
HAL Id: hal-03012420
https://hal.science/hal-03012420

Submitted on 4 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kinetic theory of one-dimensional homogeneous
long-range interacting systems with an arbitrary

potential of interaction
Jean-Baptiste Fouvry, Pierre-Henri Chavanis, Christophe Pichon

To cite this version:
Jean-Baptiste Fouvry, Pierre-Henri Chavanis, Christophe Pichon. Kinetic theory of one-dimensional
homogeneous long-range interacting systems with an arbitrary potential of interaction. Physical Re-
view E , 2020, 102 (5), pp.052110. �10.1103/PhysRevE.102.052110�. �hal-03012420�

https://hal.science/hal-03012420
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 102, 052110 (2020)

Kinetic theory of one-dimensional homogeneous long-range interacting systems
with an arbitrary potential of interaction

Jean-Baptiste Fouvry ,1 Pierre-Henri Chavanis,2 and Christophe Pichon 1,3

1CNRS and Sorbonne Université, UMR 7095, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris, France
2Laboratoire de Physique Theorique, CNRS and UPS, Université de Toulouse, 31062 Toulouse, France

3Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, 02455 Seoul, Republic of Korea

(Received 29 July 2020; accepted 13 October 2020; published 6 November 2020)

Finite-N effects unavoidably drive the long-term evolution of long-range interacting N-body systems. The
Balescu-Lenard kinetic equation generically describes this process sourced by 1/N effects but this kinetic
operator exactly vanishes by symmetry for one-dimensional homogeneous systems: such systems undergo a
kinetic blocking and cannot relax as a whole at this order in 1/N . It is therefore only through the much
weaker 1/N2 effects, sourced by three-body correlations, that these systems can relax, leading to a much
slower evolution. In the limit where collective effects can be neglected, but for an arbitrary pairwise interaction
potential, we derive a closed and explicit kinetic equation describing this very long-term evolution. We show
how this kinetic equation satisfies an H -theorem while conserving particle number and energy, ensuring the
unavoidable relaxation of the system toward the Boltzmann equilibrium distribution. Provided that the interaction
is long-range, we also show how this equation cannot suffer from further kinetic blocking, i.e., the 1/N2 dynamics
is always effective. Finally, we illustrate how this equation quantitatively matches measurements from direct
N-body simulations.

DOI: 10.1103/PhysRevE.102.052110

I. INTRODUCTION

The statistical mechanics and kinetic theory of systems
with long-range interactions is a topic of great interest [1]
because of its unusual properties (ensembles inequivalence,
negative specific heats, non-Boltzmannian quasistationary
states, instabilities, phase transitions...) and its applications
in various domains of physics such as plasma physics [2],
astrophysics [3], or two-dimensional hydrodynamics [4,5].

Closed systems with long-range interactions generically
experience two successive types of relaxations. There is first a
fast collisionless relaxation driven by the mean field toward a
non-Boltzmannian quasistationary state. This corresponds to
the process of violent relaxation described by Lynden-Bell [6]
for collisionless stellar systems governed by the Vlasov-
Poisson equations (see, e.g., Ref. [7]). This phase takes place
within a few dynamical times (independent of the number of
particles) and ends when the system has reached a virialized
state, i.e., a stable steady state of the Vlasov equation. Then, a
slow collisional relaxation toward the Boltzmann distribution
of statistical equilibrium takes place. It is driven by discrete-
ness effects (granularities) due to finite values of N , the total
number of particles. The relaxation time expressed in units of
the dynamical time diverges with the number of particles N .1

In this sense, the lifetime of the quasistationary state becomes

1For stellar systems N represents the number of stars in the system
[or the number of stars in the Jeans sphere (nλ3

J )]; in plasma physics
N represents the number of ions in the Debye sphere (nλ3

D).

infinite when N → +∞. Nevertheless, for large but finite val-
ues of N , the system evolves secularly, passing adiabatically
by a succession of quasistationary states.

The derivation of kinetic equations describing the sec-
ular evolution of systems with long-range interactions has
a rich history (see, e.g., the introduction of Refs. [8,9]
for a short account). Landau [10] first derived a kinetic
equation for Coulombian neutral plasmas by expanding the
Boltzmann [11] equation in terms of a small deflection pa-
rameter, namely the velocity deviation experienced by a
particle during a “collision.” An equivalent kinetic equa-
tion was obtained independently by Chandrasekhar [12] (and
generalized by Rosenbluth et al. [13]) for stellar systems.
Chandrasekhar started from the Fokker-Planck equation and
calculated the diffusion and friction coefficients using an im-
pulse approximation. However, the approaches of Landau and
Chandrasekhar have a phenomenological character and ignore
collective effects and spatial inhomogeneity. This leads to
difficulties such as the logarithmic divergence of the collision
term at large impact parameters.

Systematic and rigorous approaches directly starting from
the N-body dynamics (or from the Liouville equation) were
developed by Bogoliubov [14] using a hierarchy of equations
for the reduced distribution functions (nowadays called the
BBGKY hierarchy) and by Prigogine and Balescu [15] us-
ing diagrammatic techniques. These hierarchies of equations
may be closed by considering an expansion of the equa-
tions in powers of the small coupling parameter 1/N (with
N � 1) which measures the strength of the correlation func-
tions. Initially, only two-body correlation functions, which
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are of order 1/N , were taken into account. This corresponds
to the weak coupling approximation of plasma physics.
These methods led to the Balescu-Lenard equation [16,17]
which takes into account collective effects (dynamical De-
bye shielding) thereby removing the logarithmic divergence
that occurs in the Landau equation at large scales. This ki-
netic equation describes the effect of two-body encounters
and is essentially exact at order 1/N . It can also be de-
rived from a quasilinear theory based on the Klimontovich
equation for the discrete distribution function [18]. The orig-
inal Balescu-Lenard equation (applying to neutral plasmas)
is valid for spatially homogeneous systems but it has re-
cently been generalized to inhomogeneous systems by using
angle-action variables [19,20] with specific applications to
self-gravitating systems [21–24] and to the magnetized phase
of the Hamiltonian mean field (HMF) model [25]. More gen-
erally, the Balescu-Lenard kinetic equation is valid for any
system with long-range interactions in arbitrary dimension of
space [26]. For usual three-dimensional (3D) systems, this
kinetic equation conserves the particle number and the energy,
and satisfies an H-theorem for the Boltzmann entropy. As
a result, it relaxes toward the Boltzmann distribution which
is the maximum entropy state (most probable state) at fixed
particle number and energy. Since the Balescu-Lenard equa-
tion is valid at order 1/N it describes the relaxation of the
system on a timescale of order Ntd, with td the dynamical
time. Actually, for Coulombian plasmas and stellar systems,
there is a logarithmic correction due to strong collisions at
small impact parameters, so that the relaxation time scales as
(N/ ln N )td.

Apart from specificities inherent to systems with long-
range interactions (the process of violent relaxation, the ex-
istence of transient non-Boltzmannian quasistationary states,
the very long relaxation time, the need to account for spatially
inhomogeneous distributions, and the importance of collective
effects) the results of the kinetic theory at order 1/N are
consistent with the original Boltzmann picture of relaxation
in a dilute gas. In a sense, the Balescu-Lenard equation (and
more specifically the homogeneous Landau equation) is a
descendent of the Boltzmann equation: the collision term is
the product of two distribution functions F (1)F (2) charac-
teristic of any two-body collision term and the derivation of
the conservation laws and of the H-theorem is essentially the
same as that given by Boltzmann.2

However, for 1D homogeneous systems, the Balescu-
Lenard collision term vanishes identically.3 As a result, the
dynamics sourced by two-body correlations is frozen at order
1/N , so that there is no evolution of the overall distribution
on a timescale Ntd. This is a situation of kinetic blocking.
The system is therefore expected to evolve dynamically under

2The Balescu-Lenard equation exhibits a new type of nonlinearity
which is directly related to the collective nature of the interaction,
but this does not affect the derivation of the conservation laws and of
the H -theorem.

3This is also the case for the Boltzmann and Landau collision
terms. By contrast, for one-dimensional inhomogeneous systems, the
Balescu-Lenard and Landau collision terms written with angle-action
variables are nonzero.

the effect of nontrivial three-body (or higher) correlations
implying that the relaxation time should scale as N2td (or be
even larger).4 The peculiarity of 1D homogeneous systems
was first noticed by Eldrige and Feix [27] in the context of 1D
plasmas [28]. They showed that the Balescu-Lenard collision
term vanishes and conjectured the existence of a nonzero
1/N2 collision term. The corresponding N2td scaling of the
relaxation time was confirmed by Dawson [29] from direct
N-body simulations. Later, Rouet and Feix [30] illustrated the
striking difference that exists between the relaxation of the
system as a whole (overall distribution) which takes place on a
timescale N2td and the relaxation of test (or labeled) particles
which takes place on a timescale Ntd. The stochastic evolution
of the test particles is governed by a Fokker-Planck equation
which can be obtained from the Balescu-Lenard equation by
making a bath approximation, i.e., by fixing the distribution
of the field particles. This procedure transforms an integro-
differential equation into a differential equation. Since in 1D
the test particles acquire the distribution of the field particles
(bath) whatever its distribution function (while this is true only
for the Boltzmann distribution in 3D) this explains why a 1D
homogeneous system does not evolve on a timescale Ntd.

Similar results were found later for axisymmetric distri-
butions of 2D point vortices when the profile of angular
velocity �(r, t ) is monotonic [31–36] and for 1D systems
with long-range interactions such as the HMF model [37,38]
and classical spin systems with anisotropic interaction (or
equivalently long-range interacting particles moving on a
sphere) [39–42]. In the context of the HMF model, it was
first believed that the relaxation time was anomalous, scaling
with the number of particles as N1.7td [43]. However, it was
later demonstrated [44–46] that this anomalous exponent was
due to small size effects and that the correct scaling is indeed
N2td in agreement with kinetic theory [26].5 The collisional
relaxation of the HMF model was studied by Ref. [47] who
found that, for certain initial conditions, the distribution func-
tion F (v, t ) can be fitted by polytropes with a time-dependent
index. When the polytropic index reaches a critical value, the
distribution function becomes dynamically unstable (with re-
spect to the Vlasov equation) and a dynamical phase transition
from a homogeneous phase to an inhomogeneous phase takes
place. These authors stressed the importance of deriving an
explicit kinetic equation at order 1/N2 to study the collisional
relaxation of 1D homogeneous systems in greater detail.

A first step in that direction was made by Ref. [45]. They
started from the equations of the BBGKY hierarchy trun-
cated at order 1/N2, neglected collective effects, and used
a computer algebra system to solve the truncated hierarchy
of equations. However, the form of the collision term that
they obtained was not suitable to study the kinetic equation
in detail and solve it. A second step was made by Ref. [46]
who used a similar procedure and obtained a more tractable
expression of the kinetic equation at order 1/N2. They proved
its well-posedness and established its main properties: conser-
vation laws, H-theorem, and relaxation toward the Boltzmann

4We shall prove in this paper that the relaxation time is never larger
than N2td for long-range interactions.

5Similar results were obtained for spin systems in Refs. [41,42].

052110-2



KINETIC THEORY OF ONE-DIMENSIONAL HOMOGENEOUS … PHYSICAL REVIEW E 102, 052110 (2020)

distribution. They also carried out detailed comparisons with
direct numerical simulations and found a good agreement at
sufficiently high temperatures where collective effects (that
are neglected in their kinetic equation) are weak enough.
The kinetic equation at order 1/N2 is fundamentally different
from the Boltzmann equation (or from the related Landau and
Balescu-Lenard equations) because it involves the product of
three distribution functions instead of just two, in line with
the fact that the evolution is driven by three-body correlations
instead of two-body correlations. Therefore, it is remarkable
that an H-theorem can still be proven in this case by a method
which is completely different from that of Boltzmann. This
highlights that the validity of the H-theorem goes beyond the
original Boltzmann picture. This also gives a more general
justification (from the kinetic theory angle) of the maximum
entropy principle that is used to determine the statistical equi-
librium state of the system.

The kinetic equation derived in Ref. [46] was restricted
to the HMF model, i.e., to a potential of interaction which
involves only one Fourier mode. In the present paper, we go
beyond these limitations, namely, we generalize the kinetic
equation to an arbitrary potential of interaction. This is an
important generalization because it allows us to treat more
general situations of physical interest spanning a wider va-
riety of long-range interacting potentials. In the limit where
collective effects can be neglected, i.e., in the limit of dy-
namically hot systems that only weakly amplify perturbations,
we present a closed and explicit kinetic equation generically
describing the collisional relaxation of the system on N2td
timescales, as driven by three-body correlations. Strikingly,
for long-range interactions, we show that no further kinetic
blocking is possible. Finally, in addition to exploring the
generic properties of this collision operator, we also quantita-
tively compare its predictions with direct N-body simulations.

The paper is organized as follows. In Sec. II, we present
the kinetic equation describing relaxation at order 1/N2, as
given by Eq. (4). The detailed procedure used to derive that
equation is described in Appendix A, while the effective cal-
culations were performed using a computer algebra system
(see Supplemental Material [48]). In Sec. III, we present the
main properties of this kinetic equation, in particular its con-
servation laws and its H-theorem. In Sec. IV, we explore in
detail the steady states of this kinetic equation, highlighting
in particular that, as long as the interaction potential is long-
range, 1/N2 effects unavoidably lead to the full relaxation of
the system toward the Boltzmann distribution. In Sec. V, we
show that the kinetic equation is well-posed, i.e., that one can
compute explicitly its prediction. In Sec. VI, we illustrate how
this equation quantitatively matches measurements from di-
rect numerical simulations, for initial conditions dynamically
hot enough. Finally, we conclude in Sec. VII.

II. THE KINETIC EQUATION

We are interested in the long-term dynamics of a (peri-
odic) 1D long-range interacting system. We assume that it
is composed of N particles of individual mass μ = Mtot/N ,
with Mtot the system’s total mass. The canonical phase space
coordinates are denoted by (θ, v), with θ a 2π -periodic angle

and v the velocity. The system’s total Hamiltonian then reads

H = 1

2

N∑
i=1

v2
i + μ

N∑
i< j

U (θi, θ j ), (1)

where U (θi, θ j ) stands for the considered pairwise interaction
potential. We naturally assume that the potential satisfies the
symmetries U (θi, θ j ) = U (|θi − θ j |). As such, it can be ex-
panded in Fourier-space as

U (θ1, θ2) = −
∑

k

Uk eik(θ1−θ2 ), (2)

where the coefficients, Uk ∈ R, satisfy the symmetry
U−k = Uk . In Eq. (2), we also introduced an overall negative
sign, so that one generically has Uk � 0 for an attractive
potential.

For an homogeneous system, the instantaneous state of the
system is described by its velocity distribution function (DF),
F (v, t ), which we normalise as

∫
dθdvF = Mtot, with Mtot the

total mass of the system. To describe the long-term relaxation
of the system, one must characterise the long-term evolution
of that DF through a closed self-consistent kinetic equation.

As derived in Refs. [19,20] and references therein, if one
limits oneself only to 1/N effects, the dynamics of F (v, t )
is described by the homogeneous Balescu-Lenard equation.
With the present notations, it reads

∂F (v)

∂t
= 2π2μ

∂

∂v

[∑
k

|k| |Uk|2
|εk (k v)|2

∫
dv1 δD(v − v1)

×
(

∂

∂v
− ∂

∂v1

)
F (v)F (v1)

]
, (3)

where the time dependence of the DFs was dropped to shorten
the notations. In that equation, we also introduced the di-
electric function, εk (ω), whose explicit expression is given in
Eq. (B3).

Because of the resonance condition, δD(v − v1), the diffu-
sion flux from the Balescu-Lenard Eq. (3) exactly vanishes.
Indeed, only local two-body resonances of the form v = v1

are permitted, which, because of the exact local cancellation
of the sum of the drift and diffusion coefficients, cannot drive
any relaxation of the system’s mean DF. One-dimensional ho-
mogeneous systems are generically kinetically blocked w.r.t.
two-body correlations at order 1/N . This drastically slows
down the system’s long-term evolution. As a consequence,
it is only through weaker three-body correlations, via 1/N2

effects, that such systems can relax to their thermodynamical
equilibrium. This is the dynamics on which the present paper
is focused.

On the one hand, the effective derivation of the sys-
tem’s appropriate kinetic equation is straightforward, as the
roadmap to follow is systematic. On the other hand, these
calculations rapidly become cumbersome in practice given the
large numbers of terms that one has to deal with. In addition,
to finally reach a simple closed form, one also has to perform
numerous symmetrizations and relabellings. All in all, to al-
leviate the technical aspects of these calculations, we carried
out all our derivation using Mathematica with a code that can
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be found in the Supplemental Material [48]. In this paper, we
will restrict ourselves to the outline of the derivation.

The key details of our approach are spelled out in Ap-
pendix A. In a nutshell, the main steps of the derivation are
as follows. (i) First, we derive the usual coupled BBGKY
evolution equations for the one-, two-, and three-body distri-
bution functions, i.e., the equations that fully encompass the
system’s dynamics at order 1/N2. (ii) Using the cluster expan-
sion [49], we can rewrite these evolution equations as coupled
equations for the one-body DF, F (v, t ), and the two- and
three-body correlation functions. At this stage, the evolution
equations are still coupled to one another, but are ordered w.r.t.
the small parameter 1/N . (iii) We may then truncate these
equations at order 1/N2. In addition, at this stage, we also
neglect the contribution from collective effects, assuming that
the system is dynamically hot so that it is not efficient at self-
consistently amplifying perturbations.6 Another key trick is to
split the two-body correlation functions in two components,
respectively associated with the 1/N and 1/N2 contributions.
(iv) Finally, having obtained a set of four (well-posed) coupled
partial differential equations, we may solve them explicitly in
time. At that stage, the key assumption is Bogoliubov’s ansatz,
i.e., the assumption that the system’s mean DF evolves on
timescales much longer than its correlation functions. Follow-
ing various relabellings, symmetrizations, and integrations by
part, we finally obtain an explicit and closed expression for the
system’s 1/N2 collision operator. The hardest part of this cal-
culation is the appropriate use of the resonance conditions to
simplify accordingly the arguments of the functions appearing
in the kinetic equation.

All in all, the kinetic equation then reads

∂F (v)

∂t

= 2π3μ2 ∂

∂v

[∑
k1,k2

k2
2

k2
1 (k1 + k2)

U (k1, k2)P
∫

dv1

(v − v1)4

×
∫

dv2 δD[k · v]

(
k · ∂

∂v

)
F3(v)

]
, (4)

where the sum over k1, k2 is restricted to the indices such that
k1, k2, and (k1+k2) are all nonzero. In Eq. (4), to shorten the
notations, we introduced the velocity vector v = (v, v1, v2),
as well as F3(v) = F (v)F (v1)F (v2). Finally, we introduced
the resonance vector

k = (k1 + k2,−k1,−k2) (5)

as well as the coupling factor

U (k1, k2) = [(k1 + k2)Uk1Uk2 − k1Uk1+k2Uk2 − k2Uk1+k2Uk1 ]2.

(6)
In Eq. (4), we also introduced Cauchy’s principal value, as P ,
which acts on the integral

∫
dv1. We postpone to Sec. V the

proof of its well-posedness.
Of course, the similarities between the 1/N Balescu-

Lenard Eq. (3) and the present 1/N2 equation are striking.

6Eventually, this assumption should be lifted to describe colder
systems.

We emphasise that Eq. (4) is proportional to μ2 ∼ 1/N2, so
that it effectively describes a (very) slow relaxation on N2td
timescales. In addition, we also note that the collision operator
involves the DF three times, which stems from the fact that
the relaxation is sourced by three-body correlations. Such
correlations are coupled through a resonance condition on
three distinct velocities, namely via the factor δD[k · v]. This
is one of the key changes w.r.t. to the 1/N kinetic Eq. (3),
as the present three-body resonances allow for nontrivial and
nonlocal kinetic couplings, driving a nonvanishing overall
relaxation. Equation (4) also differs from Eq. (3) in one other
significant manner, in as much as it does not involve the
dielectric function, εk (ω), since collective effects have been
neglected at this stage [we suggest in footnote 7 how collective
effects may be accounted for in Eq. (4)].

Equation (4) is the main result of the paper: this closed
and explicit kinetic equation is the appropriate self-consistent
kinetic equation to describe the long-term evolution of a
dynamically hot one-dimensional homogeneous system, as
driven by 1/N2 effects. It is quite general since Eq. (4) applies
to any arbitrary long-range interaction potentials, as defined
in Eq. (2). Finally, Eq. (4) holds as long as the system remains
linearly Vlasov stable, to prevent it from being driven to an
inhomogeneous state.

III. PROPERTIES

In this section, we explore some of the key properties of
the kinetic Eq. (4).

A. Conservation laws

The kinetic Eq. (4) satisfies various conservation laws, in
particular the conservation of the total mass, M(t ), momen-
tum, P(t ), and energy, E (t ). Ignoring irrelevant prefactors,
these quantities are defined as

M(t ) =
∫

dv F (v, t ), P(t ) =
∫

dv v F (v, t ),

E (t ) =
∫

dv
1

2
v2 F (v, t ). (7)

To recover the conservation of these quantities, let us first
rewrite Eq. (4) as

∂F (v)

∂t
= ∂

∂v
F (v, t ), (8)

with F (v, t ) the diffusion flux. We can then rewrite the time
derivatives of Eq. (7) as

dM

dt
=

∫
dv

∂

∂v
F (v, t ),

dP

dt
= −

∫
dvF (v, t ),

dE

dt
= −

∫
dvvF (v, t ). (9)

The conservation of the total mass then follows from the
absence of any boundary contributions, so that one has
dM/dt = 0.

Recovering the conservation of P(t ) and E (t ) requires a
bit more finesse, as one needs to leverage the symmetry prop-
erties of the terms involved. The main trick is to study the
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symmetries of the term
∫

dvF (v). One can write∫
dvF (v) =

∑
k1,k2

(k1 + k2)
∫

dvdv1dv2 Ak1k2 (v, v1, v2),

(10)
where the expression of Ak1k2 (v, v1, v2) follows from Eq. (10)
and reads

Ak1k2 (v, v1, v2)

= 2π3μ2 k2
2

k2
1 (k1 + k2)2

U (k1, k2)P
∫

dv1

(v − v1)4

×
∫

dv2 δD[k · v]

(
k · ∂

∂v

)
F3(v). (11)

Starting from Eq. (10), one can first perform the re-
labellings {v, v1} → {v1, v2} and {k1, k2} → {−k1 − k2, k2}.
Following these changes, which are more easily performed
using a computer algebra system [48], Eq. (10) becomes∫

dvF (v) = −
∑
k1,k2

k1

∫
dvdv1dv2 Ak1k2 (v, v1, v2). (12)

Similarly, starting once again from Eq. (10), one can
also perform the relabellings {v, v2} → {v2, v1} and
{k1, k2} → {−k1, k1 + k2}. Following these changes, Eq. (10)
becomes∫

dvF (v) = −
∑
k1,k2

k2

∫
dvdv1dv2 Ak1k2 (v, v1, v2). (13)

Having obtained the symmetrized expressions from
Eqs. (10), (12), and (13), we can now go back to the com-
putation of the conserved quantities from Eq. (9). By adding
1
3 of every expression, we obtain

dP

dt
= −1

3

∑
k1,k2

∫
dvdv1dv2 Ak1k2 (v, v1, v2)

×{(k1 + k2) − k1 − k2} = 0. (14)

We can proceed very similarly for the total energy, repeat-
ing the symmetrizations which were performed to obtain the
various rewritings of the integral of the flux. Equation (9)
becomes

dE

dt
= −1

3

∑
k1,k2

∫
dvdv1dv2 Ak1k2 (v, v1, v2)

×{(k1 + k2)v − k1v1 − k2v2} = 0, (15)

owing to the presence of the resonance condition
δD[(k1 + k2)v − k1v1 − k2v2] in the expression of
Ak1k2 (v, v1, v2) in Eq. (11).

B. H-theorem

Let us define the system’s entropy as

S(t ) = −
∫

dv s[F (v, t )], (16)

with s(F ) = F ln(F ) Boltzmann’s entropy. Following the
definition from Eq. (8), the time derivative of Eq. (16) reads

dS

dt
=

∫
dv

F ′(v)

F (v)
F (v, t ). (17)

To show that the system’s entropy unavoidably and system-
atically grows with time, we use the same approach as in the
previous section. Repeating the symmetrizations which were
performed in Eqs. (12) and (13), we can rewrite Eq. (17) as

dS

dt
= 1

3

∑
k1,k2

∫
dvdv1dv2 Ak1k2 (v, v1, v2)

×
{

(k1 + k2)
F ′(v)

F (v)
− k1

F ′(v1)

F (v1)
− k2

F ′(v2)

F (v2)

}
. (18)

Luckily, returning to the definition of Ak1k2 from Eq. (11), we
note that Eq. (18) can be rewritten under the form

dS

dt
= 2π3μ2

3

∑
k1,k2

∫
dvdv1dv2

k2
2

k2
1 (k1 + k2)2

U (k1, k2)

×P
[

1

(v − v1)4

]
δD

[
k · v

]
F3(v)

×
[

(k1 + k2)
F ′(v)

F (v)
− k1

F ′(v1)

F (v1)
− k2

F ′(v2)

F (v2)

]2

. (19)

As all the terms in these integrals are positive, in particular the
interaction coupling U (k1, k2) from Eq. (6), the kinetic Eq. (4)
therefore satisfies an H-theorem, i.e., one has

dS

dt
� 0. (20)

This is the essential result of the present section, as we have
just proven that the kinetic Eq. (4) unavoidably leads to an
irreversible relaxation of the system. In Sec. IV, we will use
the expression of the entropy increase from Eq. (19) to deter-
mine which DFs are the equilibrium states of the diffusion,
i.e., which DFs satisfy dS/dt = 0.

C. Dimensionless rescaling

We introduce the system’s velocity dispersion as

σ 2 = 1

Mtot

∫
dθdv v2 F (v). (21)

This entices us then to also introduce the dimensionless ve-
locity, u, and time, t , as

u = v

σ
; t = t

td
, (22)

with td = 1/σ the system’s dynamical time. Similarly, it is
natural to introduce the dimensionless probability distribution
function (PDF)

F (u) = 2πσ

Mtot
F (uσ ), (23)

which satisfies the normalization condition
∫

duF (u) = 1.
We note that this PDF has a (dimensionless) unit velocity
dispersion given by

∫
du u2F (u) = 1. Finally, we must also

introduce a quantity to assess the dynamical temperature of
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the system, and the strength of the associated underlying
collective effects. Following Appendix B, we define the di-
mensionless stability parameter

Q = σ 2

UmaxMtot
, (24)

where we introduced Umax = maxk Uk . The larger Q, the hot-
ter the system, i.e., the weaker the collective effects. Given
Umax, we may finally define the dimensionless interaction
coefficients U k = Uk/Umax.

Using these conventions, we can rewrite Eq. (4) under the
dimensionless form

∂F (u)

∂t

= π

2

1

Q4N2

∂

∂u

{∑
k1,k2

k2
2

k2
1 (k1 + k2)

U (k1, k2)

× P
∫

du1

(u − u1)4

∫
du2

[
δD[k · u]

(
k · ∂

∂u

)
F 3(u)

]}
,

(25)

where the coupling factor U (k1, k2) naturally follows from
Eq. (6) with the replacement Uk → U k . Finally, Eq. (25) can
be rewritten as a continuity equation, reading

∂F (u)

∂t
= π

2

1

Q4N2

∂

∂u
[F (u)], (26)

where the dimensionless instantaneous flux, F (u), follows
from Eq. (25).

Equation (25) is an enlightening rewriting of the kinetic
equation, as it clearly highlights the expected relaxation time
of a given system. Assuming that the term within brackets is of
order unity, Eq. (25) states therefore that the relaxation time,
tr, of the system scales like

tr � Q4N2td. (27)

In particular, we recover that the hotter the system, the
slower the long-term relaxation. As Eq. (4) was derived while
neglecting collective effects, i.e., in the limit Q � 1, the re-
laxation will only occur on very very long timescales because
of the factor Q4 in Eq. (27).

IV. STEADY STATES

In the previous section, we showed that Eq. (4) satisfies
an H-theorem for the Boltzmann entropy. Let us now explore
what are the steady states of that evolution equation, i.e., the
DFs such that Eq. (4) predicts ∂F/∂t = 0.

A. Boltzmann distribution

We expect the thermodynamical equilibria originating
from relaxation to take the form of (possibly shifted) homo-
geneous Boltzmann DF reading

FB(v) = C e−β(v−v0 )2
, (28)

with β the inverse temperature, and C a normalization con-
stant. These DFs maximise the Boltzmann entropy at fixed

mass, momentum, and energy. It is straightforward to check
that such DFs are equilibrium solutions of the kinetic Eq. (4).
Indeed, noting that the vector k from Eq. (5) is of zero sum,
we can write

∂FB(v)

∂t
∝ δD[k · v](k · v) = 0. (29)

This is an important result, as it highlights that homogeneous
Boltzmann distributions are indeed equilibrium solutions of
the 1/N2 kinetic Eq. (4). In the coming sections, thanks to
the H-theorem, we will strengthen this result by showing that
homogeneous Boltzmann DFs are in fact the only equilibrium
solutions of the present kinetic equation, whatever the consid-
ered long-range interacting potential.

B. Constraint from the H-theorem

Following the computation of dS/dt in Eq. (20), we
can now determine what are the most generic steady
states of the kinetic Eq. (4). Assuming that there exists
k such that U (k1, k2) 
= 0, and introducing the function
G(v) = F ′(v)/F (v), a DF nullifies the rate of entropy if it
satisfies

∀v1, v2 : G

(
k1v1 + k2v2

k1 + k2

)
= k1G(v1) + k2G(v2)

k1 + k2
. (30)

In essence, Eq. (30) takes the form of a weighted mean, with
weights k1 and k2. As a consequence, for Eq. (30) to be satis-
fied for all v1 and v2, the function v �→ G(v) must necessarily
be a line, i.e., one must have

G(v) = −2β(v − v0), (31)

with β positive to satisfy the constraint
∫

dθdvF (v) = Mtot.
Recalling that G(v) = F ′(v)/F (v), Eq. (31) immediately in-
tegrates to the (shifted) homogeneous Boltzmann DF from
Eq. (28), which is already a known equilibrium state, as de-
tailed in Eq. (29).

As a conclusion, provided that there exists at least one
U (k1, k2) 
= 0, the only equilibrium DFs of the kinetic Eq. (4)
are the (shifted) homogeneous Boltzmann distributions. This
is an important result. Indeed, while any stable DF, F (v),
is systematically an equilibrium distribution for the 1/N
dynamics of long-range interacting homogeneous systems,
only homogeneous Boltzmann DFs are equilibrium distribu-
tions for the underlying 1/N2 dynamics. Since the entropy is
bounded from above, the system necessarily relaxes toward
these DFs.

C. Constraint from the interaction potential

In the previous discussion, to recover the unicity of the
steady states, we had to assume that there existed at least one
U (k1, k2) 
= 0. Let us now briefly explore the implications of
that assumption.

One can note that the flux from Eq. (4) exactly vanishes if,
for all k1, k2 > 0, one has

(k1 + k2)Uk1Uk2 = k1Uk1+k2Uk2 + k2Uk1+k2Uk1 . (32)

An interaction potential that systematically satisfies the con-
straint from Eq. (32) leads to a vanishing flux.
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Let us therefore consider n > 0 as the smallest index
such that Un 
= 0. Considering the case (k1, k2) = (n, n)
in Eq. (32), we obtain U2n = Un. Repeating the
operation with (k1, k2) = (n, 2n), we can subsequently
obtain U3n = U2n = Un. Proceeding by recurrence with
(k1, k2) = (n, k × n), we can finally conclude that
Un = U2n = ... = Uk×n = .... In a similar fashion, let
us consider a number n′ > 0, with n′ = k × n + d and
0 < d < n. By considering the pair (k1, k2) = (k × n, d ) in
Eq. (32), we conclude that Un′ = 0, where we used the fact
that Ud = 0 by assumption since d < n.

To summarize, the only nontrivial solutions to the con-
straint from Eq. (32) are indexed by an integer n > 0, and read

Uk =
⎧⎨⎩0 if k = 0,

U0 if |k| > 0 and k ≡ 0 mod n,

0 otherwise.
(33)

Thankfully, once the Fourier transform of the potential has
been characterized via Eq. (33), one can straightforwardly
compute its expression in θ -space. It reads

U (θ ) = U0

[
1 − 1

n

n−1∑
k=0

δD

(
θ − k

π

n

)]
. (34)

The generic class of potentials from Eq. (34) are the only
potentials for which the flux from Eq. (4) systematically
vanishes, whatever the DF. Because Eq. (34) involves Dirac
deltas, it does not correspond to a long-range interaction, but
rather to an exactly local interaction. Of particular interest is
the case n = 1, which leads to the simple Dirac interaction,
U (θ ) = U0[1 − δD(θ )]. The dynamics driven by this potential
is identical to the dynamics of pointwise marbles on the circle
that would undergo hard collisions. In such a system, when
two marbles collide, they exactly reverse their velocity: this
cannot induce any relaxation of the system’s overall DF, F (v).
Hence, we have shown that systems with local interactions
generically undergo a kinetic blocking also for the 1/N2 dy-
namics. Following Eq. (34), we have also shown that there
exist no long-range interaction potentials for which one can
devise a kinetic blocking of the 1/N2 kinetic blocking. This
is an important result. As soon as the considered interaction
potential, U (θ ), is not exactly local, the homogeneous Boltz-
mann DFs from Eq. (28) are the only equilibrium states of the
kinetic Eq. (4). Furthermore, the H-theorem guarantees that
these equilibrium states are reached for t → +∞ (in practice
for t � N2td). Three-point correlations are always able to in-
duce relaxation for long-range interacting homogeneous 1D
systems.

V. WELL-POSEDNESS

As a result of the presence of a high-order resonance
denominator in Eq. (4), it is not obvious a priori that this
equation is well-posed, i.e., that there are no divergences when
v1 → v. We will now show that Eq. (4) can be rewritten
under an alternative form allowing for the principal value to
be computed. The required symmetrizations and relabellings
are in fact quite subtle.

Let us first rewrite Eq. (4) under a form that better cap-
tures its resonant structure. We define the set of fundamental
resonances as

{(k, k′) | 0 < k, k′}. (35)

Then, for a given fundamental resonance, (k, k′), there exists a
set of resonance pairs, (k1, k2), associated with the resonance
numbers appearing in the sum of Eq. (4). This set reads

R(k, k′) = {(k, k′), (k + k′,−k), (k,−k − k′),

(k′, k), (k + k′,−k′), (k′,−k − k′)}, (36)

noting that even for k = k′, this set still contains six elements.
We also note that all the elements (k1, k2) in R(k, k′) are such
that k1 > 0.

Following these definitions, we can rewrite Eq. (4) as

∂F (v)

∂t
= 2π3μ2 ∂

∂v

[ ∑
k,k′>0

U (k, k′)P
∫

dv1

(v − v1)4

×
∑

(k1,k2 )∈R(k,k′ )

k2
2

k2
1 (k1 + k2)

×
∫

dv2 δD[k · v]

(
k · ∂

∂v

)
F3(v)

]
. (37)

To obtain the correct prefactor in Eq. (37), we noted that
the resonance pairs (k1, k2) and (−k1,−k2) have the exact
same contribution to the flux, hence the restriction to the sole
elements with k1 > 0 in R(k, k′), in Eq. (36). We also note
that the fundamental resonances (k, k′) and (k′, k) have the
exact same contribution to the overall diffusion flux. All in
all, these two remarks justify why Eqs. (4) and (37) share the
exact same prefactor.

The main benefit from Eq. (37) is that all the resonance
pairs (k1, k2) associated with the same fundamental resonance
(k, k′) share the exact same coupling factor, U (k, k′), as al-
ready introduced in Eq. (6). To further shorten the notations,
we can subsequently rewrite Eq. (37) as

∂F (v)

∂t
= 2π3μ2 ∂

∂v

[ ∑
k,k′>0

U (k, k′)F(k,k′ )(v)

]
, (38)

where F(k,k′ )(v) stands for the flux generated by the funda-
mental resonance (k, k′) and reads

F(k,k′ )(v) = P
∫

dv1

(v − v1)4

∑
(k1,k2 )∈R(k,k′ )

C(k1,k2 )(v, v1). (39)

Here, C(k1,k2 )(v, v1) stands for the contribution from the reso-
nance pair (k1, k2) associated with the fundamental resonance
(k, k′). Its expression naturally follows from Eq. (37) and,
given Eq. (5), reads

C(k1,k2 )(v, v1) = k2
2

k2
1 (k1 + k2)

∫
dv2 δD[k · v]

(
k · ∂

∂v

)
F3(v).

(40)
The main step to obtain a well-posed writing for the ki-

netic equation is to note that in Eq. (37), we perform an
integration w.r.t. dv1dv2. As a consequence, we can propose
an alternative for C(k1,k2 )(v, v1) by performing the relabelling
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v1 ↔ v2. Following that relabeling (see Ref. [48]), we obtain
an alternative writing for C(k1,k2 )(v, v1) reading

C (k1,k2 )(v, v1) = k2
1

k2
2 (k1 + k2)

∫
dv2 δD[k · v]

(
k · ∂

∂v

)
F3(v),

(41)
where, similarly to Eq. (5), we introduced the vector

k = (k1 + k2,−k2,−k1), (42)

where k1 and k2 are flipped w.r.t. Eq. (5). To obtain Eq. (41),
we used the presence of the Dirac delta to make sure that
the principal value appears under the form P[1/(v − v1)4].
The main changes between Eqs. (40) and (41) is a change
in the prefactor and the resonance vector to consider. At
this stage, thanks to this alternative writing, we now have at
our disposal all the needed ingredients to write a well-posed
expression for the flux F(k,k′ )(v).

The next trick will be to use Eq. (41) on a well chosen
subset of the resonance pairs (k1, k2) associated with a given
fundamental resonance (k, k′). Naively, following Eq. (39)
and its definition of the resonance pairs, the flux contribution,
F(k,k′ )(v), from the fundamental resonance would read

F(k,k′ )(v) = P
∫

dv1

(v − v1)4
{C(k,k′ ) + C(k+k′,−k)

+ C(k,−k−k′ ) + (k ↔ k′)}, (43)

where, for clarity, we dropped the argument (v, v1) from the
flux contribution. Unfortunately, such a writing is still ill-
posed, as one can check that the integrand, for v1 = v + δv,
behaves like (δv)2, which does not allow for a meaningful
computation of the principal value P[1/(δv)4].

Let us therefore rewrite Eq. (43) as

F(k,k′ )(v) = P
∫

dv1

(v − v1)4

{
C(k,k′ ) + C(k+k′,−k)

+
[

(k − k′)2

k2 + k′2 C(k,−k−k′ ) + 2kk′

k2 + k′2 C (k,−k−k′ )

]
+ (k ↔ k′)

}
. (44)

To go from Eq. (43) to Eq. (44), we replaced C(k,−k−k′ )
by a weighted average of itself and its alternative writing
C (k,−k−k′ ). Such a weighted average is legitimate since we have
k2 + k′2 > 0, and the sum of the weights appearing in Eq. (44)
satisfies

(k − k′)2

k2 + k′2 + 2kk′

k2 + k′2 = 1. (45)

When written explicitly, the expression of the flux from
Eq. (39) stemming from Eq. (44) reads

F(k,k′ )(v)

= P
∫

dv1

(v − v1)4

∫
dv2

{
k′2

k2(k + k′)
δD[k · v]

(
k · ∂

∂v

)
F3(v)

∣∣∣∣
k=(k+k′,−k,−k′ )

+ k′2

k(k2 + k′2)
δD[k · v]

(
k · ∂

∂v

)
F3(v)

∣∣∣∣
k=(k,−k−k′,k′ )

+ (k− k′)2(k+ k′)2

kk′2(k2+ k′2)
δD[k · v]

(
k · ∂

∂v

)
F3(v)

∣∣∣∣
k=(k,k′,−k−k′ )

+ (k ↔ k′)
}
,

(46)

where we recall that the symmetrization (k ↔ k′) also applies
in the case k = k′. The crucial gain from Eq. (46) is that the
principal value therein is now well-posed. Indeed, we may
rewrite Eq. (46) as

F(k,k′ )(v) = P
∫

dv1

(v − v1)4
K (v, v1). (47)

Assuming that F (v) is a smooth function, one can then per-
form a Taylor development of K (v, v + δv) for δv → 0. One
gets (see Ref. [48])

K (v, v + δv) = K3(v) (δv)3 + O[(δv)4]. (48)

In the vicinity of v1 → v, Eq. (47) then takes the form

P
∫

dv

(v − v1)4
K (v, v1) ∼ P

∫
dδv

[K3

δv
+ O(1)

]
, (49)

which is a well-posed principal value. As a conclusion,
Eq. (46) is therefore the form that one must use to explicitly
estimate the diffusion flux, as presented in Sec. VI. Another
benefit from the writing of Eq. (46) is that it is the one that al-
lows for an immediate and exact recovery of the 1/N2 kinetic

equation already presented in Ref. [46], in the (simpler) case
of the HMF model, i.e., a model where only the harmonics
k = 1 is present in the interaction potential.

Remark—Another interest of Eq. (37) is to better under-
stand the scaling of the resonant contributions for k, k′ → 0
in infinite systems. This is of particular importance for the
Coulombian interaction, driving the evolution of 1D plas-
mas [29]. In that case, one has Uk ∝ 1/k2. In the limit where
k, k′ become continuous variables, we can transform

∑
k,k′

into
∫

dkdk′, and we obtain, from Eq. (38), the asymptotic
behavior ∼ ∫

dkdk′/k′′7, where k′′ is an approximate nota-
tion to refer to either k, k′, or (k + k′). While convergent
on small scales, this integral diverges on large scales (i.e.,
for k, k′ → 0). Such a divergence is, of course, reminiscent
of the large-scale divergence

∫
dk/k3 that already appears in

the 1/N Landau equation in 1D, i.e., the limit εk (ω) → 1 of
Eq. (3). The present divergence stems from our neglect of
collective effects, i.e., of the dielectric function εk (ω). Indeed,
on large scales this polarization leads to Debye shielding,
which ensures the convergence of the collision operator on
large scales.
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FIG. 1. Illustration of the dimensionless flux, F (u, t = 0), as
defined in Eq. (26) for the non-Gaussian PDF from Eq. (C2) with
α = 4, and an initial velocity dispersion given by σ = 3. We recover
a fairly good quantitative agreement between the measurements
from direct N-body simulations (with the associated errors) and the
prediction of the present kinetic theory (computed with kmax = 40,
see Fig. 3), given that the latter is for hot systems only. Detailed
parameters for these runs (N = 1024, ε = 0.01, and Q = 9.75) are
spelled out in Appendix C.

VI. NUMERICAL VALIDATION

To test the prediction of the kinetic Eq. (4) on a full N-body
system, we carry out numerical simulations of the (softened)
Ring model on the circle (see, e.g., Refs. [50,51]). This model
is characterized by the Hamiltonian

H = 1

2

N∑
i=1

v2
i −

N∑
i< j

μ
1√

1 − cos(θi − θ j ) + ε
, (50)

where ε is a given softening length. The choice of the Hamil-
tonian is somewhat ad hoc here, and was guided by its
anharmonicity.

The main difficulty with such a numerical exploration is
that the Hamiltonian from Eq. (50) is associated with a fully
coupled N-body system. As a consequence, the computa-
tional complexity of its time integration scales like O(N2).
This is much more costly than the HMF model investigated
in Ref. [46], whose dynamics can be integrated in O(N ),
owing to the presence of globally shared magnetizations. Sim-
ulations are made even harder here because of the need to
consider initial conditions with Q � 1, as Eq. (4) only applies
in the limit of dynamically hot initial conditions. Following
the scaling from Eq. (27), relaxation will only occur on very
long timescales, requiring for the simulations to be integrated
up to very late times. Finally, as the potential from Eq. (50)
is quite sharp, it asks for small integration timesteps, which
further increases the difficulty of reaching very late times. To
accelerate our simulations, we performed them on graphics
processing units (GPUs). We give the full details of our nu-
merical setup in Appendix C.

In Fig. 1, we illustrate the initial dimensionless flux,
F (u, t = 0), as defined in Eq. (26). In that figure, we compare
direct measurements from N-body simulations (following
Appendix C) with the prediction from the kinetic Eq. (4)
[using the well-posed rewriting from Eq. (46)]. This figure
shows a good quantitative agreement between the measured
and the predicted fluxes. There are (at least) four possible

origins for the slight mismatch observed in that figure. (i)
There could be some remaining contributions stemming from
collective effects, still present here for the value Q � 9.75.
(ii) There could be some nonvanishing contributions from the
source term in G(1)

2 × G(1)
2 that was neglected in Appendix A

when truncating the BBGKY evolution equations. (iii) Even
with ε = 0.01, the ring model from Eq. (50) still corresponds
to a quite hard and local interaction. As a result, the observed
relaxation could still be partially driven by localized encoun-
ters [52]. (iv) Finally, one cannot rule out that the numerical
simulations could be partially flawed on such long integration
times.

VII. CONCLUSIONS

This paper presented the closed and explicit kinetic equa-
tion of discrete one-dimensional homogeneous long-range
interacting systems with arbitrary pairwise couplings. This
theory generalises the Landau kinetic equation for systems
where the 1/N relaxation is blocked by symmetry and clarifies
how three-body correlations can still drive very-long-term
evolutions. This kinetic equation satisfies mass, momentum,
energy conservation, and an H-theorem ensuring relaxation
toward the Boltzmann equilibrium. Provided that the inter-
action is long-range, this equation cannot suffer any further
kinetic blocking. As such, Eq. (4) represents the ultimate
relaxation equation for classes of hot enough systems. Con-
versely, we have shown that strictly local interactions are
kinetically blocked. We demonstrated why Eq. (4) is always
well-posed, in spite of the appearance of a fourth order prin-
cipal value. We illustrated how this equation quantitatively
matches measurements from direct N-body simulations with
an anharmonic interaction potential given by Eq. (50). As
expected, the much weaker 1/N2 interaction leads to a much
slower relaxation requiring very long-term integrations which
we carried on GPUs. The CUDA code for these simulations is
available on request.

Beyond the scope of this paper, it would clearly be of
interest to generalise Eq. (4) to colder configurations, by
taking into account collective polarizations.7 In particular,
such a generalization should cure the large-scale divergence
of Eq. (4) that appears for the Coulombian interaction (see
Sec. V). Similarly, the present theory could also be ex-
panded to account for the source term in G(1)

2 × G(1)
2 (see

Appendix A), that leads to higher order terms in the DF.
Finally, one should also investigate the case of 1D inhomo-
geneous systems with monotonic frequency profiles, that can
also suffer from kinetic blockings (see, e.g., Ref. [42]). Once
these goals are reached, the kinetic theory of 1D discrete ho-
mogeneous long-range interacting systems will be completed.
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APPENDIX A: DERIVING THE KINETIC EQUATION

In this Appendix, we detail the key steps in the derivation
of the kinetic Eq. (4). Notations and normalizations are the
same as the ones used in Ref. [46].

1. BBGKY hierarchy

The system is composed of N identical particles of individ-
ual mass μ = Mtot/N . We write the phase space coordinates
as w = (θ, v). The instantaneous state of the system is char-
acterized by its N-body PDF, PN (w1, ..., wN , t ), normalized as∫

dw1...dwN PN = 1, and assumed to be symmetric w.r.t. any
permutation of the particles. This PDF evolves according to
Liouville’s equation

∂PN

∂t
+ [PN , HN ]N = 0, (A1)

where the full N-body Hamiltonian reads

HN (w1, ..., wN ) = 1

2

N∑
i=1

v2
i + μ

N∑
i< j

U (θi − θ j ), (A2)

with U (θi − θ j ) the considered pairwise interaction. Equa-
tion (A1) also involves the Poisson bracket over N particles,
that is defined with the convention

[PN , HN ]N =
N∑

i=1

(
∂PN

∂θi

∂HN

∂vi
− ∂PN

∂vi

∂HN

∂θi

)
. (A3)

To better capture the statistical structure of Eq. (A1), we
introduce the reduced DFs, Fn, defined as

Fn(w1, ..., wn, t ) = μn N!

(N − n)!

∫
dwn+1...dwN PN . (A4)

With such a choice, we highlight that one has∫
dwF1(w) = Mtot, so that F1 ∼ 1 w.r.t. N the total number

of particles. The definition from Eq. (A1) allows us then to
obtain the BBGKY hierarchy as

∂Fn

∂t
+ [Fn, Hn]n +

∫
dwn+1[Fn+1, δHn+1]n = 0, (A5)

where we introduced δHn+1 as the specific interaction energy
of the (n + 1)th particle with the n first. More precisely, it
reads

δHn+1(w1, ..., wn+1) =
N∑

i=1

U (θi − θn+1). (A6)

The first three equations of the BBGKY hierarchy, i.e., the
evolution equations for F1, F2, and F3 are the starting points to
derive the kinetic equation.8

8The three-body reduced DF, F3(w1, w2, w3), should not be con-
fused with the shortened notation, F3(v), introduced in Eq. (4).

2. Cluster expansion

To perform a perturbative expansion of the evolution equa-
tions, the next stage of the calculation is to introduce the
cluster expansion of the DFs, following the same normaliza-
tion as in Ref. [46].

As an example, we introduce the two-body correlation
function as

F2(w1, w2) = F1(w1) F1(w2) + G2(w1, w2). (A7)

Similar definitions are introduced for the three-body and four-
body correlations functions, G3 and G4. We do not repeat their
definitions here, but refer to Appendix B of Ref. [46].

To simplify the notations, we now write the one-body DF
as F = F1. The dynamical quantities at our disposal then
satisfy the following scalings w.r.t. N : F ∼ 1, G2 ∼ 1/N ,
G3 ∼ 1/N2, and G4 ∼ 1/N3. As such, there are appropriate
functions to perform perturbative expansions w.r.t. N .

The next step of the calculation is to inject this cluster ex-
pansion into the three first equations of the BBGKY hiearchy,
as given by Eq. (A5), to obtain evolution equations for ∂F/∂t ,
∂G2/∂t and ∂G3/∂t . These calculations are cumbersome, and
are performed in Ref. [48]. We do not reproduce here these
generic equations that can also be found in Appendix B of
Ref. [46].

3. Truncating the evolution equations

To continue the calculation, we may now truncate the three
evolution equations at order 1/N2. At this stage, the main
point is to note that the evolution equation for ∂F/∂t only
involves G2, whose norm scales like 1/N . As a consequence,
to derive an equation at order 1/N2, one has to account for
the corrections at order 1/N2 that arise in G2. Introducing
explicitly the small parameter ε = 1/N , we therefore write

G2 = ε G(1)
2 + ε2 G(2)

2 . (A8)

Similarly, recalling the definition μ = Mtot/N , we can finally
perform in the BBGKY equations the replacements

μ → ε μ, G3 → ε2 G3, G4 → ε3 G4. (A9)

At this stage, we are now in a position to truncate the three
first BBGKY equations by keeping only terms up to order ε2.
Moreover, relying on the split from Eq. (A8), we also split
the evolution equation for ∂G2/∂t to obtain one evolution
equation for ∂G(1)

2 /∂t (of order 1/N) and one for ∂G(2)
2 /∂t (of

order 1/N2).
We can further simplify the evolution equations by

relying on our homogeneous assumptions, i.e., one has
F = F (v, t ), independent of θ . As a result, any term in-
volving ∂F/∂θ vanishes. Similarly, the mean field potential,∫

dw2 F (w2)U ′(θ1 − θ2), also vanishes.
To ease the analytical derivation of the kinetic equation,

we assume that the system is dynamically hot, so that the
contributions from collective effects can be neglected. This
assumption neglects any backreaction of a correlation onto the
instantaneous potential within which it evolves. In a nutshell,
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it neglects integral terms of the form∫
dw3 G(1)

2 (w2, w3)U ′(θ1 − θ3) → 0, (A10)

and similar terms for G(2)
2 and G3.

The last truncations and simplifications that we perform are
as follows. First, in the evolution equation for ∂F/∂t , we may
neglect the source term in G(1)

2 responsible for the usual 1/N
Landau term, as it vanishes for 1D homogeneous systems.
Second, in the evolution equation for ∂G(2)

2 /∂t , we can neglect
the source term in G(1)

2 , as it does not contribute to the kinetic
equation (see Ref. [48]). Finally, in the evolution equation for
∂G3/∂t , we can neglect, in the hot limit, the source term in
G(1)

2 × G(1)
2 as its contribution is a factor 1/Q smaller than the

source term in G(2)
2 .

All in all, as a result of these truncations, one obtains a
set of four coupled differential equations that describe self-
consistently the system’s dynamics at order 1/N2. We do not
repeat here these equations which can be found in Appendix C
of Ref. [46].

4. Solving the equations

The key property of the previous coupled evolution equa-
tions is that they form a closed and well-posed hierarchy of
coupled partial differential equations. In particular, because
we have neglected collective effects, there is no need to invert
integral operators, so that the equations can be solved sequen-
tially. As such, we first solve for the time evolution for G(1)

2 ,
then G3, G(2)

2 , and finally F . At each stage of this calculation,
the previous solution is used as a time-dependent source term
in the next evolution equation.

In practice, to solve these equations we rely on Bo-
goliubov’s ansatz, i.e., we assume F (v, t ) = cst. on the
(dynamical) timescale over which correlations evolve. We
also neglect transients associated with initial conditions, i.e.,
we solve the evolution equations with the initial conditions
G(1)

2 (t = 0) = 0, and similarly for G(2)
2 and G3. Finally, to

describe the process of phase mixing, we rely on the 2π -
periodicity of the angle coordinate, and Fourier expand any
function depending on θ , e.g., following Eq. (2) for the inter-
action potential.

Having obtained an explicit expression for the time-
dependence of G(2)

2 (t ), we can now aim for the expression of
the collision operator ∂F/∂t . Relying once again on Bogoli-
ubov’s ansatz, this amounts to taking the limit t → +∞ in
G(2)

2 (t ). A typical time integral takes the form
∫ t

0 dt1e−i(t−t1 )ω,
where the frequency ω is a linear combination of velocities.
Because we have solved three evolution equations sequen-
tially, we can get up to three such integrals nested in one
another, with partial derivatives w.r.t. velocities intertwined in
them. To obtain the asymptotic time behavior, we rely on the
formula (see, e.g., Eq. (D2) of Ref. [46])

lim
t→+∞

∫ t

0
dt1 e−i(t−t1 )ω = πδD(ω) − iP

(
1

ω

)
, (A11)

with δD(ω) the Dirac delta, and P (1/ω) the Cauchy principal
value. It is only at this stage that we evaluate the intertwined

gradients w.r.t. the velocities so that they only act on the Dirac
deltas and the Cauchy principal values.

Following all these manipulations, we still have a ki-
netic equation involving hundreds of terms, and requiring
further simplifications. This is the stage where the symbolic
algebra system allows for an efficient manipulation of the
formal expressions. The key steps of these manipulations
are: (i) perform integrations by parts, so that all the δ′

D and
δ′′

D are transformed into δD; (ii) use the scaling relations of
δD and P (and their derivatives), e.g., δD(α x) = δD(x)/|α|,
to take out the Fourier wave numbers as much as possible;
(iii) perform appropriate relabelings of the dummy velocities
and dummy wave numbers, so that the sole resonance con-
dition present is δD[k1(v − v1) + k2(v − v2)], i.e., the same
resonance condition as in Eq. (4); (iv) use the presence
of the resonance condition, δD[k1(v − v1) + k2(v − v2)], to
make the replacements (v − v2) → −(k1)/(k2)(v − v1) and
(v1 − v2) → −(k1 + k2)/(k2)(v − v1), so that the principal
values are only expressed as functions of (v − v1).

After all these cumbersome manipulations, which we au-
tomated using some custom grammar in Mathematica, one
finally obtains the closed result from Eq. (4). All the details
and functions used for these calculations can be found in
Ref. [48].

APPENDIX B: LINEAR RESPONSE THEORY

When deriving the kinetic Eq. (4), we had to neglect
the contributions associated with collective effects. As a re-
sult, this equation only applies in dynamical hot systems,
where the self-consistent amplification of collective effects
is unimportant. Luckily the amplitude of this dressing of the
perturbations is straightforward to estimate by solving the
linear response theory of the system.

A systematic approach for that calculation is to rely on al-
ready well-established results regarding the linear stability of
inhomogeneous long-range interacting systems. As detailed
in Eq. (5.94) of Ref. [3], a system’s stability is generically
governed by the response matrix

M̂pq(ω) = 2π
∑

k

∫
dJ

k ∂F/∂J

ω − k�(J )
ψ

(p)∗
k (J ) ψ

(q)
k (J ), (B1)

with (θ, J ) = (θ, v) the angle-action coordinates, and
�(J ) = v the orbital frequencies. In that expression, fol-
lowing the so-called matrix method [54], we introduced a
biorthogonal set of basis elements on which the pairwise
interaction is decomposed. For the present system, the natural
basis elements follow from the Fourier decomposition of the
interaction, that can be written under the separable form

U (θ1 − θ2) = −
∑

p

ψ (p)(θ1) ψ (p)∗(θ2),

ψ (p)(θ ) = √
Up eipθ . (B2)

The Fourier transform of the basis elements is straightfor-
ward to compute. It is independent of the action v, and
reads ψ

(p)
k = δk

p

√
Uk . We may finally introduce the dielectric
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function, ε = I − M̂, that is the matrix

εpq(ω) = δq
p

{
1 − 2πUp

∫
dv

p ∂F/∂v

ω − pv

}
. (B3)

As expected for homogeneous systems, we recover that the di-
electric matrix is diagonal, εpq(ω) = δ

q
p εp(ω), so that Fourier

harmonics are independent from one another.
Using the same dedimensionalization as in Eq. (25), we

can rewrite the dielectric function as

εk (ω) = 1 − U k

Q

∫
du

k ∂F/∂u

ω − ku
, (B4)

with ω = ωtd a dimensionless frequency.
In the particular case where the system’s DF is single-

humped, i.e., possesses a single maximum, and is also even,
i.e., F (−v) = F (v), so that the maximum is reached in v = 0,
one can even better characterise the system’s dielectric matrix.
In that case, the DF is linearly stable if, and only if, εk (0) > 0
for all k (see, e.g., Ref. [46]). Following Eq. (B4), and re-
calling that the rescaled coupling coefficient U k = Uk/Umax is
such that |U k| � 1, the DF is linearly stable if, and only if,
one has

Q > Qc = −
∫

du
∂F/∂u

u
. (B5)

One can easily compute the stability limit Qc for simple PDFs.
In particular, for a Gaussian PDF, one finds Qc = 1.

APPENDIX C: NUMERICAL SIMULATIONS

Let us briefly detail the setup of our numerical simulations
used to investigate the long-term relaxation of the Ring model.
Following the Hamiltonian from Eq. (50), the equations of
motion for particle i read

dθi

dt
= vi,

dvi

dt
= −

N∑
j=1

μ

2

sin(θi − θ j )

[1 − cos(θi − θ j ) + ε]3/2
.

(C1)

We note that in the expression of the acceleration, dvi/dt ,
the sum runs over all particles including i. Including this
self-interaction is fine here, because the interaction potential
does not diverge at zero separation owing to the softening
length, ε. Proceeding in that fashion simplifies the numerical
implementation.

Since the Hamiltonian from Eq. (50) is separable, one can
easily devise symplectic integration schemes for that problem.
In practice, we used the fourth-order symplectic integrator
from Ref. [55] that requires only three (costly) force eval-
uations per timestep. However, we note that without any
harmonic expansion of the interaction potential, the equations
of motion from Eq. (C1) truly form a N-body system, as the
computation of each acceleration requires O(N ) operations.

To accelerate the integration of that system, we followed
an approach similar to Ref. [51], and implemented the com-
putations on GPUs. In practice, simulations were run on
NVIDIA V100 GPUs, with N = 1024 particles per simula-
tion, and Nthreads = N threads per computation block, i.e.,
one thread per particle. For this particular GPU, we could
run Nblocks = 80 independent realizations simultaneously on

FIG. 2. Illustration of the pairwise force, −dU/dθ , as one varies
the maximum index kmax considered in the interaction potential. As
expected, the larger kmax, the better the reconstruction of the exact
interaction.

a given GPU. In total, we performed Nruns = 20 different
batches of simulations, i.e., we had a total of 1600 indepen-
dent realizations to perform the ensemble average.

In the numerical implementation, the computation of the
particles’ accelerations is by far the most numerically de-
manding task. To accelerate these evaluations, we focused
on three main points. (i) First, in Eq. (C1), the trigono-
metric functions cos(θi − θ j ) and sin(θi − θ j ) are expanded
using duplications formulas, so that one only has to com-
pute [sin(θi ), cos(θi )] for every particle, using the instruction
sincos. (ii) Second, these harmonic functions are pre-
computed once per particle, and loaded in shared data array to
allow for fast coalesced memory accesses for all the threads
in the same computation block. (iii) Third, the computation
of the force in Eq. (C1) was further accelerated by using
the instruction rsqrt(x) that allows for a fast computation
of 1/

√
x. With such parameters, integrating for one timestep

required 1.3 ms of computation time.
In practice, we set the softening length to ε = 0.01, which

imposes Umax � 0.92, as defined in Eq. (24). We used an inte-
gration time step equal to δt = 1/(50 × σ ), that guaranteed a
relative error in the total energy of the order of 10−5. Each

FIG. 3. Illustration of the dependence of the dimensionless flux,
F (u), as one varies the maximum index kmax considered in the
interaction potential. The considered system and initial conditions
are identical to Fig. 1. As soon as the truncated Fourier series of Uk

represents accurately enough the underlying potential, U (θ1 − θ2),
the kinetic predictions have converged.
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realization was integrated for a total of 4 × 108 timesteps,
requiring about 6 days of computation per realization.

We used the same initial conditions as in Ref. [46], given
by a generalized Gaussian distribution following

P(v) = α

2

A(α, σ )

�(1/α)
exp[−(A(α, σ )|v|)α],

A(α, σ ) = 1

σ

(
�(3/α)

�(1/α)

)1/2

. (C2)

This PDF is normalized so that
∫

dvP(v) = 1, is of zero
mean, and of variance σ 2. The particular case α = 2 cor-
responds to the case of the Gaussian distribution, already
introduced in Eq. (28), whose stability threshold, following
Eq. (B5), reads Qc = 1. In practice, in the numerical simula-
tions, we used the value α = 4, which corresponds to a less
peaked PDF, and chose the initial velocity dispersion to be
σ = 3. Finally, assuming Mtot = 1, the stability parameter, Q,

from Eq. (24) becomes Q � 9.75, while the stability threshold
is Qc � 0.46 (see Ref. [46]), i.e., the considered initial condi-
tion is linearly stable. To measure in Fig. 1 the diffusion flux
and the associated errors (16% and 84% confidence levels),
we followed the exact same procedure as detailed in Appendix
F of Ref. [46]. We do not repeat it here.

The kinetic Eq. (4) involves an infinite sum over k1, k2. In
pratice, one has to truncate these sums. To do so, we may
truncate the interaction potential from Eq. (2), so that Uk = 0
for |k| > kmax. The effect of such a truncation on the pairwise
force is illustrated in Fig. 2. Doing so, we may then restrict
the sums over fundamental resonances, as defined in Eq. (37),
only to 0 < k, k′ � kmax. Figure 3 illustrates the effect of kmax

on the computed diffusion flux. In that figure, we recover
that for kmax large enough, the diffusion flux converges, so
that higher order resonances do not contribute anymore to the
relaxation. In practice, for the considered softening ε = 0.01,
we used kmax = 40 in the predictions from Fig. 1.
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