (cman1 (α(0) = 7.5;
β(0) = 0.5) and cman2 (α(0) = 12.5; β(0) = 1)); identi�cation (var change) of (Q(t),K(x, h), b(x)) with ENVISAT observations

c =
(
Qin,0, ..., Qin,P ; b1, ..., bR; α1, ..., αS , β1, ..., βS

)T
with P = 77, R = 6, N = 5 and with a piecewise linear b(x) and S = R = 5.

�Estimate� (case Env.b) jobs = 0.118 at iteration 51, �Estimate2� (case Env.b31) jobs = 0.116 at iteration 46, �Estimate3� (case Env.b32)
jobs = 0.122 at iteration 41. (Bottom) prior e�ective friction laws and spatially averaged calibrated friciton law (αcal = 10.74 and
βcal = 0.6, �Cal bar�).

Case Control Prior
RMSE

Q(0) rRMSE
Q(0) Nash

Q(0) RMSE
b(0) RMSE

α(0) RMSE
β(0)

(m3/s) (%) (−) (m) (m1/3−β/s) (−)

Env.a Dense b(x) cprior1 2254 194 −0.01 1.19 4.93 0.49

Env.b Piec. b(x) cprior1 ” ” ” ” ” ”

Env.c Piec. b(x), K(h) cprior1 ” ” ” ” ” ”

SWOT.a Dense b(x) cprior1 ” ” ” ” ” ”

Env.b21 Piec. b(x) Q
(0)
prior1 − 30% 2433 97 0.18 1.19 4.93 0.49

Env.b22 Piec. b(x) Q
(0)
prior1 + 30% 2626 297 −0.37 ” ” ”

Env.b31 Piec. b(x) cman1 (α(0) = 7.5; β(0) = 0.5) 2254 194 −0.01 0.77 5.63 0.34

Env.d32 Piec. b(x) cman2 (α(0) = 12.5; β(0) = 1) 2254 194 −0.01 1.13 5.43 0.49

Case Control Prior
RMSEQ rRMSEQ NashQ RMSEb RMSEα RMSEβ

(m3/s) (%) (−) (m) (m1/3−β/s) (−)

Env.a Dense b(x) cprior1 830 57 0.86 1.97 10 0.46

Env.b Piec. b(x) cprior1 520 61 0.95 1.07 4.8 0.37

Env.c Piec. b(x), K(h) cprior1 608 58 0.93 1.05 − −

SWOT.a Dense b(x) cprior1 391 38 0.97 0.91 5.67 0.2

Env.b2 Piec. b(x) Q
(0)
prior1 − 30% 1229 39 0.7 0.48 7.83 0.28

Env.b3 Piec. b(x) Q
(0)
prior1 + 30% 1473 104 0.57 0.75 5.09 0.22

Env.bm2 Piec. b(x) cman1 (α(0) = 7.5; β(0) = 0.5) 550 61 0.94 1.22 4.64 0.32

Env.bm3 Piec. b(x) cman2 (α(0) = 12.5; β(0) = 1) 885 78 0.84 1.30 5.50 0.35

Table 2: Scores of the inferences (bottom) performed with various priors (top), ENVISAT (�Env�) or SWOT (�SWOT�) observations.
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and bottom wall-to-�uid pressure) and a dissipation term −gASf . The discharge and the bathymetry appear in377

the momentum and pressure terms while all the �ow controls are embedded in the friction source term Sf . Note378

that for a locally steady uniform �ow Sf = −∂xZ and an in�nity of friction and bathymetry values can correspond379

to a single value of discharge (cf. Garambois and Monnier [27], Larnier et al. [1]).380

We propose a simple calculation in order to make appear the sensitivity of the friction term to a change on the381

controls; let us express the di�erential of Sf assuming Q > 0:382

dSf = d

(
1

K2

Q2

A2R
4/3
h

)

= − 2

K3

Q²

A²R
4/3
h

dK − 2

A3

Q²

K2R
4/3
h

dA− 4

3R
7/3
h

Q²

K2A²
dRh +

1

K2

2Q

A²R
4/3
h

dQ (5)

383

Since dRh = d(A/P ) = 1
P dA − A

P 2 dP = 1
P (dA−RhdP ) = 1

P (dA0 −RhdP0) + df(h) with A0 = W0h0 and384

P0 = W0 + 2h0 respectively the unobserved low-�ow area and perimeter under our modeling hypothesis (cf. section385

2.2 and Fig. 1, see also Larnier et al. [1] for details on cross section representation). It follows that f(h) is a function386

depending on the modeled water depth h and of the observed cross-section variation δA above low-�ow (h0), W0387

being de�ned from observables. We get dRh = 1
P

(
1− 2Rh

W0

)
dA0 + df(h) and �nally:388

389

dSf =
1

K2

Q

A²R
4/3
h

(
−2

Q

K
dK − Q

A

{
2 +

4

3

(
1− 2Rh

W0

)}
dA0 + 2dQ

)
− dφ(h) (6)

with φ(h) = 4

3R
7/3
h

Q²

K2A²
df(h) a function depending on the observed geometry of a cross section above low-�ow390

and of the simulated �ow (A,Q hence h (A) given a channel geometry). We rewrite Eq. 6 as dSf = ∂KSfdK +391

∂A0
SfdA0 + ∂QSfdQ− dφ(h) and under our modeling hypothesis we have ∂KSf < 0, ∂A0

Sf < 0, ∂QSf > 0 ∀x, t,392

i.e. opposite e�ects of local values of friction K, low �ow area A0 and simulated local discharge Q values on Sf .393

Those terms are plotted on Fig. 10 along the Xingu River, on the model grid, from hydraulic variables simulated394

(forward run) with calibrated parameters (cf. Tab. 1). Note that dφ(h) is not studied with this simple method.395

Interestingly, |∂KSf | is about 100 times greater than |∂A0
Sf | or |∂QSf | at high-�ow and about 10 times greater396

at low-�ow. This is consistent with the singular value of friction that is found 1000 times greater than the one of397

reach averaged discharges by Garambois and Monnier [27] through a singular value decomposition of the normal398

equations of reach averaged Manning equations - applied to 70km of the Garonne River downstream of Toulouse399

(France). In other words, the friction term in the present 1D modeling context must be more sensitive to a change400

in friction than unknown low-�ow bathymetry or discharge.401

Remark that for low-�ow, Sf is more sensitive to discharge than unknown cross sectional area (|∂QSf | > |∂A0
Sf |)402

and conversely for high-�ow. Moreover the spatial variability of the three sensitivities is more pronouced at low-�ow.403
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Figure 10: Evaluation of the partial derivatives of the friction source term Sf ; forward run with the calibrated parameter set (cf. Tab.
1) and true in�ow discharge.

Abrupt changes are highlighgted at locations corresponding to changes in the bottom slope or the channel width.404

The in�uences of the bottom slope break at x = 30km is clearly visible at low-�ow and the in�uence of the width405

contraction at x = 17km at high-�ow, which is fully consistent with the �ndings of [3]. Further investigations on406

the sensitivity of the full Saint-Venant equations, and especially the di�erent contributions to the friction slope,407

in space and time could be of interest to better taylor, scale and constrain methods for tackling hydraulic inverse408

problems.409

410

6. Conclusion411

This paper investigates the challenging inference of the hydraulic triplet (discharge, bathymetry, friction) from412

real or synthetic altimetric WS observations only on an ungauged anabranching river.413

The HiVDI inverse method presented in [1] is adapted for reproducing an anabranching �ow by introducing a414

spatially distributed friction law depending on modeled water depth h and by using multi-satellite data.415

The friction law coe�cients are spatialized by reach to be coherent with the observation grid and with the416

(rather large) meaningful scale of these parameters in the 1D Manning-Strickler equation (see e.g. [61]). This417

e�ective modeling approach enables a fairly accurate reproduction of the anabranching �ows observed during 8418

years by nadir altimetry (ENVISAT) on this 71km anabranching river.419

The inference capabilities of hydraulic parameters patterns from real altimetric observations along a single420

ENVISAT track or from the future spatially dense SWOT observations are demonstrated. For the present observed421

anabranching river complexity, the inverse method enables to infer a fairly realistic upstream discharge hydrograph422

along with an e�ective river channel. The estimated bathymetry and friction patterns somehow result in local423

20



and e�ective stage-discharge relationships. In case of spatially sparse observations, the coherence between the424

sparse observation grid and the dense model grid is ensured using a piecewise linear bathymetry representation425

along with a friction power law with piecewise constant parameters. This constrain on the VDA process provided426

by the above de�ned e�ective bathymetry-friction representation by reach is highlighted with spatially sparse427

ENVISAT observations. Moreover the additional constrain provided by the forthcoming SWOT observations to428

infer a discharge hydrograph and densely distributed spatial controls is assessed on this e�ective anabranching river429

representation; the de�nition of friction by reaches enabling to consider more dense bathymetry controls.430

SWOT observations would represent unprecedented measurements of hydrological and hydraulic processes sig-431

natures from the local to the hydrographic network scales, including complex �ow zones such as anabranching ones.432

On-going researches focus on the detection and use of various hydraulic signatures in WS as highlighted here for433

bottom slope (resp. channel width) breaks in low (resp. high) �ows (see WS curvature analysis and SW model434

behavior in [3]), on the estimation of reliable prior guesses on the sought parameters, model scaling and inverse435

problems at the scale of larger river network portions including complex �ow zones.436
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7. Appendix: the computational inverse method452

As already brie�y summarized in Section 2.3, the computational inverse method is based on Variational Data453

Assimilation (VDA) applied to the Saint-Venant �ow model (1). The computational inverse method is those454

presented in [36, 1] with an augmented composite control vector c, see (4): c contains a spatially distributed friction455
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coe�cient enabling to model complex �ow zones (while it is an uniform friction law K(h) in [1]). This de�nition of456

K(x, h) enables to consider more heterogeneous bathymetry controls.457

It is important to point out that the imposed downstream boundary condition is an unknown of the inverse458

problem. It is constrained with the observed water elevations and infered river bottom slope using a locally uniform459

�ow hypothesis (i.e. Manning equation, cf. section 2.1).460

The cost function j(c) is de�ned as:461

462

j(c) = jobs(c) + γ jreg(c) (7)

where γ > 0 is a weighting coe�cient of the so-called �regularization term� jreg(c). The term jobs(c) measures the463

mis�t between observed and modeled WS elevations such that:464

465

jobs(c) =
1

2
‖(Z(c)− Zobs)‖2O (8)

The norm ‖·‖O = ‖O1/2 ·‖2 is de�ned from an a-priori positive de�nite covariance matrix O. Assuming uncorrelated466

observations O = diag(σZ) with σZ the a-priori observation error on Zobs - σZ = 15cm in this study.467

The modeled WS elevations Z depend on c through the hydrodynamic model (1) and the inverse problem reads468

as469

c∗ = argminc j(c) (9)

This optimal control problem is solved using a Quasi-Newton descent algorithm: the L-BFGS algorithm version470

presented in [62]. The cost gradient ∇j(c) is computed by solving the adjoint model; the latter is obtained by471

automatic di�erentiation using Tapenade software [63]. Detailed know-hows on VDA may be found e.g. in the472

online courses [64, 57].473

To be solved e�ciently this optimization problem needs to be �regularized�. Indeed the friction and the474

bathymetry may trigger indiscernible surface signatures therefore leading to an ill-posed inverse problem; we refer475

e.g. to [59] for the theory of regularization of such inverse problems and to [1] for a discussion focused on the present476

inverse �ow problem.477

Following [1], the optimization problem (9) is regularized as follows. First the regularization term jreg is added478

to the cost function, see (7). We simply set: jreg(c) = 1
2 ‖b”(x)‖22. Therefore this term imposes (as weak constraint)479

the infered bathymetry pro�le b(x) to be an elastic interpolating the values of b at the control points (i.e. a cubic480

spline).481

A speci�city of the present context is the inconsistency between the large observation grid (altimetry points)482

and the �ner model grid. Between the sparse observations points (equivalently the control points), the bathymetry483

pro�le b(x) is reconstructed as a piecewise linear function. It is worth to point out that the resulting reconstruction484

is consistent with the physical analysis presented in [20, 60, 3]. (This study analyses the adequation between the485
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SW model (1) behavior and the WS signature).486

Next and following [65, 66, 1], the following change of control variable is made:487

488

k = B−1/2(c− cprior) (10)

where c is the original control vector, cprior is a prior value of c and B is a covariance matrix. The choice of B is489

crucial in the VDA formulation; its expression is detailed below. After this change of variable the new optimization490

problem reads:491

492

min
k

J(k) with J(k) = j(c) (11)

493

It is easy to show that this leads to the following new optimality condition: B1/2∇j(c) = 0; somehow a494

preconditioned optimality condition. For more details and explanations we refer to [67, 68] and [1] in the present495

inversion context.496

Assuming uncorrelated controls B is de�ned as a block-diagonal matrix:497

498

B =



BQ 0 0

0 Bb 0

0 0 Bα

0 0 0 Bβ


(12)

499

Still following [1], the matrices BQ and Bb are set as the classical second order auto-regressive correlation500

matrices :501

502

(BQ)i,j = (σQ)2 exp

(
−|tj − ti|

∆tQ

)
and (Bb)i,j = (σb)

2 exp

(
−|xj − xi|

Lb

)
(13)

503

The VDA parameters ∆tQ and Lb represent prior hydraulic scales and act as correlation lengths. Given the fre-504

quency (few days) and spatial resolution of observations (200m long �pixels� for SWOT), the low Froude anabranch-505

ing river �ows of interest, adequate values for those parameters are: ∆tQ = 24 h and Lb = 3km km We refer to [36]506

for a thorough analysis of the discharge inference in terms of frequencies and wave lengths and Section 4.1 in the507

present river-observation context. In the present study, the friction parameters applied to deca-kilometric patches508

are assumed to be uncorrelated thus the matrices Bα and Bβ are diagonal:509

510

(Bα)i,i = (σα)2, (Bβ)i,i = (σβ)2 (14)
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511

The scalar values σ� may be viewed as variances and constant values are used in this study: σQ = 3500m³/s,512

σα = 10m1/3.s−1, σβ = 0.5, σb = 1m .513
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