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CNRS, ENS

Email: gabriel.peyre@ens.fr

Emmanuel Soubies
CNRS, IRIT

Email: emmanuel.soubies@irit.fr

Abstract—This paper showcases the Sliding Frank-Wolfe (SFW), which

is a novel optimization algorithm to solve the BLASSO sparse spikes
super-resolution problem. The BLASSO is the continuous (i.e. off-the-
grid or grid-less) counterpart of the well-known ℓ1 sparse regularisation
method (also known as LASSO or Basis Pursuit). Our algorithm is a vari-
ation on the classical Frank-Wolfe (also known as conditional gradient)
which follows a recent trend of interleaving convex optimization updates
(corresponding to adding new spikes) with non-convex optimization steps
(corresponding to moving the spikes). We prove theoretically that this
algorithm terminates in a finite number of steps under a mild non-

degeneracy hypothesis.

I. INTRODUCTION

A. Sparse Spikes Super-Resolution

The sparse spikes super-resolution problem aims at recovering an

approximation of an unknown input discrete measure ma0,x0

def.
=

∑N
i=1 a0,iδx0,i from noisy measurements y

def.
= y0 + w ∈ R

M where

y0
def.
= Φ(ma0,x0) and w models the acquisition noise. The linear

operator Φ is defined over the space of Radon measures M(Rd) by

Φ(m)
def.
=

∫

Rd ϕ(x)dm(x) (where ϕ belongs to a general class of

kernels detailed in Definition 1) and models the acquisition process.

Here a0,i ∈ R are the amplitudes of the Dirac masses at positions

x0,i ∈ R
d. This is an ill-posed inverse problem and the BLASSO

min
m∈M(Rd)

Tλ(m)
def.
=

1

2
‖Φ(m)− y‖2

RM + λ|m|(Rd), (Pλ(y))

is a way to solve it in a stable way by introducing a sparsity-enforcing

convex regularization. The problem Pλ(y) is a convex optimization

problem that generalizes the LASSO over the non-reflexive Banach

space M(Rd) where the ℓ1 norm becomes its continuous counterpart

represented by the total variation norm | · |(Rd).

B. Previous Works

The performance of the BLASSO has been theoretically studied

in many papers, see for example [1], [2], [3], [4], [5], [6]. On

the numerical standpoint, it is possible to solve the BLASSO by

considering its dual and recasting it, for Fourier measurements and

in a one dimensional setting, as a finite dimensional SDP [1]. In

dimension greater than 2, one need to use the Lasserre’s hierarchy [7],

[8], [9]. In order to solve directly Pλ(y), algorithms that do not

use any Hilbertian structure and can instead deal with measures are

required. The authors of [2] proposed a modified version of the

Frank-Wolfe (FW) where the amplitudes and positions are updated

separately to further decrease the objective function. This idea was

numerically studied in [10]. We follow a similar approach.

II. THE ALGORITHM

From now on, we suppose for simplicity that d = 1. Our algorithm

is presented in Algorithm 1 (see [11] for more details). It consists

in recursively adding a new Dirac mass to the estimated measure

(Step 3), computing the new amplitudes by solving the LASSO

(Step 7), and moving continuously both the amplitudes and positions

by finding a critical point of a non-convex problem (Step 8). See

Figures 1 and 2 for illustrations of the algorithm.

Algorithm 1 Sliding Frank-Wolfe (SFW) Algorithm

1: Initialize with m[0] = 0 and n = 0.

2: for k = 0, . . . , n do

3: m[k] =
∑N [k]

i=1 a
[k]
i δ

x
[k]
i

, a
[k]
i ∈ R, x

[k]
i pairwise distincts,

find x
[k]
∗ ∈ R s.t.:

x
[k]
∗ ∈ argmax

x∈R

|η[k](x)| where η
[k] def.

=
1

λ
Φ∗(y − Φ(m[k])),

4: if |η[k](x
[k]
∗ )| 6 1 then

5: m[k] is a solution of Pλ(y). Stop.

6: else

7: Get m[k+1/2] =
∑N [k]

i=1 a
[k+1/2]
i δ

x
[k]
i

+ a
[k+1/2]

N [k]+1
δ
x
[k]
∗

, s.t.

a
[k+1/2] ∈ arg min

a∈RN[k]+1

1

2

∥

∥Φ(ma,x[k+1/2])− y
∥

∥

2

RM + λ ‖a‖1

where x
[k+1/2] = (x

[k]
1 , . . . , x

[k]

N [k] , x
[k]
∗ )

8: Find m[k+1] =
∑N [k]+1

i=1 a
[k+1]
i δ

x
[k+1]
i

by initializing

with (a[k+1/2], x[k+1/2]) and obtaining a critical point of

(a, x) ∈ R
N [k]+1×R

N [k]+1 7→
1

2
‖Φ(ma,x)− y‖2

RM +λ ‖a‖1 .

9: end if

10: end for

III. CONVERGENCE RESULT

Definition 1 (Admissible kernels ϕ). We denote by KER(k), the set

of admissible kernels of order k. A function ϕ : X → R
M belongs

to KER(k) if:

• ϕ ∈ C
k(R,RM ),

• For all p ∈ R
M , x ∈ X 7→ 〈ϕ(x), p〉

RM vanishes at infinity,

• for all 0 6 i 6 k, sup
x∈R

∥

∥

∥
ϕ(i)(x)

∥

∥

∥

RM
< +∞.

The next theorem gives a finite time convergence guarantee under

mild assumptions that significantly improves the previously known

convergence for this kind of algorithm (weak-* convergence).

Theorem 1. Suppose that ϕ ∈ KER(2), that ma,x =
∑N

i=1 aiδxi is

the unique solution of Pλ(y), and that ηλ = 1
λ
Φ∗(y − Φ(ma,x)) is

nondegenerate, i.e. for all x ∈ R \
⋃N

i=1{xi}

|ηλ(x)| < 1 and ∀i ∈ {1, . . . , N}, η
′′
λ(xi) 6= 0. (1)

Then Algorithm 1 recovers ma,x after a finite number of steps (i.e.

there exists k ∈ N such that m[k] = ma,x).
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Fig. 1: Values of the objective function throughout the SFW algorithm

(cumulative iterations of the BFGS used to find a critical point of the

non-convex problem of Step 8). The vertical black lines separate the

main outer iterations of the algorithm. The measure m∗ represents the

unique solution of the BLASSO. It is the same example as in Figure 2.

k = 0. Start of the loop. k = 0. End of the loop.

k = 1. End of the loop. k = 2. End of the loop.

Fig. 2: Main steps of the SFW algorithm.
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