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Chapter 1
Music Recommendation

Dietmar Jannach and Geoffray Bonnin

Abstract This is a preliminary version of Chapter 26 of ”Music Data Music Data
Analysis: Foundations and Applications” by (Claus Weihs, Dietmar Jannach, Igor
Vatolkin, Guenter Rudolph, eds.), CRC Press, 2016

1.1 Introduction

Until recently, music discovery was a difficult task. We had to listen to the radio
hoping one track will be interesting, actively browse the repertoire of a given artist,
or randomly try some new artists from time to time. With the emergence of person-
alized recommendation systems, we can now discover music just by letting music
platforms play tracks for us. In another scenario, when we wanted to prepare some
music for a particular event, we had to carefully browse our music collection and
spend significant amounts of time selecting the right tracks. Today, it has become
possible to simply specify some desired criteria like the genre or mood and an auto-
mated system will propose a set of suitable tracks.

Music recommendation is however a very challenging task, and the quality of the
current recommendations is still not always satisfying. First, the size of the pool of
tracks from which to make the recommendations can be quite huge. For instance,
Spotify1, Groove2, Tidal3 and Qobuz4, four of the currently most successful web
music platforms, all contain more than 30 millions tracks5. Moreover, most of the
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1 http://www.spotify.com
2 http://music.microsoft.com
3 http://tidal.com
4 http://www.qobuz.com
5 This information can be obtained using the API’s search services provided by these platforms.
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tracks on these platforms typically have a low popularity6 and hence few informa-
tion is available about them, which makes them even harder to process for the task
of automated recommendation. Another difficulty is that the recommended tracks
are immediately consumed, which means the recommendations must be made very
fast, and have at the same time to fit the current context.

Music recommendation was one early application domain for recommendation
techniques, starting with the Ringo system presented in 1995 [34]. Since then how-
ever, most of the research literature on recommender systems (RS) has dealt with
the recommendation of movies and commercial products [17]. Although the cor-
responding core strategies can be applied to music, music has a set of specificities
which can make these strategies insufficient.

In this chapter, we will discuss today’s most common methods and techniques
for item recommendation which were developed mostly for movies and in the e-
commerce domain, and talk about particular aspects of the recommendation of mu-
sic. We will then show how we can measure the quality of recommendations and
finally give examples of real-world music recommender systems. Parts of our dis-
cussion will be based on [5], [8] and [22], which represent recent overviews on
music recommendation and playlist generation.

1.2 Common Recommendation Techniques

Generally speaking, the task of a recommender system in most application scenarios
is to generate a ranked list of items which are assumedly relevant or interesting for
the user in the current context7. Recommendation algorithms are usually classified
according to the types of data and knowledge they process to determine these ranked
lists. In the following, we will introduce two common recommendation strategies
found in the literature.

1.2.1 Collaborative Filtering

The most prominent class of recommendation algorithms in research and maybe
also in industry is called Collaborative Filtering (CF). In such systems, the only
type of data processed by the system to compute recommendation lists are ratings
provided by a larger user community. Table 1.1 shows an example for such a rating
database, where 5 users have rated 5 songs using a rating scale from 1 (lowest) to 5
(highest), e.g., on an online music platform or using their favorite music player.

6 This information can be obtained using for instance the API of last.fm or The Echo Nest, two of
the currently richest sources of track information on the Web.
7 In Section 1.4 we will discuss in more detail what relevance or interestingness could mean for
the user.
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In this simple example the task of the recommender is to decide whether or not
the Song5 should be put in Alice’s recommendation list and – if there are also other
items – at which position it should appear in the list.

Table 1.1: A Simple Rating Database, Adapted from [20]. When Recommendation
is Considered as a Rating Prediction Problem, the Goal is to Estimate the Missing
Values in the Rating “Matrix” (Marked with ’?’)

Song1 Song2 Song3 Song4 Song5
Alice 5 3 4 4 ?
User1 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
User4 1 5 5 2 1

Many CF systems approach this problem by first predicting Alice’s rating for all
songs which she has not seen before. In the second step, the items are ranked ac-
cording to the prediction value, where the songs with the highest predictions should
obviously appear on top of the list8.

1.2.1.1 CF Algorithms

One of the earliest and still relatively accurate schemes to predict Alice’s missing
ratings is to base the prediction on the opinion of other users, who have liked similar
items as Alice in the past, i.e., who have the same taste. The users of this group are
usually called “neighbors” or “peers”. When using such a scheme, the question is (a)
how to measure the similarity between users and (b) how to aggregate the opinions
of the neighbors. In one of the early papers on RS [31], the following approach
was proposed, which is still used as a baseline for comparative evaluation today. To
determine the similarity, the use of Pearson’s correlation coefficient was advocated.
The similarity of users u1 and u2 can thus be calculated via

sim(u1,u2) =
∑i∈Î(ru1,i− ru1)(ru2,i− ru2)√

∑i∈Î(ru1,i− ru1)
2
√

∑i∈Î(ru2,i− ru2)
2

(1.1)

where Î denotes the set of products, which have been rated both by user u1 and user
u2, ru1 is u1’s average rating and ru1,i denotes u1’s rating for item i.

Beside using Pearson’s correlation, also other metrics such as cosine similarity
have been proposed. One of the advantages of Pearson’s correlation however is that
it takes into account the tendencies of individual users to give mostly low or high
ratings.

8 Taking the general popularity of items into account in the ranking process is however also com-
mon in practical settings because of the risk that only niche items are recommended.
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Once the similarity of users is determined, the remaining problem is to predict
Alice’s missing ratings. Given a user u1 and an unseen item i, we could for example
compute the prediction based on u1’s average rating and the opinion of a set of N
closest neighbors as follows:

r̂(u1, i) = ru1 +
∑u2∈N(sim(u1,u2)(ru2,i− ru2))

∑u2∈N sim(u1,u2)
. (1.2)

The prediction function in Equation (1.2) uses the user’s average rating ru1 as
a baseline. For each neighbor u2 we then determine the difference between u2’s
average rating and his rating for the item in question, i.e., (ru2,i−ru2 ) and weight the
difference with the similarity factor (sim(u1,u2)) computed using Equation (1.1).

When we apply these calculations to the example in Table 1.1, we can identify
User2 and User3 as the closest neighbors to Alice (sim(User2,User3) is 0.85 and
0.7). Both have rated Song5 above their average and predict an above-average rating
between 4 and 5 (exactly 4.87) for Alice, which means that we should include the
song in a recommendation list.

While the presented scheme is quite accurate – we will see later on how to mea-
sure accuracy – and simple to implement, it has the disadvantage of being basically
not applicable for real-world problems due to its limited scalability, since there are
millions of songs and millions of users for which we would have to calculate the
similarity values.

Therefore a large variety of alternative methods have been proposed over the
last decades to predict the missing ratings. Nearly all of these more recent methods
are based on offline data preprocessing and on what is called “model-building”.
In such approaches, the system learns a usually comparably compact model in an
offline and sometimes computationally intensive training phase. At run-time, the
individual predictions for a user can however be calculated very fast. Depending on
the application domain and the frequency of newly arriving data, the model is then
re-trained periodically. Among the applied methods we find various data mining
techniques such as association rule mining or clustering, support vector machines,
regression methods and a variety of probabilistic approaches. In recent years, several
methods were designed which are based on matrix factorization (MF) as well as
ensemble methods which combine the results of different learning methods [23].

In general, the ratings that the users assigned to items can be represented as a
matrix, and this matrix can be factorized, i.e., it is possible to write this matrix R as
the product of two other matrices Q and P:

R = QT ·P

Matrix Factorization techniques determine approximations of Q and P using dif-
ferent optimization procedures. Implicitly these methods thereby map users and
items to a shared factor space of a given size (dimensionality) and use the inner
product of the resulting matrices to estimate the relationship between users and
items [23]. Using such factorizations makes the computation times much shorter
and at the same time implicitly reveals some latent factors. A latent aspect of a song
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could be the artist or the musical genre the song belongs to; in general, however,
the semantic meanings of the factors are unknown. After the factorization process
with f latent factors (for example f = 100), we are given a vector qqqi ∈ R f for each
item i and a vector pppu ∈ R f for each user. For the user vectors, each value of the
vector corresponds to the interest of a user in a certain factor; for item vectors, each
element indicates the degree of “fit” of the item to the factor. Given a user u and an
item i, we can finally estimate the “match” between the user and the item by using
the dot product qqqT

i pppu.
Different heuristic strategies exist for determining the values for the latent factor

vectors pppu and qqqi. The most common ones in RS, which also scale to larger scale
rating data bases, are stochastic gradient descent optimization and Alternating Least
Squares [23].

In order to estimate a rating r̂u,i for user u and item i, we can use the following
general equation, where µ is the global rating average, bi is the item bias and bu is
the user bias.

r̂u,i = µ +bi +bu +qqqT
i pppu (1.3)

The reason for modeling user and item biases is that there are items which are
generally more liked or disliked than others, and there are, on the other hand, users
who generally give higher or lower ratings than others. For instance, Equation (1.3)
with f = 2 corresponds to the assumption that only two factors are sufficient to accu-
rately estimate the ratings of users. These factors may be, for instance, the genre and
the tempo of tracks, or any other factors, which are inferred during the factorization
step.

The learning phase of such an algorithm consists in estimating the unknown pa-
rameters based on the data. This can be achieved by searching for parameters which
minimize the squared prediction error, given the set of known ratings K:

min
q∗,p∗,b∗ ∑

(u,i)∈K

(
ru,i− (µ +bu +bi +qT

i pu)
)2

+λ
(
‖qi‖2 +‖pu‖2 +b2

u +b2
i
)

(1.4)

The last term in the function is used for regularization and to “penalize” large
parameter values.

Overall, in the past years much research in the field of recommender systems
was devoted to such rating prediction algorithms. It however becomes more and
more evident that rating prediction is very seldom the goal in practical applications.
Finding a good ranking of the tracks based on observed user behavior is more rel-
evant, which led to an increased application of “learning to rank” methods for this
task or to the development of techniques that optimize the order of the recommen-
dations according to music-related criteria such as track transitions or the coherence
of the playlists [19].
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1.2.1.2 Collaborative Filtering for Music Recommendation

As mentioned in the introduction, although music was one of the earliest applica-
tion domains for recommender systems, music recommendation has until recently
remained a niche topic. The first application, the Ringo system, actually used a CF
technique [34], and modern online music services such as Spotify, last.fm or iTunes
Genius use – among other techniques – collaborative filtering methods to generate
playlists and recommend songs.

When compared to other approaches to (music) recommendation, collaborative
filtering methods have some well-known advantages and limitations. From a system
provider’s perspective, one advantage of CF lies in the fact that beside the users’
rating feedback no additional information (about the musical genre, the authors or
any sort of low-level data) has to be acquired and maintained. At the same time,
CF methods are well understood and have been successfully applied in a variety of
domains, including those where massive amounts of data have to be processed and a
large number of parallel users have to be served. The inherent characteristic of CF-
based algorithms in addition can lead to recommendations that are surprising and
novel for the user, which can be a key feature for a music recommender in particular
when the user is interested in discovering new artists or musical sub-genres.

On the down side, CF methods require the existence of a comparably large user
community in order to be able to provide useful recommendations. Related to that
is the typical issue of data sparsity. In many domains, a large number of items in
the catalog only have very few (or even no) ratings, which can lead to the effect that
they are never recommended to users. At the same time, some users only rate very
few items, which makes it hard for CF methods to develop a precise enough user
profile. Situations in which there are no or only a few ratings available for an item or
a user are usually termed “cold start” situations. A number of algorithms have been
proposed to deal with this problem in the literature. Many of them rely for example
on hybridization strategies, where different algorithms or knowledge sources are
used as long as the available ratings are not sufficient. Finally, as also discussed in
[8], some CF algorithms have a tendency to boost the popularity of already popular
items so that, based on the chosen algorithm, some niche items have a low chance
to be ever recommended.

CF-based music recommendation has some aspects which are quite specific for
the domain. Beside the fact that in the case of song recommendation it is plausible
to recommend the same item multiple times to a user, it is often difficult to acquire
good and discriminative rating information from the user. Analyses have shown that
for example on YouTube users tend to give ratings only to items they like so that the
number of “dislike” statements is very small. While this bias towards liked items can
also be observed in other domains, it appears to be particularly strong for multime-
dia content as provided on YouTube, which “degrades” the user feedback basically to
unary ratings (“like” statements). With respect to data sparsity as mentioned above,
a common strategy in CF recommender systems is to rely on implicit item ratings,
that is, one interprets actions performed by users on items as positive or negative
feedbacks. In the music domain, such implicit feedback is often collected by mon-
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itoring the user’s listening behavior, and in particular listening times are used to
estimate to which extent a user liked a song.

One of the most popular online music services that uses – among other techniques
– collaborative filtering is Spotify. Spotify provides several types of radios such as
genre radios, artist radios and playlist radios. Once the user has chosen a radio,
the system automatically plays one recommended song after the other. The user
can give some feedback (like, dislike or skip) on the tracks and this feedback is
taken into account and used to adapt the selection of the next recommendations. All
these radios use collaborative filtering, and more precisely Matrix factorization [4].
Another interesting feature of Spotify is the Discover weekly playlist, a playlist that
is automatically generated each week and that the user can play to discover music
he may like. This feature also uses collaborative filtering to select the tracks which
are “around” the favorite tracks of the users in the similar users’ listening logs [36].
An interesting aspect of Spotify is that it has a number of “social” or community
features. Users can create a network of friends and follow the playlists they share.

1.2.2 Content-based Recommendation

Content-based (CB) techniques are rooted in Information Retrieval (IR) and exploit
additional information about the available catalog items to generate personalized
recommendations. The “content” of an item (e.g., a song or album) can in principle
be an arbitrary piece of information describing a certain aspect of the item. Histori-
cally, the term content was used to refer to the goal of many methods developed in
field of IR, which is the recommendation of text documents or web pages, whose
content can be automatically extracted. In the context of music recommendation,
however, we would also consider information about the artist, the musical genre or
any other type of information that can be extracted with music analysis methods as
content.

The rough idea of CB recommenders is to look at items which the current user has
liked in the past and then scan the catalog for further items which are similar to these
liked items. A CB recommender has to implement at least two functionalities: (A)
The system first has to acquire and update a “user profile”, which captures the user’s
interests and preferences9. (B) The system has to implement a retrieval function,
which determines the estimated relevance of a given item for a certain user profile.

Regarding the maintenance of the user profile, one option for new users of an
online music site would be to ask them to explicitly specify their favorite artists
or genres or rate some songs. Alternatively, existing profile information taken, e.g.,
from social networks such as Facebook could be used as a starting point. After the
initial ramp-up, the user profile should be continually updated based on implicit or
explicit feedback.

9 In contrast to CF methods, the user profile in CB approaches is not based on the behavior of the
community but only on the actions of the individual user.
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How to represent and learn the user profile and how to retrieve suitable items
depends on the available information. The most common approach is to represent
the user profile and an item’s content information in the same way and along the
same dimensions.

Table 1.2: Content Information in a Song Database

Title Artist Genre Feel Liked?
Old man Neil Young Country Melancholy X

Perhaps Love John Denver Country Melancholy X
On the road again Willie Nelson Country Driving Shuffle

Harlem Shuffle Rolling Stones Rock Use of Groove ×
... ... ... ...

Redemption Song Bob Marley Reggae Reggae feel X

Table 1.2 shows an example for a content-enhanced music catalog, where the
items marked with a tick (X) correspond to those which the user has liked. A basic
strategy to derive a user profile from the liked items would be to simply collect all
the values in each dimension (artist, genre, etc.) of all liked items. The relevance of
unseen items for the user can then be based for example on the overlap of keywords.
In the example, recommending the Willie Nelson song appears to be a reasonable
choice due to the user’s preference for country music.

In the area of document retrieval, more elaborate methods are usually employed
for determining the similarity between a user profile and an item, which for example
take into account how discriminative a certain keyword is for the whole item collec-
tion. Most commonly, the TF-IDF (term frequency - inverse document frequency)
metric is used to measure the importance of a term in a document in IR scenarios.
The main idea is to represent the recommendable item as a weight vector, where
each vector element corresponds to a keyword appearing in the document. The TF-
IDF metric then calculates a weight that measures the importance of the keyword
or aspect, that is, how good it characterizes the document. The calculation of the
weight value depends both on the number of occurrences of the word in the docu-
ment (normalized by the document length) as well as how often the term appears
in all documents, thus avoiding to give less weight to words that appear in most
documents.

The user profile is represented in exactly the same way, that is, as a weight vector.
The values of the vector, which represent the user’s interest in a certain aspect can
for example be calculated by taking the average vector of all songs that the user has
liked.

In order to determine the degree of match between the user profile u and a not-
yet-seen item i, we can calculate the cosine similarity as shown in Equation (1.5)
and rank the items based on their similarity.

sim(uuu, iii) =
uuu · iii
| uuu || iii |

(1.5)
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The cosine similarity between two vectors measures the distance (angle) between
them and uses the dot product (·) and the magnitudes (| uuu | and | iii |) of the rating
vectors. The resulting values lie between 0 and 1.

Generally, the recommendation could be viewed as a standard IR ranked retrieval
problem with the difference that we use the user profile as an input instead of a
particular query. Thus, on principle, modern IR methods based, e.g., on Latent Se-
mantic Analysis or classical ones based on Rocchio’s relevance feedback can be
employed, see [20]. Viewed from yet a different perspective, the recommendation
problem can also be seen as a classification task, where the goal is to assess whether
or not a user will like a certain item. For such classification tasks, a number of other
approaches have been developed in the field of Information Retrieval, based, e.g.,
on probabilistic methods, Support Vector Machines, regression techniques and so
on.

1.2.2.1 Content-based Filtering for Music Recommendation

Content-based techniques are particularly appropriate for textual document recom-
mendation, as the content of the documents can be directly used to induce vectors
of keywords. This is not possible for music (except maybe for recommending songs
based on the lyrics), and other types of content features have to be acquired. On
principle, all the various pieces of information that can be automatically extracted
through automated music analysis such as timbre, instruments, emotions, speed or
audio features can be integrated into the recommendation procedure.

In general, the content features in CB systems have to be acquired and maintained
either manually or automatically. In each case, however, the resulting annotations
can be imprecise, inconsistent or wrong. When songs are for example labeled man-
ually with a corresponding genre, the problem exists that there is not even a “gold
standard” and that when using annotations from different sources the annotations
may be contradicting.

In recent years, additional sources of information have become available with
the emergence of Semantic Web technologies, see [10, 5], and in particular with the
Social Web. In this frame, users can actively provide meta-information about items,
for instance by attaching tags to items, thereby creating so-called folksonomies. This
is referred to as Social Tagging, and it is becoming an increasingly valuable source
of additional information. Since the manual annotation process of songs does not
scale well, “crowdsourcing” the labeling and classification task is promising despite
the problems of labeling inconsistencies and noisy tags. An important aspect here
is that the tags applied to a resource not only tell us something about the resource,
e.g., the song itself, but also about the interests and preferences of the person that
tags the item.

Beside expert-based annotation and social tagging, further approaches to anno-
tating music include Web Mining, e.g., from music blogs or by analyzing the lyrics
of songs, automated genre classification or similarity analysis [9].
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Content-based recommendation methods have their pros and cons. In contrast
to CF methods, for example, no large user community is required to generate rec-
ommendations. On principle, a content-based system can start making recommen-
dations based on one single positive implicit or explicit user feedback action or
based on a sample song or user query. More precise and more personalized recom-
mendations can of course be made, if more information is available. The obvious
disadvantage of content-based methods when compared with CF methods is that
the content information has to be acquired and maintained. In that context, the addi-
tional problem arises that the available content information might not be sufficiently
detailed or discriminative to make good recommendations.

From the perspective of the user-perceived quality of the recommendations,
methods based on content features by design recommend items similar to those
the user has liked in the past. Thus, recommendation lists can exhibit low diversity
and may contain items that are too similar to each other. In addition, such lists might
only in rare cases contain elements which are surprising for the user. Being able to
make such “serendipitious” and surprising recommendations is however considered
as an important quality factor of an RS. On the other hand, recommending at least
a few familiar items – as content-based systems will do – can help the user to de-
velop trust in the system’s capability of truly understanding the user’s preferences
and tastes.

With respect to real-world systems, Pandora Music is most often cited as a
content-based recommendation service and based on the Music Genome project.
The idea of the project was to codify every song as a vector of up to 400 to 500
different features (genes), relative to the genre. These features include both charac-
teristics of the music itself (e.g., of structure, rhythm and meter, instrumentation, or
tonality) as well as other information such as the roots of the style and other influ-
ences, the used recording techniques, characteristics of the lead vocals as well as
information related to the lyrics.

The interesting aspect of Pandora is that these feature values are assigned manu-
ally by musical experts over years. Annotating a song can take an expert up to half
an hour10. The similarity of tracks can then be easily computed based on a distance
metric once a sufficient number of genes is available. A profile of a user is learned
by collecting implicit and explicit feedback. The underlying assumption is that mu-
sic can be classified in an objective way, and that the chosen set of genes is sufficient
to capture all aspects that make musical tracks similar to each other.

Another limiting factor is that the manual annotation approach does not scale
too well and new songs can only appear in the recommendations when the musi-
cal genes have been entered. As mentioned in [22], however, this particular aspect
and the fact that the genre is not explicitly encoded in the genes, can also lead to
surprising recommendations. As of 2014 [7], Pandora Radio has more than 250 mil-
lion registered users and features more than 80,000 artists and 800,000 tracks in its
library.

10 See http://en.wikipedia.org/wiki/Music_Genome_Project for details and
examples of genes, accessed February 2016.
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1.2.3 Further Knowledge Sources and Hybridization

Beside user-provided feedback and content-data also different other types of knowl-
edge sources can be taken into account into the recommendation process. In so-
called “demographic” approaches, information about the user’s age, sex, education
or income group can be factored into the algorithms. Similarly, the user’s personal-
ity, the hobbies or general interests and lifestyle might be relevant. Beside such de-
mographic and “psychographic” systems, in e-commerce settings, also knowledge-
based approaches can be found. So-called critiquing-based systems are an example
of such systems, where the user can interactively state and revise the requirements
with respect to a certain set of item features. Other knowledge-based systems use
explicit domain rules to match user requirements with product features. These types
of systems however only play a minor role in music recommendation.

Beside the above-mentioned user-provided tags for resources, Social Web plat-
forms can serve as a source for further knowledge to be exploited for music recom-
mendation. One can for instance try to interpret direct friendship relations in a social
network as an indicator of a user’s trust into the recommendations of another person
and amplify the neighborhood weight for such users in a collaborative approach. Ex-
plicit “Like” statements for certain artists or songs represent another natural source
to learn about a user’s musical preferences.

Finally, the incorporation of information about the user’s current context appears
to be a particularly important aspect for the music recommendation task. The term
context may refer to user-independent aspects such as the time of the day or year
but also to user-specific ones such as the current geographic location or activity. In
particular the second type of information, that is, including the information about
whether the user is alone or part of a group, becomes more and more available
thanks to GPS-enabled smartphones and corresponding Social Web applications.

Since the different basic recommendation techniques (e.g., collaborative filtering
or content-based filtering) have their advantages and disadvantages, it is a common
strategy to overcome limitations of the individual approaches by combining them in
a hybrid approach. When, for example, a new user has only rated a small number of
items so far, applying a neighborhood-based approach might not work well, because
not enough neighbors can be identified who have rated the same items. In such a
situation, one could therefore first adopt a content-based approach in which one
single item rating is enough to start and switch to a CF method later on, when the
user has rated a certain number of items. In [6], Burke identifies seven different ways
of how recommenders can be combined. Jannach et al. in [20] later on organize them
in the following three more general categories:

• Monolithic designs: In such approaches, the hybrid system consists of one rec-
ommendation component which pre-processes and combines different knowl-
edge sources; hybridization is achieved by internally combining different tech-
niques that operate on the different sources (Figure 1.1).

• Parallelized designs: Here, the system consists of several components whose
output is aggregated to produce the final recommendation lists. An example
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is a weighted design where the recommendation lists of two algorithms are
combined based on some ranking or confidence score. The above-mentioned
“switching” behavior can be seen as an extreme case of weighting (Figure 1.2).

• Pipelined designs: In such systems, the recommendation process consists of
multiple stages. A possible configuration could be that a first algorithm pre-
filters the available items which are then ranked by another technique in a sub-
sequent step (Figure 1.3).
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Fig. 1.1: Monolithic hybridization design; adapted from [20].
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1.3 Specific Aspects of Music Recommendation

The recommendation techniques discussed so far were typically not designed to
work only for a certain class of products and can thus be applied to a variety of
domains. There are, however, specific aspects in music recommendation which are
slightly different from other domains and have to be considered in the specific sys-
tem design. In particular, a number of works are devoted on the problem of “playlist
generation”, which can be considered a special form of music recommendation11.

Consider the following list of aspects, which is based on Paul Lamere’s talk at
the ACM Recommender Systems 2012 conference “I’ve got 10 million songs in my
pocket. Now what?”, see also [5, 8].

• Consumption-related aspects: First, the recommended items can be either
“consumed” immediately or not. In case of the classical book recommender
of Amazon.com, the delivery of a book needs a couple of days. Thus, the cur-
rent context of the user at the time of the recommendation is not as important as
in situations where the customer immediately wants to listen to a song, e.g., in
the case of an online radio station. In that sense, music recommendation shares
similarities with video streaming (or IP television) recommendation, where con-
sidering the user’s context (e.g., the time of the day or whether or not he enjoys
the video alone or in a group) is crucial.
Track consumption time is very low (songs last a few minutes). The systems
thus have to generate a lot of recommendations. For instance, most users can
listen to more than 20 songs a day, while they rarely read more than 20 books a
year.
A user can play the same song a hundred of times, while, e.g., movies are more
rarely watched again and again. Familiarity is a very specific and important
feature of music. Users usually like to discover to some new tracks, but at the
same time like to listen to the tracks with which they are familiar. A very specific
compromise thus exists between familiarity and discovery for user satisfaction.
Songs are often consumed in sequence. It is important that successive songs
form a smooth transition regarding the mood, tempo or style. A good playlist
thus not only balances possible quality features like coherence, familiarity, dis-
covery, diversity and serendipity, but must also has to provide smooth transi-
tions.
Finally, in contrast to many other recommendation domains, tracks can be con-
sumed when doing other things. One can listen to music while working, study-
ing, dancing, etc. and each type of activity fits best with a different musical
style.

• Feedback mechanisms: With respect to user feedback and user profiling, the
consumption times (listening durations), track skipping actions and volume ad-
justments can be used as implicit user feedback in the music recommendation
domain. On some music websites users can furthermore actively “ban” tracks
in order to avoid listening to tracks which they actually do not like. At the same

11 See [5] for an in-depth review of approaches for music playlist generation.
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time, the consumption frequency can be used as another feedback signal. This
repeated “consumption” of items seems to be particularly relevant for music,
because it is intuitive to assume that the tracks that the users plays the most
frequently are the tracks that the users like the most. This information about
repeated consumption can also be used in other domains like for instance web
browsing recommendation, but it seems to be less relevant for these types of
applications [13, 21].
Another typical feature of many music websites is that their users can create
and share playlists. Many users create such playlists12, and the tracks in these
playlists usually correspond to the tracks the users like. Playlists can therefore
represent another valuable source for an RS to improve the user profiles.

• Data-related aspects: Music recommendation deals with very large item spaces.
Music websites usually contain tens of millions of tracks. Moreover, other kinds
of musical resources can also be recommended, like for instance concerts. Some
of these resources should however not appear in recommendation lists, for ex-
ample karaoke versions, tribute bands, cover versions, etc.
Furthermore, the available music metadata is in many cases noisy and hard to
process. Users often misspell or type inappropriate metadata, as for instance
“!!!” as an artist’s name. At the same time, dozens of bands, artists, albums
and tracks can have identical names, which not only makes the interpretation
of a user query challenging, but can also lead to problems when organizing and
retrieving tracks based on the metadata.

• Psychological questions and the cost of wrong recommendations: From a psy-
chological perspective, music represents a popular means of self-expression.
With respect to today’s Social Web sites, the question however arises if one can
trust that all the positive feedback statements on such platforms are true expres-
sions of what users think and what they really like . Additionally, in the music
domain, there exists a certain number of “purist” enthusiasts. For such users,
music recommendations have to be made very carefully and homogeneity with
respect to the musical style and to the artists might be important.

1.4 Evaluating Recommender Systems

One challenging question after developing a novel recommendation algorithm or
deploying a new music recommendation service is how to assess the quality or use-
fulness of the recommendations. In a system with real users the way we measure
the service’s effectiveness depends on the underlying (business) goal and model. A
typical evaluation setting would consist of conducting A/B tests. In such a test, the
user community is split into two or more groups and each group receives recommen-
dations using different algorithms. Based on a defined success metric, we can then
compare, for example, how long users stay on the site, how many songs they skip,

12 About 20% of last.fm users have created at least one playlist.
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how many songs they download, how often they return, etc. An example of such an
A/B test where different recommendation strategies were compared – although in a
different domain – can be found in [18].

1.4.1 Laboratory Studies

In research and academic settings, unfortunately, such A/B tests can only seldom
be conducted as typically no real-world system is available with which such ex-
periments could be made. Researchers therefore often rely on laboratory studies,
which usually consist of a few dozen of participants and in which certain aspects of
a recommendation system are analyzed.

Let us assume that the design of the recommender system’s user interface has
an effect on the perceived quality of the recommendations. To that purpose we can
design a controlled experiment to test the hypothesis in which we let the subjects
interact with a prototype system with two different interfaces. The possible experi-
mental designs include between-subjects and within-subjects. In a between-subjects
design, each subject (participant) receives recommendations through only one of
two implemented interfaces. In a within-subject design, each user will see both of
them. When the subjects have ended their interactions with the system, they are
asked via a questionnaire how they liked the recommendations (and other aspects)
of the system.

Based on the answers of the participants we can then check if any of the ob-
served differences between the groups are statistically significant and support our
initial hypothesis. Note that in some experiment designs the user behavior during
the interaction, e.g., the listening times, can be automatically monitored or logged.
In other designs, users are asked to think aloud when interacting with the system.

1.4.2 Offline Evaluation and Accuracy Metrics

Unfortunately, laboratory studies are costly, time-consuming and sometimes hard to
reproduce. Since the participants of such studies are often students, they do not form
a truly representative sample of a real population. Recommender systems research
is therefore mostly based on offline experiments based on historical data sets. These
datasets usually contain a set of user ratings for items (or purchase transactions or
other forms of implicit feedback), which were collected on some real-world online
platform.

The most common evaluation setting in recommender system research is based
on the prediction of the relevance of a set of (hidden) items for a certain user, the
application of different accuracy or ranking measures, and the repetition of the mea-
surements using cross-validation. When the goal is to predict the value of the hidden
ratings, the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE)
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can be used. If the goal is to produce top-n recommendation lists, precision and re-
call are often applied.

While precision and recall represent the most popular evaluation metric in RS
according to the study in [17], the absolute numbers reported in research papers
should be considered with care as they might not reflect the “true” values very well.
As mentioned for instance in the survey paper on RS evaluation by Herlocker et al.
[16], in RS evaluation scenarios the so-called ground truth for most user-item ratings
is not known. Considering only the known ratings of the test set for the calculation
of precision and recall results in unrealistically high values. In addition, it is also not
always clear how the set of relevant items is determined from the rating information.

Another shortcoming of classification accuracy metrics is that they only count
the number of hits in a recommendation list but not at which position in the list the
hits have been found. Intuitively, the relevant items should be placed on the top of
the list as they have a higher chance to get the attention from the user. Therefore,
ranking measures are often applied in the IR field that take the position of an item
into account. An example for such a measure is the “discounted cumulative gain”
(DCG), which is applicable mostly for non-binary notions of relevance [25]. The
cumulative gain (CG) corresponds the sum of the relevance weights (ratings) of the
items up to a certain list length. The idea of the DCG is to reduce the relevance value
of items appearing later in the list, usually by a logarithmic factor. Let Rel j be the
relevance score for an item at position j (based on the known rating). The DCG of
a ranked list of length k can be calculated as follows:

DCGk = Rel1 +
k

∑
j=2

Rel j

log2( j)
(1.6)

Variations of this scheme, e.g., concerning the logarithmic base, are also common
in the literature. Usually, the DCG is also normalized and divided by the score of
the “optimal” ranking so that finally the values of the normalized DCG lie between
zero and one.

Note that other domain-specific or problem-specific schemes are possible. In the
2011 KDD Cup13, the task was to separate highly rated music items from non-rated
items given a test set consisting of six tracks, out of which 3 where highly rated and
3 were not rated by the user.

1.4.3 Beyond Accuracy – Additional Quality Factors

The above-mentioned accuracy metrics are relatively easy to measure given a set
of historical rating data. The question however arises whether they really represent
the best indicators for the quality of a recommender system. Consider, for example,
a music recommender which has detected that all Rolling Stones songs have been

13 http://www.kdnuggets.com/2011/02/kdd-cup-2011-recommending-
music.html, accessed February 2016.
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rated very highly by a user. As the system is trained to minimize the prediction error,
it would then probably recommend even more Rolling Stones tracks to him. How-
ever, presenting the user a list full of Rolling Stones songs might not represent a
good recommendation even though the prediction was actually good, e.g., in terms
of RMSE. Thus, such a list might be boring and not at all surprising for the user.
In addition, such a recommender would probably also only focus on popular items
(which are often rated highly), which leads to a possibly undesired effect that the
major part of songs in the music collection will be never placed in a recommen-
dation list. Therefore, in recent years, measures other than accuracy began to gain
increasing attention in the research community.

1.4.3.1 Coverage, Cold Start, Popularity, and Sales Diversity

With the term coverage, either “user-space coverage” or “item-space coverage” can
be meant in the literature of RS. User (-space) coverage is a measure that describes
for how many of the known users a recommender system is capable of making a
(useful) recommendation. When considering the basic neighborhood-based method
described in Section 1.2.1, the system might be configured in a way that requires
at least N neighbors whose similarity level exceeds a certain threshold. Thus, not
for all users – in particular those who have only rated very few items or have a
niche taste – recommendations will be calculated as the system’s confidence in the
recommendations might be too low. The cold start behavior of an RS is also related
to coverage and can for example be measured by calculating user coverage and/or
the predictive accuracy at different (artificially created) data set sparsity levels.

Item-space coverage (or catalog coverage), on the other hand, typically refers to
the question of how many of the existing items can be or, more importantly, are
actually ever recommended to users. Item coverage can be measured both in offline
as well as in online experiments, for example by analyzing how often each catalog
item actually appeared in the first n elements (top-n) of the recommendation lists
presented to the users.

Item coverage is also related to sales diversity and the popularity-bias of recom-
mender systems. In [8], Celma discusses the skewed distribution of item popularity
and the corresponding music “long tail” in detail. An example of such a long tail
distribution is shown in Figure 1.4.

On the x-axis, the items (songs) are sorted according to their popularity, which
is measured in terms of, e.g., the playcount on an online platform such as last.fm,
sales or download numbers, or, when the goal is to measure the diversity of the
recommendations, the number of appearances of a song in a recommendation list.

The term long tail refers to the fact that in many domains – and in particular the
music domain – some very few popular items account for a large amount of the sales
volume. In [8], Celma cites the numbers of a report from 2007 about the state-of-
the-industry in music consumption, where 1% of all available tracks were reported
to be responsible for about 80% of the sales or that nearly 80% of about 570,000
tracks were purchased less than 100 times.
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Fig. 1.4: Long tail distribution.

Given this skewed distribution toward popular songs and mainstream artists, it
could therefore be – according to Marketing theory – a goal to increase sales of
items in the long tail. Recommender systems are one possible method to achieve
such a goal and studies such as [37] or [12] have analyzed how recommenders im-
pact the buying behavior of customers and the overall sales diversity. On the one
hand, one can observe that in some domains a recommender can help the user to
better explore the item space and find new items he or she was not aware of. On
the other hand, there is however a danger that depending on the underlying strategy
and algorithm the usage of a recommender system can lead to the undesired effect
of further boosting already very popular items as recommending blockbusters to
everyone is a comparably safe strategy.

1.4.3.2 List Diversity, Novelty, Serendipity and Familiarity

Beside the global sales diversity of a platform, the diversity of recommendations for
an individual user can be an important quality factor for the customer. When given a
Beatles seed song on an online music platform, recommending a playlist of 10 other
Beatles songs or, even worse, 10 cover versions of the same song, might be tech-
nically plausible but perhaps not what the user would enjoy. Therefore, it is often
advisable to make sure that the recommendation list (playlist) is not monotonous
and that the items are not too similar to each other.

A possible strategy could therefore be to try to include items in the recommen-
dation list that increase the diversity of the list, items that are supposedly novel for
the user, as well as items which are to some extent surprising (but relevant) for the
user. In order to control diversity, one needs a measure of item similarity. When fol-
lowing a content-based recommendation approach as described in Section 1.2.2, the
underlying similarity metric can be used to compare two tracks. Alternatively, one
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could use metadata such as genre, artist, etc. Based on such a measure, an overall
diversity metric for a list can be derived, e.g., by computing and aggregating the
pairwise similarities.

Another related criterion is novelty. Novelty can be measured in user studies via
a questionnaire. Some researchers also propose offline evaluation approaches which
use the general popularity of an item to estimate the novelty of a recommendation
list, assuming that highly popular items are not novel to the user. Alternatively,
schemes that use the time stamps of the ratings to assess the novelty of an item are
possible, see [32].

Serendipity is also often mentioned as a desirable playlist characteristics. This
concept is often referred to as a measure of how surprising and unexpected, but
accurate, the recommendations are. When a user is pointed through a recommenda-
tion list to a track of a genre, style or artist she or he usually does not particularly
like, and the user finds that he likes the track, then the recommendation can be con-
sidered as being serendipitous. This also corresponds to valuable recommendations
given by friends or music enthusiasts. Serendipity can also be measured in a user
study and approximated in offline experiments based on the similarity of items and
the deviation of recommendations from obvious recommendations. Providing only
serendipitous recommendations can however be dangerous, and it is also important
that the recommendations include a set of items the user is familiar with as these
items can help to increase the user’s trust in the system.

An example of a user study on novelty and familiarity that includes 288 partici-
pants can be found in [8]. In that study the users were asked to rate recommended
songs based on excerpts of 30 seconds of duration. The recommendations included
both tracks the users already knew and tracks which were novel to them. One of
the observed results was that users rated those songs much higher which they al-
ready knew and the perceived quality of the system increased when familiar songs
were recommended. One of the insights and conclusions of the study therefore was
that a recommender should provide additional contextual information such as an
explanation as to why a certain song had been recommended.

1.4.3.3 Adaptivity, Scalability, and Robustness

The quality measures discussed so far focus mainly on the utility of the recommen-
dations for an individual user or a service provider. Beside that, other aspects can be
relevant for the practical success of a recommender system.

Adaptivity refers to the capability of an RS to quickly adapt the recommenda-
tions based on very recent events. Such an event could for instance be that a track
becomes popular over night, e.g., due to its usage in a popular TV advertisement or
its relation to some other event. In some domains such as news recommendation,
items can become outdated very quickly as well. Another perspective on adaptivity
is the system’s rate of taking changes and additions in the user profile into account.
When users rate tracks, they might expect that their preferences are immediately
taken into account, which might however not be the case if the underlying algo-
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rithm is based on a computationally expensive training phase and models are only
updated, e.g., once a day.

Scalability is a characteristic of recommender systems which is particularly rele-
vant for situations where we have to deal with millions of items and several millions
of users as it is the case in music recommendation. Techniques such as nearest-
neighborhood algorithms do not scale even to problems of modest size. Therefore,
only techniques which rely on offline pre-computation and model-building work in
practice.

Robustness typically refers to the resistance of a system against attacks by malev-
olent users who want to push or “nuke” certain artists. Recent works such as [27]
have shown that for example nearest-neighbors algorithms can be vulnerable to var-
ious types of attacks whereas model-based approaches are often more robust in that
respect.

1.5 Current Topics and Outlook

In this chapter we have discussed the basic techniques for building and evaluating
music recommender systems, which have already been successfully implemented
in various domains. In this final section we will shortly discuss three topics which
have attracted increased interest in the recommender systems research community
also outside the music recommendation field: context-awareness, the incorporation
of social web information in the recommendation process, and sequential recom-
mendation.

1.5.1 Context-Aware Recommendation

When the recommended music is “consumed” immediately, the current situation or
context of the listener can be of extreme importance. You might, for example, be
interested in different types of music depending on the time of the day or depending
on what you are currently doing. In the morning, on the way to work, you might
enjoy a different type of music than when doing sports. But the term context in music
recommendation can have even more facets. It can be the social environment (e.g.,
being part of a group or alone, one’s geographical location, and even the current
weather and your current emotional state). All these aspects may influence what type
of music will be most appropriate as a recommendation. The context may finally
refer to general and non-personal characteristics such as the time of the year (think
of recommending Christmas songs in May) or very specific ones like the set of
tracks which you have been listening to during the current session.

When thinking about our main types of recommendation approaches (collabora-
tive filtering and content-based filtering), the intuition is that CF methods are more
suited of taking context into account. For instance, a CF-based recommender that
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takes into account what your friends have been recently listening to can help to
alleviate at least some of the problems. On the contrary, traditional content-based
methods are for instance not always capable to take the cultural background of a
track into account, except for cases in which cultural information can be extracted
from tags or metadata annotations.

Kaminskas and Ricci classify the possible contextual factors in three major
groups [22]:

• Environment-related context, e.g., location, time or weather.
• User-related context, e.g., the current activity, demographical information (even

though this can be considered part of the user profile, and provides information
about the environment), and the emotional state

• Multimedia context, which relates to the idea of combining music with other
corresponding resources such as images or stories.

In the same work, the authors then review a set of context-aware prototypical
music recommenders and experimental studies in this area. They conclude that re-
search so far is “data-driven” and that researchers often tend to fuse given contextual
information into their machine learning techniques. Instead, the authors advocate a
“knowledge-based” approach, where expertise, e.g., from the field of psychology,
about the relationship between individual contextual factors and musical perception
is integrated into the recommendation systems.

1.5.2 Incorporating Social Web information

The emergence of what is called “Web 2.0” has dramatically changed how we be-
have in the online world. We are no longer pure consumers of edited content but
we actively annotate, “like” and comment items on resource-sharing platforms, we
voluntarily post information about our current situation, mood or interests on the
Social Web, review items on e-commerce sites or even write our own (micro-)blogs.

Given the discussions above, e.g., on contextual parameters that influence what
music should be recommended, it is obvious that the Participatory Web opens new
opportunities for music recommendation. On the one hand, more information about
the users, in particular their preferences, tastes and current state, can be found on-
line; on the other hand – through social annotations and tags – more information
about the tracks in the catalog becomes available.

In the last years, the exploitation of social tagging data in the recommendation
process was one of the key topics in RS research. In the context of music recom-
mendation – but also in other domains – user-contributed tags can be simply seen
as additional content information and, on principle, standard CB methods could
be applied. However, in contrast to automatically extracted or manually annotated
metadata, tagging data often contain lots of noise. While some tags for a certain
track such as “classic jazz” or “dance music” carry potentially valuable information
about the song, users may also tag an album in their personal and subjective view,
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e.g., with tags like “own it”. Other problems with tags include that there might be
malicious users who add various types of unusable or noisy tags to the data.

In [35], various methods for acquiring high-quality tags and addressing the prob-
lem of the lacking common vocabulary are proposed, see also [22]. The methods
include small-scale data collection within a defined user group and vocabulary, har-
vesting social tags from online music sites, and using tagging games or different
strategies to automatically mine tags from other web sources. A complementary
approach to harmonize the vocabulary on tagging-enabled platforms is the use of
“tag-recommenders”. Such recommenders can already be found on today’s resource
sharing platforms such as delicious.com and make tagging suggestions to the users
based on RS technology.

As discussed in [24], user-provided tags may carry different types of valuable
information about tracks such as genre, mood or instrumentation that can help to
address some challenging tasks in Music Information Retrieval such as similarity
calculation, clustering, (faceted) search, music discovery and, of course, music rec-
ommendation. The major research challenges include however the detection and
removal of noise and, as usual, cold start problems and the issue of lacking data for
niche items.

1.5.3 Playlist Generation

As mentioned in Section 1.3, music is typically played in a sequential manner, ac-
cording to playlists. This means that the relationships between the successive tracks
is important. For instance, the transitions between the tracks may be important, as
well as the overall diversity of the recommended tracks, the general topics or themes,
the musical path from the first track to the last track, etc. For that reason, we can
often consider the music recommendation problem as a playlist generation problem,
i.e., the recommendation of an ordered collection of tracks.

Although playlist generation can be considered as a special case of track rec-
ommendation, it goes slightly beyond, as a playlist itself can be considered as an
artistic resource. Moreover, as users like to listen to tracks they already know and
rarely want to discover one single track at a time, providing static recommendation
lists as done for instance for movies is not often relevant. For that reason, several
track recommendation scenarios actually correspond to a form of playlist genera-
tion:

1. Simple playlist generation: a seed track is selected by the user, or some set of
desired characteristics such as a minimum tempo, a set of genres, etc. and a
whole playlist is generated. This scenario is for instance used by iTunes Genius
and the playlist generation service of The Echo Nest.

2. Repeated track recommendation for playlist construction: each time the user
adds a track, a new list of recommended tracks is provided, and the user can use
this list to add a new track to the playlist. This scenario was for instance used in
the Rush application [3].
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3. Radios: recommended tracks are automatically played one after the other and
the user can only skip them if he or she does not want to listen to them. This sce-
nario requires few user effort and is the most frequent in commercial platforms
(Spotify, Pandora, last.fm, etc.).

Playlist generation is a part of the research literature since the early 2000’s [28]
but did not attract much attention until recently. Among the recent work, [15] pro-
posed a frequent pattern mining approach where patterns of latent topics are ex-
tracted from user playlists and then used to compute recommendations. [14] ex-
ploited long-term preferences including artists liked on Facebook and usage data
on Spotify to build playlists which consist in the most popular tracks of the artists
who are the most similar to the artists the user likes. A statistical approach was pre-
sented in [26], where random walks on a hypergraph are used to iteratively select
similar tracks. In the same spirit, [11] proposed a sophisticated Markov model in
which tracks are represented as points in the Euclidean space and transition prob-
abilities are derived from the corresponding Euclidean distances. The coordinates
of the tracks are learned using a likelihood maximization heuristic. [19] went fur-
ther by taking into account the characteristics of the tracks that are already in the
playlist, and proposed an heuristic which tries to mimic these characteristics in the
generation process.

1.6 Concluding Remarks

The way we consume music has dramatically changed during the last decade. To-
day, millions of tracks are instantly available through an ever-increasing number
of online music services. Finding suitable music for a certain listening situation or
discovering new music becomes more and more challenging given the millions of
songs which are available for instant download. Music recommenders shall help
users in different ways, e.g., discovering new songs or artists, exploring the cata-
log, creating personalized playlists or recommending music that corresponds to the
situation of the user.

1.7 Further Reading

In this chapter we have introduced the basic techniques for building such systems,
which have been successfully applied in industry in various domains over the last
decade. We provided short explanations of several such techniques. For a compre-
hensive overview of other methods, see for instance [1, 23, 32, 20].

We have shown that music recommendation has some particularities which have
to be taken into account. While some of them – like certain types of context – are
already addressed in current research, we believe that in particular psychological
aspects of music perception have to be taken into account better in future research on
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music recommendation. For an overview on context-aware music recommendation,
see [22]. For an overview on context-aware recommendation in general, see also [2].

We have also introduced some of the basic techniques for evaluating the recom-
mendations and pointed out some limitations of the current evaluation strategies.
More details about state-of-the-art user-centric evaluation procedures can be found
in [30]. Further questions of experimental design, measurement and analysis, which
are common in social sciences, are covered in detail in [29], and comprehensive
overviews of the common offline evaluation schemes for recommender systems can
be found in [16, 33].
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