
HAL Id: hal-03012569
https://hal.science/hal-03012569

Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling Refinement of Continuous Behaviors: A
Refinement and Proof Based Approach with Event-B
Guillaume Dupont, Yamine Aït-Ameur, Marc Pantel, Neeraj Kumar Singh

To cite this version:
Guillaume Dupont, Yamine Aït-Ameur, Marc Pantel, Neeraj Kumar Singh. Handling Refinement of
Continuous Behaviors: A Refinement and Proof Based Approach with Event-B. 13th International
Symposium on Theoretical Aspects of Software Engineering - TASE 2019, Jul 2019, Guilin, China.
�10.1109/TASE.2019.00-25�. �hal-03012569�

https://hal.science/hal-03012569
https://hal.archives-ouvertes.fr

Handling Refinement of Continuous Behaviors: A

Proof Based Approach with Event-B

G. Dupont∗, Y. Aït-Ameur∗, M. Pantel∗ and N. K. Singh∗

∗INPT-ENSEEIHT/IRIT, University of Toulouse, France

{guillaume.dupont,yamine,marc.pantel,nsingh}@enseeiht.fr

Abstract—Cyber-physical systems (CPS) are taking a crucial
role in various areas of our society and industry. Yet, because
of their hybrid nature (i.e. the integration of both continuous
and discrete features), their design and verification are not easy
to handle, in particular when they are part of a critical system.
Their certification requires to exhibit a formal argumentation
that formal methods should be able to provide.

This paper addresses the formal development of CPS using
correct-by-construction refinement and proof based approaches.
It relies on the Event-B formal method. In addition to modeling
both the discrete and continuous parts of a CPS, this paper
presents a novel approach in two steps.

First it shows that the generic formal model we have defined,
integrating both discrete and continuous behaviors, can be
instantiated by various kinds of CPS. Fundamentally, continuous
behaviors modeled by differential equations mingle with discrete
transition systems (mode automaton), which model discrete be-
haviors. Here, refinement is used as a decomposition mechanism.

Second, it expands the refinement operation, well mastered
in the discrete world, to cover continuous behaviors. We show
that different levels of abstraction of continuous aspects can be
glued in a refinement chain. The proposed approach has been
completely formalized using Event-B on the Rodin platform and
a case study based on water tanks is used to illustrate it.

Index Terms—hybrid systems, Event-B, proof, refinement

I. INTRODUCTION

The increasing preponderance of computers and automation

in our modern society has led to a new category of sys-

tems called Cyber-Physical Systems or CPS. According to E.

Lee [1], CPS refer to the tight integration and coordination

between computational and physical resources. Conceptually,

a CPS consists of a software component, the controller, which

interacts with a physical environment or plant [1]–[4]. The

software periodically takes into account information on the

plant state and its environment provided by sensors, and

control the plant behavior via orders sent through actuators.

CPS are rapidly gaining a foothold in our everyday life:

from Internet of Things (IoT) to smart energy grids, from

autonomous transportation systems to medical assistants, it

appears that CPS are becoming omnipresent.

The close entanglement of the discrete and continuous

worlds poses important challenges in CPS design and certi-

fication, especially in safety critical systems. A rigorous and

formal modeling framework, based on mathematics and logic,

contribute to take on these challenges.

Context. If the discrete part of a CPS can be formalized

using classical modeling techniques (transition systems, pro-

cess algebra, etc.) well studied in the literature, its continuous

part requires other kinds of modeling. In particular, continuous

behaviors are described using differential equations. Thus, the

formal definition of CPS relies substantially on the formal

definition of these equations, their various natures (linear,

ordinary, first order, etc.) and most of all their properties

(existence of solution, smoothness, boundedness, stability,

etc.). Like for the software part, formal models have been

proposed for the continuous part. The literature in control

theory is rich and provides solid mathematical solutions.

Defining formal methods supporting modeling and offering

reasoning capabilities for both discrete and continuous worlds

is the key issue for rigorous CPS design. It represents the

research question our work is addressing. The literature is full

of frameworks supporting the development of CPS. HyTech

[5] and dReach [6] tackle the problem using model-checking

while Ptolemy [7] uses simulation and modularity to design

so-called reactive systems. Proof and refinement based ap-

proaches also constitute a promising path with KeYmaera [8],

[9], Hybrid Event-B [10] or Coquelicot [11].

Our approach relies on proof and refinement based formal

methods. We have shown in [12], [13] that Event-B [14]

and its Integrated Development Environment (IDE) Rodin

[15] support the design and proof of hybrid systems without

requiring any extension. We devised a generic model that has

been successfully deployed, using refinement, on various case

studies borrowed from the literature [16], [17].

Objective of the paper. However, our approach [12], [13]

mainly focuses on the design, by refinement, of the software

part i.e. the controller assuming the plant is well and thor-

oughly defined. Our objective is to pay the same attention to

the design of the plant by providing a refinement operation

in the continuous part, i.e the plant. Therefore, in this paper,

we extend our approach to the design of the plant. We show

that a plant model, expressed in Event-B, can be produced by

refinement in parallel with the development of the controller.

A continuous refinement relation is defined, allowing one to

enrich the continuous behavior of a CPS while preserving

invariants and safety properties expressed at the abstract level.

Organization of the paper. This paper is organized as

follows. Section II motivates our work and Section III presents

the Event-B modeling framework and the required ingredients

for modeling hybrid systems. The basic concepts of the hybrid

system modeling in Event-B we have set up are summarized in

Section IV. A refinement strategy for abstract system plants is

proposed in Section V. Section VI describes the development

of the selected case study and Section VIII provides an

assessment and discusses generic modeling concepts and proof

details. Section IX presents related work. Finally, Section X

concludes the paper and discusses a future research agenda.

II. MOTIVATION

Refinement of discrete models is a well-established concept.

It has been extensively studied and the literature is full of

seminal studies on refinement [18]–[22]. It addressed both

centralized and distributed systems.

This notion is at the heart of the Event-B method. It

allows developers to gradually design a system by adding

either static (data refinement) or behavioral (events refinement

by simulation) details while moving from an abstract to a

concrete model. In addition to the preservation of the invariants

defined at the abstract level by the refinement relation, Event-B

supports the definition of new invariants in the refined model.

The notion of refinement has been extended to continuous

behaviors. Simulation relations and temporal logics over reals

have been defined in [23]–[25]. However, compared to discrete

models, few modeling frameworks allow to reason on the

refinement of continuous behaviors. One can mention [26]–

[29].

Similarly to the refinement relation defined for discrete

models, i.e. models with discrete state transitions (discrete time

jumps), we claim that 1) it is possible to define a refinement

relation for continuous models (models with continuous state

transitions and continuous time jumps) for Event-B without

requiring any extension, and 2) that it can be used for

designing a complex system by a sequence of continuous

refinements of an abstract plant leading to a concrete plant.

Moreover, we believe that integrating, in a single frame-

work, the refinement relation inherent to discrete models

and its continuous counterpart greatly enhances the use of

refinement-based approaches for the development of hybrid

systems and helps the formal verification of controllers for

such systems.

In the remaining part of this paper, we show that the

approach we developed in [12], makes it possible to define

a refinement relation to refine an abstract continuous model

by another one. Such a refinement is formalized in Event-B.

III. EVENT-B: A REFINEMENT AND PROOF BASED

APPROACH

Event-B [14] is a correct-by-construction formal method

to design complex systems. The design process consists of

a series of refinement of an abstract model (specification)

leading to the final concrete model. Refinement progressively

adds design decisions to the system.

A. Overview

a) Modeling: Event-B Machines.: The Event-B language

uses set theory and first order logic as basic notations. Two

main components are defined to build system models: context

and machine (See Table I). A context is the static part of

a model. It sets up all the definitions, axioms and theorems

needed to describe the manipulated concepts. Carrier sets

s, constants c, axioms A(s, c) and theorems Tc(s, c) are

introduced.

A machine describes the dynamic part of a model as a

transition system. A set of guarded events modifying a set

of variables (state) represents the core concepts of a machine.

Variables v, invariants I(s, c, v), theorems Tm(s, c, v), vari-

ants V (s, c, v) and events evt (possibly guarded G) are defined

in a machine.

Invariants and theorems formalize system properties to

check the correctness of the formalized behavior while vari-

ants define convergence properties (reachability).
CONTEXT MACHINE

ctxt_id_2 machine_id_2

EXTENDS REFINES

ctxt_id_1 machine_id_1

SETS SEES

s ctxt_id_2

CONSTANTS VARIABLES

c v

AXIOMS INVARIANTS

A(s, c) I(s, c, v)
THEOREMS THEOREMS

Tc(s, c) Tm(s, c, v)
END VARIANT

V (s, c, v)
EVENTS

Event evt

any x

where G(s, c, v, x)
then

v : |BA(s, c, v, x, v′)
end

END

Table I – Model structure

b) Refinement

of Event-B models.:

Refinement decomposes

a model (thus a sate-

transitions system)

into another transition

system with more design

decisions while moving

from an abstract level

to a less abstract one.

A system is gradually

designed (modeled) by

introducing properties

(functionality, safety, reachability) at various refinement

levels. Event guards may be strengthened and new variables

and events may be introduced in order to model more concrete

behavior of the system. Refinements preserve the relation

between the refining model and the refined one. Abstract

and concrete state variables are linked by introducing gluing

invariants.

c) Proof Obligations (PO) and Property Verification :

To establish the correctness of an Event-B model (machine

or refinement) the POs (automatically generated from the

calculus of substitutions) need to be proved.

(1) Theorems A(s, c) ⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v) ⇒ Tm(s, c, v)

(2) Invariant A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v′)
preservation ⇒ I(s, c, v′)
(3) Event A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x)
feasibility ⇒ ∃v′.BA(s, c, v, x, v′)
(4) Variant A(s, c) ∧ I(s, c, v) ∧ G(s, c, v, x) ∧ BA(s, c, v, x, v′)
progress ⇒ V (s, c, v′) < V (s, c, v)

Table II – Proof obligations

The main POs are listed in Table II. The prime notation,

allowing to define Before-After Predicates (BAP), denotes

the value of a variable after an event is triggered. POs of

Table II require to demonstrate that theorems hold (1), each

event preserves invariants (Induction (2)), each event can be

triggered (feasibility (3)) and variant decreasing (convergence

(4)).

Regarding refinement, two more relevant POs need to be

discharged. First, the simulation PO to assert that the refined

(concrete) event simulates the corresponding abstract event.

Second, the refined events may strengthen the abstract guards

to specify concrete conditions. More details on proof obliga-

tions can be found in [14].

A proof system, with a set of proof rules on the Event-B

concepts, is associated with Event-B.

The Rodin platform [15] is an open source Eclipse-based

tool for engineering Event-B models. It offers resources for

model edition, project management, refinement and proof,

model checking, model animation and code generation. Sev-

eral provers, like SMT solvers, are plugged to Rodin.

B. A Mathematical Extension for Event-B

Event-B is based on first order logic and basic set theory.

In addition to that, it "natively" supports integer numbers and

basic arithmetic. However, the handling of hybrid systems

and thus continuous behaviors requires an access to various

mathematical objects and properties, not natively available in

Event-B.

An Event-B extension to support externally defined math-

ematical theories has been proposed in [30]. It offers the

capability to introduce new datatypes through the definition of

new types, sets operators, theorems and even new rewrite and

inference rules all packed in so-called theories. This extension

has been developed as a plug-in Rodin [31].

C. A domain theory for hybrid systems in Event-B

To model hybrid systems, the mathematical concepts related

to the description of continuous behaviors that are not available

in Event-B are formalized in a theory. We defined several

operators and sets that allows us to make use of core concepts

in control theory such as (ordinary) differential equations,

solvability and so on. A theory for differential equations has

hence been defined (see Figure 1).

THEORY

TYPE PARAMETERS E , F

DATA TYPES

DE (F)

CONSTRUCTORS

ode (fun :P (R×F×F) , i n i t i a l : F , i n i t i a l A r g :R)

OPERATORS

solutionOf < p r e d i c a t e > (DR: P(R) , e t a : DR → F , eq : DE(F))

CauchyLipschitzCondition < p r e d i c a t e > (DR: P(R) ,DF : P (F) , eq : DE(F))

Solvable < p r e d i c a t e > (DR: P(R) , eq : DE(F))

d i r e c t d e f i n i t i o n

∃ x · x ∈ (DR → F) ∧ s o l u t i o n O f (DR, x , eq)

. . .

END

Fig. 1 – Differential Equation Theory Snippet

In particular, we have defined:

• DE(S) the set (type) of Differential Equations with

solutions in S (space set of the differential equation).

• solutionOf(D,η,eq) a predicate stating that the function

η ∈ D → S is a solution of eq ∈ DE(S).
• Solvable(D,eq) a predicate stating that equation eq ∈

DE(S) has a solution on domain D.

• ode(F ,η0,t0) defines the ODE1 η̇(t) = F (t, η(t)) with

initial condition η(t0) = η0.

Other expressions and predicates are defined

(FlowEquation , FlowODE) in this theory. It should be

noted that these definitions are algebraic and based on

datatypes.

1Ordinary Differential Equation

IV. MODELING HYBRID SYSTEMS WITH EVENT-B: OUR

APPROACH

Ctrl Plant

sense

actuate

environmentcommand

Fig. 2 – Generic Hybrid System Representation

One of the most common architectures found in CPSs (see

Figure 2) is a discrete software controller which interacts

with a plant and its physical environment (continuous physical

phenomenon) in a closed-loop schema. Input from sensors

is processed and output is generated and communicated to

actuators [32]. Commands from a user or another controller

may also be addressed to the controller.

We are concerned with the verification of the correctness of

such discrete controllers, which requires correct integration of

discrete and continuous models. Correctness should arise from

a design process based on sound abstractions and models of

the relevant physical laws.

A. An Approach to Hybrid System Modeling in Refinement-

based Methods

In [12], we presented a generic approach to hybrid system

modeling. This approach is inspired by the work of R. Back on

continuous action systems [26], Platzer in [9] and R. Banach

in [10], where both continuous and discrete behaviors are

integrated in a single model definition.

However, instead of defining a new domain specific model-

ing for hybrid systems requiring the development of a new

specific framework, our approach relies on the use of the

core Event-B method and the theory plug-in to model domain-

specific features and manipulate concepts relative to contin-

uous behaviors modeling. Thus, Event-B machines integrate

both discrete and continuous events.

Our approach relies on the definition of a generic model,

formalizing the architecture pattern of Figure 2. It is modeled

as a generic machine that ought to be instantiated for specific

hybrid systems thanks to refinement.

B. The generic Event-B model

A machine System with 4 types of events is defined.

MACHINE System

VARIABLES t , xs , xp
INVARIANTS

i nv1 : t ∈ R
+

i nv2 : xs ∈ STATES

inv3 : xp ∈ R
+ → S

EVENTS

INITIALISATION

THEN

a c t 1 : t := 0
a c t 2 : xs :∈ STATES

a c t 3 : xp :∈ R
+ → S

END

Progress

THEN

a c t 1 : t :| t′ ∈ R
+ ∧ t < t′

END

a) Controller/plant state:

Time (t initially 0) is a read-

only, ever-progressing (Progress

event) variable. The system de-

fines 2 state variables: a contin-

uous (plant) state xp, function of

time, and a discrete (controller)

state, xs valued in the abstract

set STATES. They are initialized

with a non-deterministic assign-

ment operator :∈, refined later at
instantiation.

Transition

ANY s

WHERE

grd1 : s ∈ P1 (STATES)

THEN

a c t 1 : xs :∈ s

END

Sense

ANY s , p

WHERE

grd1 : s ∈ P1 (STATES)

grd2 : p ∈ P (STATES×R × S)

g rd3 : (xs 7→ t 7→ xp(t)) ∈ p

THEN

a c t 1 : xs :∈ s

END

b) Transition Events: They

symbolize changes in the con-

troller induced by its mode au-

tomaton. Namely, they model in-

ternal decisions or user com-

mands.

c) Sense Events: They

model changes in the controller

induced by changes in the plant.

They are triggered by the reading (sensing) of values from a

sensor.

Both Transition and Sense events are instantaneous.

Behave

ANY eq

WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t,+∞[, eq)

THEN

a c t 1 :

xp :| x′
p ∈ R

+ → S∧

[0, t[⊳ x′
p = [0, t[⊳ xp∧

solutionOf([t,+∞[, [t,+∞[⊳ x′
p, eq)

END

Actuate

ANY eq , s

WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t,+∞[, eq)
grd3 : s ⊆ STATES

grd4 : xs ∈ s

THEN

a c t 1 :

xp :| x′
p ∈ R

+ → S∧

[0, t[⊳ x′
p = [0, t[⊳ xp∧

solutionOf([t,+∞[, [t,+∞[⊳ x′
p, eq)

END

d) Behave Events:

They express the possible

spurious changes or per-

turbations in the plant it-

self. Those changes are

a result of the effects of

the environment on the

plant: wind, rain, temper-

ature, etc.

e) Actuate Events:

They represent the action

of the controller on the

plant, generally via actua-

tors.

These two types of event are not instantaneous: they last

some time. They also enforce the fundamental property of

past preservation for continuous behaviors: at time t, the past

of the continuous state ([0, t[⊳x′
p) remains unchanged, while

its future ([t,+∞[⊳x′
p) is modified, becoming the solution of

the given differential equation eq. This particular construct is

a specific assignment operator in the continuous world.

f) Instantiation by Refinement: Concrete hybrid systems

designs are synthesized via the instantiation of this generic

model through refinement. The set STATES is valued to

contain the various states of the controller (states of a mode

automaton), S is set to the space where the system evolves

(Rn, n ∈ N). Last, witnesses are given for xp and eq (dif-

ferential equation modeling the plant). For example, the plant

may be modelled by an ordinary differential equation and xp

is valued in a real vector space (typically, Rn).

C. About semantics

Discrete events are timeless while continuous ones have

a duration. After initialization, continuous events run con-

tinuously unless a discrete instantaneous (timeless) event is

enabled. In this case, that discrete event is preemptive. This

protocol asserts that when the conditions are met, the con-

troller is able to trigger control actions.

V. REFINING CONTINUOUS SYSTEMS

The objective of defining a refinement relation on the con-

tinuous part of a CPS model is to ease the design of physical

behavior by introducing design decisions progressively. The

verification of the correctness of the development is dissemi-

nated along the refinement chain. To set up such a relation in

Event-B, we need to address 1) data refinement for continuous

state variables, 2) invariants and gluing invariants linking

abstract and continuous state variables and 3) continuous event

refinement.

a) Data refinement: The idea behind refinement of con-

tinuous state variables in Event-B is similar to data refinement

for discrete state variables. The approach consists of re-

defining, in a refined machine, the abstract state variables

of the abstract machine into concrete state variables. This

refinement shall produce new functions over time for the

continuous state. For example, an abstract tank volume V (t)
may be refined with a specific formula corresponding to a

concrete tank shape (e.g. πR2 · h(t) for a cylinder of radius

R and height h).

b) Gluing, local and global invariants: Refinement shall

preserve the behavior and correctness of the abstract model.

Gluing invariants are defined for this purpose. They link

abstract and concrete state variables. In our tank example,

a safety envelope (safety requirement) for the volume V (t)
of the plant such as V (t) ∈ [Vlow..Vhigh] may be defined.

Invariants may also be defined on derivatives (e.g. the variation

of the volume shall be smooth and thus bounded

∣

∣

∣
V̇ (t)

∣

∣

∣
<

∆Vmax). Such invariants are called global invariants, at the

plant level. When this abstract plant is refined by the cylinder

(introduced above), then the invariant V (t) = πR2 · h(t) ∧
h(t) ∈ [0..Hmax], where Hmax is the maximum height of the

cylinder, defines a gluing invariant for the continuous part of

the hybrid system.

Additional invariants may be introduced to assert feasibility

properties on the continuous part; in other words, to ensure

that the concrete plants are correct realizations of the abstract

one. Again, for our example, the cylinder (concrete plant) shall

satisfy πR2 ·Hmax ≥ Vmax. Other invariants, not expressible

at the abstract level, may be added. These invariants are

examples of the notion of local invariants.

c) Event refinement: The refinement of continuous events

is close to the one of discrete events. It is based on a simulation

relationship defined on states continuously observed (contin-

uous simulation as defined in [23]–[25]). One may consider

that an abstract plant is refined by several plants (e.g. a set

of cylinders) whose behaviors are described by one or more

continuous events. This situation is depicted by the case study

defined in next section.

VI. CASE STUDY

Fig. 3 – Abstract Tank

We study the control of a liquid tank

of arbitrary size and shape connected

to two pumps, one to fill the tank with

liquid and the other one drain the tank

(see Figure 3). The content of the tank is

physically bounded by its capacity and

is between 0 and Vmax.

A controller actuates the input and

output pumps and senses the liquid vol-

ume level of the tank through a sensor.

Additional requirements are introduced. First, the volume of

liquid in the tank shall fluctuate between Vlow and Vhigh.

Indeed, when

the volume goes below Vlow, the controller shall activate

the input pump to fill it up. Conversely, if the volume goes

beyond Vhigh the controller shall activate the output pump to

drain it down. Second, because of a possible fragility of the

tank, the volume variation in time shall be bounded to avoid

excessive turmoil.

Here, continuous refinement has multiple interests:

• the behavior of the pumps is not yet specified. They could

be simple open-close systems or more subtle continuous

systems;

• the shape of the tank (or even tanks) nor the way we get

the volume (which is hardly ever given as is) are not yet

specified as well.

Next section shows how continuous refinement is set up on

the defined case study.

VII. CONTINUOUS REFINEMENT: APPLICATION TO THE

CASE STUDY

To position the case study in the context of our generic

approach [12], an overview of our development is given by

describing the controller and the continuous parts.

A. Overview of the Development

The controller operates in 4 modes

• Stable: no pump is active, the volume inside the tank

does not change.

• Normal: no particular control on the pumps, the volume

inside the tank changes in an uncontrolled way.

• Emptying: pumps are controlled so that the volume in

the tank decreases.

• Filling: pumps are controlled so that the volume in the

tank increases.

Every state associated with each mode is reachable from

any other state through a Transition event. Additionally, the

controller automatically goes into Emptying mode when the

tank’s volume reaches Vhigh and into Filling mode when it

reaches Vlow. There are thus two Sense events able to detect

when the volume is too high or too low.

Volume V (t), is the continuous state being controlled. It is

physically bounded between 0 and Vmax (depending on the

size of the tank) and shall behave such that, for every t,

• it remains within the required bounds:

V (t) ∈ [Vlow, Vhigh] (SAF1)

• its variation is bounded by ∆Vmax:

|V̇ (t)| < ∆Vmax (SAF2)

B. Refinement Strategy

A first model of the abstract tank instantiating the generic

approach is produced as a first refinement. It mainly defines

the controller events (transition and sensing) as well as the

invariants on the volume V . A second refinement, a continuous

one, precises which type of differential equation is used to

model the volume’s behavior. Finally, a third (continuous)

refinement concretizes the abstract tank as two cylindrical

tanks with height as controlled (continuous state) variable.

C. First Refinement: Abstract Tank Model

The abstract tank system instantiates the generic model.

It refines sensing and transition events. It selects the right

differential equation in the corresponding Actuate event (in

Emptying or Filling modes).

CONTEXT WaterTank0Ctx EXTENDS SystemCx

CONSTANTS

Emptying , F i l l i n g , S t a b l e , Normal ,

Vmax , Vhigh , . . .

∆Vmax , . . .

AXIOMS

axm1 : p a r t i t i o n (STATES , { Emptying } ,{ F i l l i n g } ,{

S t a b l e } ,{ Normal })

axm2 . . . : Vmax ∈ R , Vmax > 0 , . . .

MACHINE WaterTank0 REFINES System

SEES WaterTank0Ctx

VARIABLES t , xs , V

INVARIANTS

i nv1 : V ∈ R
+ → S

i nv2 : xp = V

i nv3 : ∀t · t ∈ R
+ ⇒ V (t) ∈

[

Vlow, Vhigh

]

i nv4 : ∀t · t ∈ R
+ ⇒

∣

∣

∣
V̇ (t)

∣

∣

∣
< ∆Vmax

The associated

Event-B context

defines the needed

constants as well

as a few axioms on

them. It also defines

the system’s modes.

The Event-B machine

refines the generic

System machine. It

defines time (t) as well

as the discrete and continuous states (xs, V). inv2 links

the abstract and concrete states (gluing invariant). inv3 and

inv4 represent global safety invariants corresponding (resp.)

to (SAF1) and (SAF2).

INITIALISATION REFINES INITIALISATION

WITH x′
p = V ′

THEN

a c t 1 : t := 0
a c t 2 :

V :| V ∈ R
+ → S∧

solutionOf(R+, V,NoFlow(V0))
a c t 3 : xs := s t a b l e

Initialization enforces the

system to be in Stable mode

(i.e.: no volume variation) at

the beginning. To that extent,

we set V to be the solution

of NoFlow(V0), a differential

equation that yields a constant solution of value V0.

c t r l _ s e n s e _ t o o _ h i g h

REFINES Sense

WHERE V (t) ≥ Vhigh
WITH

s = { Emptying }

p = STATES × R
+×

{v∗ | v∗ ≥ Vhigh}

THEN

a c t 1 : xs := Emptying

END

c t r l _ t r a n s i t i o n _ e m p t y i n g

REFINES T r a n s i t i o n

WHERE V (t) > Vlow
WITH s = { Emptying }

THEN

a c t 1 : xs := Emptying

END

Transition and Sense events fol-

low the pattern given in the adjacent

listing. Transitions’ guards enforce

a safe behavior whenever changing

mode (e.g. we can empty the tank

if the volume is above Vlow). Con-

versely, Sense events trigger when-

ever the system’s state needs correc-

tion (e.g. when the volume exceeds

Vhigh).

c t r l _ a c t u a t e _ e m p t y i n g REFINES Ac tua t e

ANY eq

WHERE

grd1 : eq ∈ DE(S)
grd2 : Solvable([t,+∞[, eq)
grd3 : flowEquation(Emptying, [t,+∞[, eq)
grd4 : xs = Emptying

WITH x′
p = V ′ , s ={ Emptying }

THEN

a c t 1 :

V :|

V ′ ∈ R
+ → S∧

[0, t[⊳ V ′ = [0, t[⊳ V ∧

solutionOf([t,+∞[, [t,+∞[⊳ V ′, eq)
END

Finally, the Actuate

event is simply a rewrite

of the abstract one

replacing xp by V . We

also constraints equation

eq to enforce a category

of behavior; that is, to

constraint the shape of

the equation’s solutions.

The constraints are en-

capsulated in the flowEquation predicate, which states that

given a solution V ∗ to eq: 1) the variation of V ∗ matches

the current state (e.g. when in Emptying mode V ∗ should

decrease) and 2) the value of V ∗ ranges between 0 and Vmax,

for physical reasons.

D. Second Refinement: ODE Refinement

The second refinement constraints further the equation mod-

eling the system, forcing it to be an ODE. The whole controller

part remains unchanged (as well as the system’s variables).

Only the continuous part of Actuate is refined (continuous

event refinement).

MACHINE WaterTank1 REFINES WaterTank0

. . .

c t r l _ a c t u a t e _ e m p t y i n g

REFINES c t r l _ a c t u a t e _ e m p t y i n g

ANY Φ
WHERE

grd1 : Φ ∈ R
+ × S → S

grd2 : flowODE(Emptying, [t,+∞[,Φ)
grd3 : Solvable([t,+∞[, ode(Φ, V (t), t))
grd4 : xs = Emptying

WITH eq = ode(Φ, V (t), t)
THEN

a c t 1 :

V :|

V ′ ∈ R
+ → S∧

[0, t[⊳ V ′ = [0, t[⊳ V ∧

solutionOf([t,+∞[, [t,+∞[⊳ V ′,
ode(Φ, V (t), t)

)
END

The parameter eq dis-

appears in favour of Φ,

the function of the ODE

of the system (V̇ (t) =
Φ(t, V (t))). Just like for

eq, we impose constraints

on this function so that

the behavior it describes

matches the requirement

of the system. These con-

straints are encapsulated in

the flowODE predicate de-

fined in the continuous concepts theory.

E. Third Refinement: Dual-Tank Concrete Plant

Fig. 4 – Diagram of the New System

1) Specification:

In this refinement, the

abstract tank is refined

by two cylinder-shaped

tanks. The tanks have a

(fixed) circular section

of area πR2
1 (resp.)

πR2
2, and the controller

does not have access to

the volume directly, but

it can sense the height

of liquid in each tanks

(h1 and h2). Each tank i is equipped with an input [Ini]

and output pump [Outi] that can be either activated [= 1]

or deactivated [= 0] (discrete behavior). In active mode, the

input pump for Tank 1 (resp. Tank 2) has a flow of δ1in (resp.

δ2in), the output pump for Tank 1 (resp. Tank 2) has a flow of

δ1out (resp. δ2out). The tanks are physically independent and

controlled by their own differential equations:

ḣ1(t) = In1 · δ
1
in −Out1 · δ

1
out = ∆1(In1, Out1)

and ḣ2(t) = In2 · δ
2
in −Out2 · δ

2
out = ∆2(In2, Out2)

(1)

However, these two pumps are controlled by a single controller

(one controller for many plants). As a matter of simplification,

we impose that in Emptying mode every output pump is

running and no input pump is and vice versa for Filling mode.

In Stable mode no pump is active and in Normal mode there

is no constraint on the pumps. For readability reasons, we

denote by ∆i(Ini, Outi) the function for the ODE of tank

i with pump state Ini and Outi. Once the concrete plant is

defined, the abstract volume V is refined (data refinement) by

the linear combination

V = πR2
1 · h1 + πR2

2 · h2 (2)

Moreover, as the tanks have different shapes, they have their

own H1max and H2max, and we can write Vmax = πR2
1 ·

H1max + πR2
2 ·H2max.

MACHINE

WaterTank_DualTank_Cyl inder

REFINES WaterTank1

. . .

VARIABLES t , xs , h1 , h2
INVARIANTS

i nv1 : h1 ∈ R
+ → S

i nv2 : h2 ∈ R
+ → S

i nv3 : V = πR2
1 · h1 + πR2

2 · h2

2) Modeling: This machine re-

fines the previous one. It sees a

specific context (not detailed here

for space reasons) with the def-

initions and axioms of the vari-

ous constants used throughout the

model (R1, H1max, H10, etc.).

The header also declares the new state variables of the

system: V is replaced by h1 and h2 whose types are enforced

in inv1 and inv2. inv3 gives the gluing invariant given in

Equation 2.

INITIALISATION REFINES INITIALISATION

WITH V ′ = πR2
1 · h′

1 + πR2
2 · h′

2
THEN

a c t 1 : t := 0
a c t 2 :

h1, h2 :|

h′
1 ∈ R

+ → S ∧ h′
2 ∈ R

+ → S∧

solutionOf(R+, h′
1,NoFlow(H10))∧

solutionOf(R+, h′
2,NoFlow(H20))

a c t 3 : xs := s t a b l e

Initialization sets the

system in Stable mode,

i.e. no pump is active and

neither h1 nor h2 varies.

The witness for V ′ is

directly derived from the

gluing invariant.

c t r l _ s e n s e _ t o o _ h i g h REFINES

c t r l _ s e n s e _ t o o _ h i g h

WHERE πR2
1 · h1(t) + πR2

2 · h2(t) ≥ Vhigh
THEN

a c t 1 : xs := Emptying

END

As V is no more ap-

pearing in this refinement,

the guards of Transition

and Sense events must be

rewritten. We just need to inject the gluing invariant in the

formula to express V using h1 and h2.

c t r l _ a c t u a t e _ e m p t y i n g REFINES c t r l _ a c t u a t e _ e m p t y i n g

WHERE xs = Emptying

WITH V ′ : V ′ = πR2
1 · h′

1 + πR2
2 · h′

2
Φ : Φ ∈ R

+ × S → S∧
flowODE(Emptying, [t,+∞[,Φ)∧
Solvable([t,+∞[, ode(Φ, V (t), t))∧
∀h∗

1 , h∗
2 ·

h∗
1 ∈ [t,+∞[→ S ∧ h∗

2 ∈ [t,+∞[→ S∧

solutionOf
(

[t,+∞[, h∗
1 , ode(∆1(0, 1), h1(t), t)

)

∧

solutionOf
(

[t,+∞[, h∗
2 , ode(∆2(0, 1), h2(t), t)

)

⇒ solutionOf
(

[t,+∞[, πR2
1 · h∗

1 + πR2
2 · h∗

2 , ode(Φ, V (t), t)
)

The Actuate event is refined using a witness for V ′ derived

from the gluing invariant. But the most important part in this

refined event is the witness provided for Φ. Indeed, a direct

relation between Φ and the ODEs characterizing h1 and h2

is not available, so the witness for Φ cannot be of the form

Φ = It has to be a more complex predicate that ensures

that

1) Φ does not violate the invariants and guards of the

abstract event;

2) given h∗
1 solution of the ODE characterized by ∆1(0, 1)

and h∗
2 solution of the ODE characterized by ∆2(0, 1)

(given in Equation 1), then

V ∗ = πR2
1 · h

∗

1 + πR2
2 · h

∗

2

must be a solution of the ODE characterized by Φ

The second point is fundamental for continuous refinement. A

continuous refinement rule is defined. An equation EC refines

EA if any solution of EC is also a solution of EA.

THEN

a c t 1 :

h1, h2 :|

h′
1 ∈ R

+ → S ∧ h′
2 ∈ R

+ → S∧

[0, t[⊳h′
1 = [0, t[⊳h1 ∧ solutionOf

(

[t,+∞[, h′
1, ode(∆1(0, 1), h1(t), t)

)

∧

[0, t[⊳h′
2 = [0, t[⊳h2 ∧ solutionOf

(

[t,+∞[, h′
2, ode(∆2(0, 1), h2(t), t)

)

END

The remaining part of the Actuate event is built following the

abstract event. Past is preserved for h1 and h2 and their future

is set as a solution of their respective ODE.

VIII. ASSESSMENT

The models for the case study presented in Section VI have

been developed with Rodin. They are available at https://

www.irit.fr/~Guillaume.Dupont/models.php.

Below, some technical details on the resulting proof effort

for these models are given. We also discuss the possible use

of the refinement chain we defined.

A. Proofs

The generic model yields 13 proof obligations that are

easily discharged. The abstract tank (WaterTank0) gen-

erates 134 proof obligations, most of which are actually

quite similar as the events are akin. Those proofs are not

really complicated and often rely on the use of very generic

theorems. The ODE-based tank (WaterTank1) produces

132 proof obligations, mainly refinement related (i.e. sim-

ulation, witness and guard strengthening). Those POs lead

to longer proofs, often studded with well-definedness sub-

goals, not very complicated but very redundant. Last, the con-

crete model (WaterTank_DualTank_Cylinder) yields

94 proof obligations, again most of them being refinement

related. They are substantially harder to discharge; especially

because of the witnesses’ form. Moreover, because not all the

Rodin automatic provers are interfaced with the theory plug-in,

our extensive use of it the heavily hinders proof automation.

Thus, a lot of proofs have to be done completely manually.

B. Refinement Strategy

The refinement chain proposed is intentionally very generic.

It can easily be extended both vertically (i.e. enriching the

system’s behavior) and horizontally (i.e. adding new types

of behaviors). For example, it would be relevant to add a

refinement level after WaterTank1 that refines the machine

with two abstract tanks, and then later refine this machine

with cylinder-shaped containers associated with each abstract

tank. Similarly, it is possible to refine WaterTank1 or

WaterTank0 with a single tank, three tanks, n tanks, and

so on without substantial increase of the proof effort.

Lastly, the situation we presented sets up a single controller

and many plants. Other architecture patterns can be handled

by our approach. Indeed, it is possible to refine the system

differently so as to design a more complex system where

many controllers control many plants. This kind of scheme,

distributed and autonomous, is very recurring in the domain

Fig. 5 – Example of Many Controller-Many Plants System

of cyber-physical systems. They do however raise other types

of challenges, especially when it comes to ensure the conser-

vation of global invariants.

IX. RELATED WORK

Many approaches for the verification of CPS rely on

• model checking, mainly to study reachability problems,

like dReach, Phaver, etc. studying hybrid systems whose

plant behaviors are modelled using different types of

differential equations (first/second order, linear/non linear

etc.)

• static analysis of programs based on abstract interpre-

tation. These approaches consist in building safety en-

velopes characterizing a safe behaviour of the modelled

hybrid system.

• KeYmaera based at program level using a proof based

approach grounded on dynamic logic for hybrid programs

• Coq and Coquelicquot based code analysis

All the proof-based approaches we have reviewed above

use theories of reals. These theories support the definition

of relevant properties like continuity and differentiation fea-

tures or invariants to characterize real variables regions or to

describe Taylor series. The approaches of Platzer [8], [16],

Banach [10] and Boldo [11] support the explicit definition

of differential equations. Time is implicitly considered in

these approaches through these differential equations although

KeYmaera supports explicit time definition using a differential

equation of the form t′ = cst. [11] deals with C programs

using a suite of proof tools focusing on the implementation

of ODE/PDE while KeYmaera [16] is deployed on hybrid

programs that provide an abstract model of a hybrid system

in a closed-loop modeling approach where ODEs are proved

symbolically. Observe that there is no bibliographic reference

between the approaches of [11] and of [16]. In [10], a similar

approach to [8] is adopted. The added value of this approach is

the use of refinement to define a step-wise formal development

preserving the invariants in the different refinement levels. But,

up to now, there is no tool supporting the approach.

The approaches of [33] and [34] use Event-B and the

Rodin [15] platform to model hybrid systems in a closed-

loop model. Time is explicitly modelled using a specific state

variable. The authors consider continuous functions and they

define discrete and continuous transitions preserving invariants

characterizing the correct behaviour of the described hybrid

system. Refinement proved itself useful for the stepwise design

of a hybrid system.

X. CONCLUSION

This paper addressed the problem of refining the continuous

part of a CPS. We have proposed refinement relations and their

proof obligations within Event-B. The concept of refinement,

a well-known, powerful technique widely used in program

development and certification, has been defined to handle

continuous behaviors. We have shown that both discrete and

continuous refinements can be deployed in a single integrated

development. We then successfully used this principle to ad-

dress a complete case study, in which an abstract specification

for the plant has been continuously refined in two ways.

This case study demonstrates further the interest of the

generic approach defined in [12] while showing a possible

use of continuous refinement. It also lays out a path for other

type of refinement that we plan to explore in the future. One

of the promising research directions is to define a framework

handling different formal generic CPS architecture patterns

(single/many controllers and single/many plants). Discretiza-

tion issues are also envisioned in order to offer discrete

controllers synthesis capabilities.

ACKNOWLEDGEMENT

The authors thanks R. Banach for the fruitful discussions

on modelling hybrid systems.

REFERENCES

[1] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems - A

Cyber-Physical Systems Approach, 1st ed. LeeSeshia.org, 2014.
[2] E. A. Lee, “Constructive models of discrete and continuous physical

phenomena,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-15, Feb 2014.

[3] ——, “The past, present and future of cyber-physical systems: A focus
on models,” Sensors, vol. 15, no. 3, pp. 4837–4869, 2015.

[4] I. Akkaya, P. Derler, S. Emoto, and E. A. Lee, “Systems engineering
for industrial cyber–physical systems using aspects,” Proceedings of the

IEEE, vol. 104, no. 5, pp. 997–1012, May 2016.
[5] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A model checker

for hybrid systems,” in Computer Aided Verification, O. Grumberg, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 460–463.

[6] S. Kong, S. Gao, W. Chen, and E. Clarke, “dreach: δ-reachability analy-
sis for hybrid systems,” in Tools and Algorithms for the Construction and

Analysis of Systems, C. Baier and C. Tinelli, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 200–205.

[7] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogenous systems,” Int.

Journal in Computer Simulation, vol. 4, no. 2, 1994.
[8] A. Platzer, “Differential dynamic logic for hybrid systems.” J. Autom.

Reas., vol. 41, no. 2, pp. 143–189, 2008.
[9] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for

hybrid systems.” in IJCAR, ser. LNCS, A. Armando, P. Baumgartner,
and G. Dowek, Eds., vol. 5195. Springer, 2008, pp. 171–178.

[10] R. Banach, M. Butler, S. Qin, N. Verma, and H. Zhu, “Core Hybrid
Event-B I: Single Hybrid Event-B machines,” Science of Computer

Programming, 2015.
[11] S. Boldo, F. Clément, J.-C. Filliâtre, M. Mayero, G. Melquiond, and

P. Weis, “Trusting computations: A mechanized proof from partial
differential equations to actual program,” Computers & Mathematics

with Applications, vol. 68, no. 3, pp. 325–352, 2014.
[12] G. Dupont, Y. Aït-Ameur, M. Pantel, and N. K. Singh, “Proof-based

approach to hybrid systems development: Dynamic logic and event-b,”
in Abstract State Machines, Alloy, B, TLA, VDM, and Z, vol. LNCS
10817, 2018, pp. 155–170.

[13] G. Dupont, Y. A. Ameur, M. Pantel, and N. K. Singh, “Hybrid systems
and event-b: A formal approach to signalised left-turn assist,” in New

Trends in Model and Data Engineering - MEDI 2018 International

Workshops, IWCFS, REMEDY,, ser. Communications in Computer and
Information Science, vol. 929. Springer, 2018, pp. 153–158.

[14] J.-R. Abrial, Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[15] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in Event-
B,” International Journal on Software Tools for Technology Transfer,
vol. 12, no. 6, pp. 447–466, 2010.

[16] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, “How to
model and prove hybrid systems with keymaera: a tutorial on safety,”
International Journal on Software Tools for Technology Transfer, vol. 18,
no. 1, pp. 67–91, Feb 2016.

[17] N. Aréchiga, S. M. Loos, A. Platzer, and B. H. Krogh, “Using theorem
provers to guarantee closed-loop system properties,” in 2012 American

Control Conference (ACC), June 2012, pp. 3573–3580.
[18] J. Abrial, S. A. Schuman, and B. Meyer, “Specification language,” in

On the Construction of Programs, 1980, pp. 343–410.
[19] R. J. R. Back and K. Sere, “Stepwise refinement of action systems,” in

Mathematics of Program Construction, J. L. A. van de Snepscheut, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 115–138.

[20] D. Gries, “Data refinement and the transform,” in Program Design

Calculi, Proceedings of the NATO Advanced Study Institute on Program

Design Calculi, Marktoberdorf, Germany, July 28 - August 9, 1992.,
1992, pp. 93–119.

[21] C. Morgan, Programming from specifications. Prentice Hall, 1994.
[22] H. Jifeng and T. Hoare, “Equating bisimulation with refinement,” Tech-

nical Report 282, UNU-IIST, 2003.
[23] M. Reynolds, “Continuous temporal models,” in AI 2001: Advances

in Artificial Intelligence, 14th Australian Joint Conference on Artificial

Intelligence, ser. LNCS, M. Stumptner, D. Corbett, and M. J. Brooks,
Eds., vol. 2256. Springer, 2001, pp. 414–425.

[24] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[25] H. Lin, “Mission accomplished: An introduction to formal methods in
mobile robot motion planning and control,” Unmanned Systems, vol. 2,
no. 2, pp. 201–1 131 652, 2014.

[26] R.-J. Back, L. Petre, and I. Porres, “Continuous action systems as a
model for hybrid systems,” Nord. J. Comput., vol. 8, no. 1, pp. 2–21,
2001.

[27] L. Meinicke and I. J. Hayes, “Continuous action system refinement,”
in Mathematics of Program Construction, 8th International Conference,

MPC 2006, ser. Lecture Notes in Computer Science, T. Uustalu, Ed.,
vol. 4014. Springer, 2006, pp. 316–337.

[28] S. Mitsch, J.-D. Quesel, and A. Platzer, “Refactoring, refinement,
and reasoning,” in FM 2014: Formal Methods, ser. LNCS, C. Jones,
P. Pihlajasaari, and J. Sun, Eds., vol. 8442. Springer, 2014.

[29] R. Banach, “Formal refinement and partitioning of a fuel pump system
for small aircraft in hybrid event-b,” in 2016 10th International Sympo-

sium on Theoretical Aspects of Software Engineering (TASE), July 2016,
pp. 65–72.

[30] J.-R. Abrial, M. Butler, S. Hallerstede, M. Leuschel, M. Schmalz, and
L. Voisin, “Proposals for mathematical extensions for Event-B,” Tech.
Rep., 2009.

[31] M. J. Butler and I. Maamria, “Practical theory extension in event-b,” in
Theories of Programming and Formal Methods - Essays Dedicated to

Jifeng He on the Occasion of His 70th Birthday, 2013, pp. 67–81.
[32] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards

survivable cyber-physical systems,” System, vol. 1, no. a2, p. a3, 2008.
[33] W. Su, J.-R. Abrial, and H. Zhu, “Formalizing hybrid systems with

event-b and the rodin platform,” Science of Computer Programming,
vol. 94, no. Part 2, pp. 164 – 202, 2014, abstract State Machines, Alloy,
B, VDM, and Z.

[34] M. Butler, J.-R. Abrial, and R. Banach, From Action Systems to

Distributed Systems: The Refinement Approach, ser. Computer and
Information Science Series. Chapman and Hall/CRC, Apr. 2016, ch.
Modelling and Refining Hybrid Systems in Event-B and Rodin, pp. 29–
42.

