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Graph Tikhonov Regularization and Interpolation
via Random Spanning Forests

Yusuf Yigit Pilavci, Pierre-Olivier Amblard, Simon Barthelmé, Nicolas Tremblay
CNRS, Univ. Grenoble Alpes, Grenoble INP, GIPSA-lab, Grenoble, France

Abstract—Novel Monte Carlo estimators are proposed to solve
both the Tikhonov regularization (TR) and the interpolation
problems on graphs. These estimators are based on random
spanning forests (RSF), the theoretical properties of which enable
to analyze the estimators’ theoretical mean and variance. We also
show how to perform hyperparameter tuning for these RSF-based
estimators. Finally, TR or interpolation being a building block
of several algorithms, we show how the proposed estimators can
be easily adapted to avoid expensive intermediate steps in well-
known algorithms such as generalized semi-supervised learning,
label propagation, Newton’s method and iteratively reweighted
least square. In the experiments, we illustrate the proposed
methods on several problems and provide observations on their
run time, which are comparable with the state-of-the-art.

Index Terms—graph signal processing, random spanning
forests, smoothing, interpolation, semi-supervised learning, label
propagation, newton’s method, IRLS

I. INTRODUCTION

GRAPHS are ubiquitous models of complex structures,
e.g. social, transportation, sensors or neuronal networks.

The vertices and edges, the main components of graphs, are
natural representations of the elements of a network and the
links between them, respectively. In many applications, these
networks often come with data on the elements. For example,
in a transportation network (the roads and their intersections
are respectively the nodes and edges), the data can be traffic
flow observations of each road [1]; or in a brain network, it
could be the activity of each individual brain region [2]. Such
type of data over vertices are called graph signals [3], [4].
Graph Tikhonov regularization. Consider a graph of size n
represented by its Laplacian matrix L = D −W ∈ Rn×n (W
is the weighted adjacency matrix and D the diagonal matrix
of degrees –see formal definitions in Section II). Given noisy
signal measurements y = (y1, y2, . . . , yn)> on the n vertices
of this graph, a classical denoising scheme is graph Tikhonov
regularization [3], [5]:

x̂ = argmin
z∈Rn

µ||y − z||2 + z>Lz (1)

where µ > 0 is a hyper-parameter tuning the relative
importance the user wants to set between the data-fidelity
term ||y − z||2 and the regularization term z>Lz. Note that
z>Lz =

∑
i,jWij(zi − zj)2, which explains its regularizing

property: this term penalizes large variations along the edges
of the graph. The exact solution to (1) is:

x̂ = Ky with K = (L + µI)−1µI ∈ Rn×n

which requires the inversion of the regularized Laplacian.

Graph interpolation. Consider a graph signal x ∈ Rn that is
only known over a vertex subset ` ⊂ V (with typically |`| �
n). The graph interpolation problem consists in combining this
prior information with an underlying smoothness assumption
in order to infer the signal on the remaining vertices. One way
to formulate this problem is given by Pesenson [6]:

x̂ = arg min
z∈Rn

z>(L + µI)z

subject to ∀i ∈ `, zi = xi
(2)

where µ ≥ 0 is a user-defined parameter. Note that Pesenson
chooses to further parametrize the interpolation problem by
considering (L+µI)t for t > 0 instead of (L+µI) in Eq. (2). In
this paper, we only consider the case t = 1. The exact solution
of (2) can be found in [6] and requires the inversion of L+µI
restricted to the rows and columns indexed by the vertices that
are not in ` (more details are provided in Section III).

Graph TR and interpolation as a building block. Both graph
TR and interpolation problems often appear in different graph
problems as building blocks.

Node classification is one problem which is sometimes
solved by using graph interpolation. A well-known Semi-
Supervised Learning (SSL) algorithm, called label propa-
gation1, corresponds to the Dirichlet boundary problem on
graphs [8] whose solution can be viewed as finding interior
values that smoothly interpolate between the known boundary
values [9]. This problem is a sub-case of Eq. (2), for µ = 0.

Graph TR, on top of its use for graph signal denoising,
also appears in SSL algorithms for node classification, such
as in the work of Zhou et al. [10], later generalized by
Avrachenkov et al. [11]. Moreover, graph TR is also used
in graph optimization algorithms. Two examples are New-
ton’s method [12] and iteratively reweighted least squares
(IRLS) [13]. In both methods, the computationally expensive
steps can be formulated and solved as graph TR problems.

Classical approaches. Explicitly computing the exact solu-
tion for graph TR requires the inversion of the regularized
Laplacian L + µI of size n × n, and thus, O(n3) elementary
operations. For graph interpolation, the overall cost is also
O(n3) in the typical setting where |`| � n. For large
graphs (i.e. with n ≥ 104), this is prohibitive and the state-
of-the-art relies on approximate methods. These approaches
may be roughly separated in two groups, iterative methods
(e.g. conjugate gradient method with preconditioning [14])

1In fact, label propagation may refer to a more generic set of algorithms.
In this paper, we refer to the algorithm proposed by Zhu et al. [7]
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and polynomial approximations (e.g. Chebyshev polynomials
[15]). Both class of methods run in linear time with the number
of edges.

Random processes on graphs. A longstanding and fruitful
approach to studying the properties of graphs has been to study
the properties of random processes on graphs (via random
walks, for instance). This paper will take such a perspective
to propose novel estimators for the two problems presented.

For instance, a very well-known fact is the link between the
smallest non-null eigenvalue of the Laplacian matrix and the
mixing time of a random walk on the graph (see, e. g., [16]).
Other examples include properties of electrical networks, such
as potential functions or effective resistances, that can be
interpreted in terms of probabilistic quantities defined for
random walks such as hitting time probabilities [17]. Closer to
our work, Wu et al. [18], [19] show that the (i, j)-th entry of K
equals to the probability of having an interrupted random walk
(partially absorbed random walk) starting at node i and ending
in node j; and further leverages random walks to give practical
insights for the algorithms of several applications including
image retrieval, local clustering and semi-supervised learning.

Random spanning forests. In this paper, we will focus
on random spanning forests (RSFs): random collections of
disjoint trees that cover all nodes in the graph (a formal
definition is in section II). The link between the matrix K and
random spanning forests has been observed by several authors
in the past, such as Avrachenkov et al. [20]. Avena et al. [21],
[22] analyze precisely several aspects of this connection. RSFs
not only have a rich theoretical background (connections
with Markov chains, determinantal point processes, spectral
graph theory), they also come with an efficient sampling
algorithm [21]: a variant of Wilson’s algorithm [23] based on
loop-erased random walks.

Our contributions. In this work,
• We propose two novel Monte Carlo estimators based

on RSFs to approximate the solution of graph Tikhonov
regularization and interpolation.
– We provide a rigorous analysis on their performances

by building upon known results on RSFs.
– In terms of computational cost, they are comparable

with state-of-the-art methods.
– By coupling these estimators with certain statistics

of RSFs, we provide a scheme to correctly tune the
hyperparameters of the problems.

• We show how versatile these estimators are by adapting
them to several graph-based problems such as generalized
semi-supervised learning, label propagation, Newton’s
method and Iteratively Reweighted Least Squares (IRLS).

A preliminary version of some of these results can be found
in [24]. The Julia code to reproduce this paper’s results is
available on the authors’ website. 2

Organization of the paper. We start with the necessary
background on graphs and RSFs in Section II. Then, we
introduce the proposed methods in Section III. In Section IV,

2https://y2p.github.io/files/codes/rsf journal codes.tar.xz

we examine several extensions to different graph-related prob-
lems. Finally, in Section V, we illustrate the methods in
different use cases and we conclude in Section VI.

II. BACKGROUND ON RSFS

This section contains background on graph theory, random
spanning trees and forests.

A. Graph theory

A directed weighted graph G = (V, E , w) consists of a set
of vertices V = {1, 2, ..., n} and edges E = {(i, j) ∈ V × V}.
The weight function w : V×V → R+ maps each edge in E to
a positive weight and others to 0. A graph is called undirected
if w(i, j) = w(j, i) for all distinct vertices i and j. In the
following, unless otherwise specified only undirected graphs
are considered. Graphs are often represented using matrices,
and several matrix descriptions are available.

The weighted adjacency matrix or weight matrix is W =
[w(i, j)]i,j ∈ Rn×n. The degree matrix is the diagonal matrix
D ∈ Rn×n with Di,i =

∑
j∈N (i) w(i, j) and N (i) is the set of

nodes connected to i. The graph Laplacian matrix is defined as
L = D−W. It is semi-positive definite [16] and its eigenvalues
and eigenvectors are usually denoted by 0 = λ1 ≤ λ2 ≤ . . . ≤
λn and U = (u1|u2| . . . |un), respectively. The multiplicity of
eigenvalue 0 is equal to the number of connected components
in the graph [16]. For undirected graphs, all of these square
matrices are symmetric.

Another way to represent graphs is via the edge incidence
matrix B = (b1|b2| . . . |bm)> ∈ Rm×n where bk ∈ Rn is a
vector associated to the k-th edge (i, j). The only nonzero en-
tries of bk are bk(i) = ±

√
w(i, j) and bk(j) = ∓

√
w(i, j).

In directed graphs, the sign is set by considering the edge ori-
entations. For example, if the k-th edge starts from i and ends
in j, then, bk(i) < 0 and bk(j) > 0. In undirected graphs, the
signs of the non-zero entries of bk can be arbitrarily chosen
as long as they are opposite. Although this matrix seems less
natural than the others, it often appears in graph theory. One
example is the well known identity L = B>B.

B. Random spanning trees and Wilson’s algorithm

Let us recall the definition of random spanning trees (RSTs).
Consider a graph G = (V, E , w). A subgraph of G is a
graph whose vertex and edge sets are subsets of V and E ,
respectively, and its edge weights are valued by w. A subgraph
contains a cycle whenever there exists a pair of vertices (u, v)
that are connected via (strictly) more than one path. If there
exists no such pair, the subgraph is called a tree. A spanning
tree τ = (Vτ , Eτ , wτ ) is a tree whose vertex set Vτ is equal
to V . A rooted spanning tree τr is a directed spanning tree
where all edges are directed towards a node called the root.
See Fig. 1 for illustrations.

Our work is related to a particular distribution on spanning
trees called random spanning trees (RSTs). An RST T is a
randomly generated spanning tree from the following distri-
bution:

P(T = τ) ∝
∏

(i,j)∈τ

w(i, j) (3)

https://y2p.github.io/files/codes/rsf_journal_codes.tar.xz
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Fig. 1: From left to right, a graph G, a spanning tree on G, a rooted spanning tree on G and a rooted spanning forest on G (roots are
colored in red)

Fig. 2: All possible rooted spanning trees associated with a given
undirected spanning tree. For four vertices, four different rooted trees
exist.

Note that this distribution becomes uniform over all pos-
sible spanning trees whenever the given graph is un-
weighted i.e. ∀i, j ∈ V , w(i, j) ∈ {0, 1}:

P(T = τ) =
1

|T |
(4)

where T is the set of all spanning trees. In this particular case,
the random tree T is also known as a uniform spanning tree
(UST) in the literature.

In his celebrated work [23], Wilson proposes an algo-
rithm, called RandomTreeWithRoot, that samples a ran-
dom spanning tree from the set of all spanning trees rooted
in node r. Wilson also shows that, in the case of undirected
graphs, sampling an unrooted RST amounts to: i/ choosing
uniformly a root, ii/ running RandomTreeWithRoot, and
iii/ erasing the orientation.

C. Random spanning forests

A forest is a set of disjoint trees. When all the trees in a
forest are rooted, it is called a rooted forest. A rooted spanning
forest, generically denoted by φ, reaches all the vertices in the
graph. Let ρ be the function that maps any rooted spanning
forests to its set of roots. The number of roots |ρ(φ)| is
between 1 and n. For |ρ(φ)| = 1, φ corresponds to a rooted
spanning tree. See Fig. 1 for illustrations.
Random Spanning Forests. Let F be the set of all rooted
spanning forests. A random spanning forest (RSF) is a random
variable whose outcome space is F . Among many possible
options, we focus on the following parametric distribution for
RSFs. For a fixed parameter q > 0, Φq is a random variable
in F verifying:

∀φ ∈ F , P(Φq = φ) ∝ q|ρ(φ)|
∏

(i,j)∈φ

w(i, j). (5)

An algorithm [22] to sample from this distribution is derived
from RandomTreeWithRoot. This algorithm:

1) extends the graph G = (V, E , w) by adding a node called
Γ.

2) connects each node i in V to Γ with an edge of weight
w(i,Γ) = q.

3) runs RandomTreeWithRoot by setting Γ as the root
to obtain a spanning tree rooted in Γ in the extended
graph.

4) deletes the edges incident to Γ in the obtained tree to
yield a forest in the original graph.

The result is a rooted spanning forest whose root set is formed
by the nodes which were neighbors of Γ. For every distinct
spanning tree rooted at Γ, a distinct spanning forest is obtained
after removing the root and its incident edges. Using this one-
to-one relation ensures that this algorithm indeed samples from
the distribution in (5):

P(TΓ = τΓ) = P(Φq = φ) ∝
∏

(i,j)∈τΓ

w(i, j)

∝
∏

(i,Γ)∈τΓ

q
∏

(i,j)∈τΓ
i,j 6=Γ

w(i, j)

∝ q|ρ(φ)|
∏

(i,j)∈φ

w(i, j)

(6)

An implementation of this algorithm is detailed in Algo-
rithm 1. In the algorithm, rand (line 7) returns a uniform
random value between 0 and 1 and RandomSuccessor
(line 11) returns a random node i from N (u) with probability

w(u,i)∑
j∈N(u) w(u,j) . At termination, the array Next contains all the

necessary information to build the sampled spanning forest.
The expected run time of RandomForest is the expected

number of calls of RandomSuccessor before termination.
For RandomTreeWithRoot, the number of calls equals to
the mean commute time, i.e., the expected length of a random
walk going from node i to j and back (see theorem 2 in [23]).
In proposition 1 of [25], Marchal rewrites this commute time
in terms of graph matrices. Adapting his result to the current
setting, the expected run time of RandomForest can be
shown to equal the trace of

(
(L + qI)−1(D + qI)

)
, a rough

upper-bound of which is n+ 2|E|/q, which is linear with the
number of edges.
Varying q over nodes. The original graph can also be
extended by setting w(i,Γ) ← qi > 0,∀i ∈ V , that is, by
connecting the added node Γ with links of unequal weights.
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Algorithm 1 RandomForest

1: Inputs:
G = (V, E , w)
q ∈ R+

2: Initialize:
# Initially, the forest is empty
∀i ∈ V, InForest[i]← false
∀i ∈ V, Next[i]← −1
∀i ∈ V, d[i]←

∑
j∈N (i) w(i, j) # Degrees

3: for i← 1 to |V| do
4: u← i
5: # Start a random walk to create a forest branch
6: while not InForest[u] do # Stop if u is in the forest
7: if rand ≤ q

q+d[u] then #If true, u becomes a root
8: InForest[u]← true # Add u to the forest
9: Next[u]← −1 # Set next of u to null

10: else # If false, continue the random walk
11: Next[u]← RandomSuccessor(u,G)
12: u← Next[u]
13: end if
14: end while
15: u← i # Go back to the initial node
16: # Add the newly created branch to the forest
17: while not InForest[u] do
18: InForest[u]← true
19: u← Next[u]
20: end while
21: end for
22: return Next

In this case, the distribution of sampled forests becomes:

P(ΦQ = φ) ∝
∏

i∈ρ(φ)

qi
∏

(i,j)∈φ

w(i, j), φ ∈ F (7)

where Q = {q1, q2, . . . , qn} is the collection of parameters.
Algorithm 1 can easily be adapted by modifying the scalar
input q to Q = {q1, q2, . . . , qn} and q

q+d[u] to qu
qu+d[u] at the

step of root selection (line 7). In addition, the average run
time in this case becomes tr

(
(L + Q)−1(D + Q)

)
, with Q =

diag(q1, . . . , qn).

Random partitions. A partition of V , denoted by P , is a set of
disjoint subsets whose union equals V . The trees of Φq give
a random partition of V by splitting it into |ρ(Φq)| disjoint
subsets. Let us enumerate the trees from 1 to |ρ(Φq)| and
denote the vertex set of the k-th tree as Vk ⊂ V . Let π be a
function that outputs the partition for a given spanning forest.
Then, the random partition of V derived from Φq is π(Φq) =
(V1, . . . ,V|ρ(Φq)|) with |π(Φq)| subsets. Note that this function
is a many-to-one mapping because different spanning forests
may correspond to the same partition (see Figure 3).

D. Useful properties of Φq

Recent studies in [21], [22] have established some theoret-
ical properties of Φq and we reproduce here a few results.

φ′ : φ′′ :

π(φ′) = π(φ′′)

Fig. 3: Two different rooted spanning forests (on the left) with the
same corresponding partition (on the right)

The root process. To start with, Proposition 2.2 in [21] states
that ρ(Φq) is sampled from a determinantal point process
(DPP) [26] with marginal kernel:

K = (qI + L)−1qI (8)

This means that the inclusion probabilities verify:

∀S ⊂ V, P(S ∈ ρ(Φq)) = detKS

where KS = [Ki,j |(i, j) ∈ S×S] is the submatrix of K reduced
to the rows and columns indexed by S.

Cardinality of ρ(Φq). As a consequence of ρ(Φq) being a
DPP, the first two moments of |ρ(Φq)| verify [26]:

E[|ρ(Φq)|] = tr(K) =
∑
i

q

q + λi

Var(|ρ(Φq)|) = tr(K− K2) =
∑
i

λiq

(q + λi)2

(9)

where the λi’s are the eigenvalues of L.

The root probability distribution. Given any rooted spanning
forest φ, define the root function rφ : V → ρ(φ) which takes
as input any node i and outputs the root of the tree which i
belongs to. In [21], [22], the authors show that the probability,
for any node pair (i, j), that i is rooted in j reads:

∀i, j ∈ V P(rΦq (i) = j) = Kij (10)

Conditioning on a partition. Let t : V → {1, 2, . . . , |ρ(Φq)|}
be a random mapping between any node and its tree number
in Φq . (e.g., t(i) = k if i ∈ Vk ∈ π(Φq)). By conditioning
the root probability over a fixed partition P , one obtains (see
Proposition 2.2 in [22]):

∀i, j ∈ V P(rΦq (i) = j|π(Φq) = P) =
I(j ∈ Vt(i))
|Vt(i)|

(11)

where I is the indicator function (i.e., it outputs 1 if the input
statement is true and 0 otherwise). In other words, given a
fixed partition P , the root probability within each subset Vk
is uniform over the nodes in Vk.

Extending to non-constant q. All of these properties are
adaptable to the case of q varying over nodes (with some
changes). The root process ρ(ΦQ) is also a DPP. However,
the associated marginal kernel becomes:

K = (L + Q)−1Q with Q = diag(q1, . . . , qn). (12)
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Notice that this kernel is not co-diagonalizable with the graph
Laplacian L. Thus, the expected number of roots E[|ρ(Φq)|]
is not writable in terms of λi’s, but it is still equal to tr(K).
Similarly, the root probability P(rΦQ

(i) = j) remains Ki,j
whereas the conditional probability in (11) becomes:

∀i, j ∈ V P(rΦQ
(i) = j|π(ΦQ) = P) =

qjI(j ∈ Vt(i))∑
k∈Vt(i) qk

(13)

III. RSF BASED ESTIMATORS

In this section, we present our main results. We first recall
the graph Tikhonov regularization and interpolation problems.
Then, we describe the RSF-based methods to solve them. We
also provide some theoretical analysis of the performance of
the methods. Finally, we show how to tune hyperparameters
for the proposed estimators.

Graph Tikhonov regularization. For a given graph G =
(V, E , w) and measurements y = (y1, y2, . . . , yn)> on the
|V| = n vertices, the Tikhonov regularization of y reads:

x̂ = argmin
z∈Rn

µ||y − z||2 + z>Lz (14)

where L ∈ Rn×n is the graph Laplacian of G. The solution of
this minimization problem is:

x̂ = Ky with K = (L + µI)−1µI.

Interestingly, the matrix in this solution also appears in (8) as
the marginal kernel of the root process. This correspondence
plays a significant role for the proposed methods by connecting
RSFs to the Tikhonov regularization problem.

In some important cases, instead of (L + µI)−1µIy , the
generalized solution (L + Q)−1Qy is required where Q is an
entry-wise non-negative diagonal matrix. For example, if we
write the Tikhonov regularization of (14) with another graph
Laplacian such as the random walk Laplacian Lrw = D−1L,
then the solution reads x̂ = (L + Q)−1Qy where Q = µD.
Another example occurs when the noise variance is known
to be non-constant over vertices, i.e. heteroscedastic noise.
The measurements may be less reliable at some vertices
compared to others, meaning that there are different noise
variances σ1, . . . , σn. This implies that q1 . . . , qn should be
set proportional to 1

σ1
, . . . , 1

σn
in the estimation of x̂. This

again corresponds to the generalized formulation.

Graph interpolation. Given a connected graph G = (V, E , w),
a parameter µ ≥ 0, and ` ⊂ V a set of nodes where a signal
x is known, the interpolated signal reads:

x̂ = arg min
z∈Rn

z>(L + µI)z

subject to ∀i ∈ `, zi = xi
(15)

Define u = V\` the set of nodes for which x is not known
and write L in block form:

L =

[
L`|` L`|u
Lu|` Lu|u

]

where L`|u is the Laplacian reduced to its rows and columns
indexed by ` and u, respectively. The solution of (15) reads:

x̂ =

{
xi if i ∈ `(
−(Lu|u + µI)−1 Lu|l x`

)
i

otherwise
(16)

where x` ∈ R|`| is the signal x reduced to its entries in `.
This solution can almost always3 be rewritten as:

x̂u = Ky with

{
K = (LG\` + Q)−1Q

y = −Q−1Lu|`x`,
(17)

where LG\` is the Laplacian of the reduced graph obtained
by removing the vertices (and the incident edges) in `, Q ∈
R|u|×|u| is a diagonal matrix with Qi,i = µ +

∑
j∈` w(i, j).

Similarly to graph TR, the RSF-based estimator for interpola-
tion proposed in this paper draws upon the connection between
Eqs. (17) and (12).

Parameter selection. The solution to graph TR tends to the
constant vector (equal to the average of y) as µ→ 0, and to y
for µ→∞, where it suffers from underfitting and overfitting,
respectively. In the interpolation problem, as µ→∞, no prior
information gets propagated through the other vertices, and x̂u
tends to the zero vector. The case of µ = 0 corresponds to
solving the Dirichlet problem [9] which does not necessarily
give the closest inference to the original signal x. Due to
these reasons, µ needs to be set at a value that gives the
best approximation to the original signal. In both problems,
choosing µ is a classical hyperparameter selection problem
which can be approached in several ways for the proposed
estimators.

In the following, we first present the proposed estimators
for approximating x̂ for a fixed value of µ in Section III-A.
Then, we outline in Section III-B several methods that select
an appropriate µ automatically. Combining the hyperparameter
selection and the RSF based estimators forms an RSF-based
framework to approximate the solutions of graph Tikhonov
regularization and graph interpolation.

A. RSF based estimation of x̂ = Ky

We propose two novel Monte Carlo estimators to approx-
imate x̂ = Ky with K = (L + Q)−1Q. These estimators
leverage the probability distribution of the root process on
RSFs presented in (10).

The first estimator, denoted by x̃, is defined as follows:

∀i ∈ V x̃(i) = y(rΦQ
(i)) (18)

In practice, a realization of ΦQ is considered. Then, in each
tree, the measurement of the root is propagated through the
nodes of the tree. (See top-right in Fig. 4).

Proposition 1. x̃ is an unbiased estimator of x̂:

E [x̃] = x̂.

3Q, as defined in the paragraph following (17), needs to be invertible for y
to be well-defined. This is always the case if µ > 0. When µ = 0, it may not
be the case. We will see in Section IV-A what can be done in this scenario.
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Fig. 4: An illustration for the estimators where q is constant over all
nodes. In the left, the graph signal is interpreted by both colors and
numbers. In the middle, a realization of Φq , a forest, is illustrated.
On this forest, the estimators x̃ and x̄ are illustrated in top-right and
bottom right, respectively.

Moreover, the weighted expected error of x̃ is:

E
(
||x̂− x̃||2Q

)
=
∑
i∈V

qi Var(x̃(i)) = y>(Q− K>QK)y

where ||x||2Q = x>Qx.

Proof. For every node i, x̃(i) is an unbiased estimator of x̂(i)
thanks to the following:

E [x̃(i)] = E
[
y(rΦQ

(i))
]

=
∑
j

P(rΦQ
(i) = j)y(j)

=
∑
j

Kijy(j) = δ>i Ky = x̂(i)

where δi is the Kronecker delta (i.e. δi(i) = 1 and 0 other-
wise). This result is prominently due to the root probability of
RSFs given in (10). Also, the variance of x̃(i) reads:

Var(x̃(i)) = E
[
x̃(i)2

]
− E [x̃(i)]

2
= δ>i Ky

(2) − (δ>i Ky)2.

where y(2)(k) = y(k)2, ∀k ∈ V . Then, the weighted sum
reads: ∑

i∈V
qi Var(x̃(i)) = 1>QKy(2) − y>K>QKy

where 1 denotes the all-ones vector. Note that 1>QK =
1>K>Q. Moreover, 1 is a left eigenvector of K> with
corresponding eigenvalue 1. Then, the first term becomes
1>K>Qy(2) = 1>Qy(2) = y>Qy, and, one obtains:∑

i∈V
qi Var(x̃(i)) = y>(Q− K>QK)y (19)

The second estimator, denoted by x̄, is the expectation of x̃
conditioned on the partition induced by ΦQ:

x̄(i) = E[x̃(i)|π(ΦQ) = P] =

∑
j∈Vt(i)

y(j)qj∑
j∈Vt(i)

qj
(20)

Due to the law of iterated expectations, this estimator is also
unbiased, moreover it has a reduced variance compared to x̃(i)
due to the law of total variance:

Var(x̃(i)) = E[Var(x̃(i)|π(ΦQ) = P)] + Var(x̄(i))

which implies Var(x̃(i)) ≥ Var(x̄(i)). This idea of improving
an estimator is often called Rao-Blackwellization [27], [28].

In practice, we again take a realization of ΦQ and consider
the corresponding partition π(ΦQ). Then, we compute the
weighted average of the measurements in each subset of
π(ΦQ). Then, we finally propagate these averages in each
subset (see Fig. 4).

Proposition 2. x̄ is an unbiased estimator of x̂:

E[x̄] = x̂

Moreover, the weighted expected error reads:

E
(
||x̂− x̄||2Q

)
=
∑
i∈V

qi Var(x̄(i)) = y>(QK− K>QK)y.

Proof. Let S =
[
qjI(j∈Vt(i))∑
k∈Vt(i)

qk

]
i,j

be a symmetric random matrix

associated to the random partition π(ΦQ). A simple matrix
product shows that S>QS = QS by definition of S. Moreover,
x̄(i) = δ>i Sy and the expectation of Si,j over all possible
partitions derived from ΦQ is:

E [Si,j ] =
∑
P∈π(F)

qjI(j ∈ Vt(i))∑
k∈Vt(i)

qk
P(π(ΦQ) = P)

=
∑
P∈π(F)

P(rΦQ
(i) = j|π(ΦQ) = P)P(π(ΦQ) = P)

= P(rΦQ
(i) = j) = Ki,j

(21)

Similarly, the expectation of x̄(i) reads:

E[x̄(i)] = E[δ>i Sy] = δ>i E[S]y = δ>i Ky = x̂(i) (22)

Thus, x̄ is unbiased. The expected error is also computed in
a similar way:

E
(
||x̂− x̄||2Q

)
=
∑
i∈V

qi Var(x̄(i))

=
∑
i∈V

qi
(
E[(δ>i Sy)2]− E[(δ>i Sy)]2

)
=
∑
i∈V

y>E
[
qiS
>δiδ

>
i S
]
y − qiy>(δ>i E[S])2y

= y>E
[
S>QS

]
y − y>(E[S]>QE[S])y

= y>(E
[
S>QS

]
− K>QK)y

(23)

Finally, rewriting S>QS = QS, one has:

E
(
||x̂− x̄||2Q

)
= y>(E [QS]−K>QK)y = y>(QK−K>QK)y

Sample Mean. The sample mean of an unbiased Monte Carlo
estimator over different realizations has a reduced variance,
and so, gives a better estimator. Thus, in the rest, we use
the sample means 1

N

∑N
k=1 x̃Φ

(k)
Q

and 1
N

∑N
k=1 x̄Φ

(k)
Q

over N
forest realizations as the outputs of the RSF based methods.
A remark. Reducing these results to the constant q case (Q =
qI), one recovers the preliminary results presented in [24].
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B. Parameter selection for the RSF estimators

The proposed estimators are efficient tools to approximate x̂
in both graph TR and interpolation problems for a fixed value
of µ. However, as usual in these problems, a difficult question
is the tuning of the hyper-parameter: the choice of µ that
yields the best performance. For linear smoothers such as the
one we have at hand (x̂ = Ky), many methods such as AIC,
BIC, Marlow’s Cp, leave-one-out cross validation (LOOCV),
generalized cross validation (GCV) or Stein’s unbiased risk
estimator (SURE) are readily available for this tuning step (for
more details and motivations, we refer the reader to [29]).

All of these methods need to compute a quantity called the
effective number of parameters or the degree of freedom [29],
which equals tr(K) for linear smoothers of the form Ky.
Computing exactly this trace requires the matrix inversion we
wish to avoid from the start. A classical estimator of this quan-
tity is Girard’s estimator [30] (also known as Hutchinson’s
estimator [31]). We showed in [32] that RSFs can also be used
to efficiently estimate tr(K). In this section, we build upon
these preliminary results to show how the SURE and LOOCV
methods can be adapted to the proposed estimators in order
to select a good value of µ. Other methods are adaptable in a
similar fashion.

Stein’s Unbiased Risk Estimator. Given independent noisy
measurements y = x + ε ∈ Rn with a Gaussian noise εi ∝
N (0, σ2), let θ(y) be an estimate for the unknown quantity x.
SURE(y, θ(y)) provides an unbiased estimate of the expected
error Eε[||θ(y) − x||22]. For the linear smoother θ(y) = Ky
with K = (Q + L)−1Q, the generic formula of SURE in [33]
can be adapted as:

SURE(y, θ(y)) = −nσ2 + ||y − θ(y)||22 + 2σ2 tr(K) (24)

where the degree of freedom term is replaced with tr(K). The
theory behind relies on Stein’s lemma on multivariate Gaus-
sians [34]. Note that this method requires prior knowledge on
the noise variance σ2 and it outputs an unbiased estimation of
the error. Then, this error needs to be evaluated for different
values of µ and select the value yielding the smallest error.

SURE for RSF estimators. Similar to x̂, the RSF estimators
too need the value of µ that gives the best performance. For
this purpose, SURE can be used. In the following derivations,
we present the adapted SURE formula for x̃ and x̄. More-
over, these derivations show that numerically computing this
formula is trivial after sampling N spanning forests.

Consider two random matrices S̃ =
[
I(rΦQ

(i) = j)
]
i,j

and

S̄ =
[
qjI(j∈Vt(i))∑
k∈Vt(i)

qk

]
i,j

(previously defined as S in the proof

of Prop. 2). With these definitions, notice that x̃ = S̃y and
x̄ = S̄y . Moreover, the proposed estimators can be written in
the form of linear smoothers:

θ̃(y) =
1

N

N∑
k=1

x̃
Φ

(k)
Q

=
1

N

N∑
k=1

S̃(k)y

θ̄(y) =
1

N

N∑
k=1

x̄
Φ

(k)
Q

=
1

N

N∑
k=1

S̄(k)y

(25)

where superscript (k) denotes k-th realization of S̃ or S̄.
Then, one can also evaluate the formula in (24) for θ̃(y)

and θ̄(y). For instance, we get for θ̃(y):

SURE(y, θ̃(y)) = −nσ2+||y−θ̃(y)||22+2σ2 tr

(
1

N

N∑
k=1

S̃(k)

)
(26)

The residual error is trivial to compute after sampling N
spanning forests. Moreover, this is also the case for the degree
of freedom term. A closer look at the trace shows:

tr

(
1

N

N∑
k=1

S̃(k)

)
= tr

(
1

N

N∑
k=1

S̄(k)

)
=

1

N

N∑
k=1

|ρ(Φ
(k)
Q )|

This result yields that the trace term can be replaced with the
average number of roots in the computation of SURE(y, θ̃(y))
or SURE(y, θ̄(y)). Thus, the SURE scores of both estimators
are trivial to numerically compute after sampling N spanning
forests.

Note that neither SURE(y, θ̃(y)) nor SURE(y, θ̄(y)) is an
unbiased estimator for SURE(y, θ(y)). Moreover, the estima-
tion errors read:

E
[
SURE(y, θ̃(y))

]
− SURE(y, θ(y)) = Var(θ̃(y)) ≥ 0

E
[
SURE(y, θ̄(y))

]
− SURE(y, θ(y)) = Var(θ̄(y)) ≥ 0

(27)

Thus, SURE(y, θ̃(y)) and SURE(y, θ̄(y)) are (with high prob-
ability) upper-bounds for SURE(y, θ(y)). For large graphs, in
which computing SURE(y, θ(y)) is prohibitive, these upper
bounds also might be useful since they can be obtained
cheaply.
Leave-One-Out cross validation. LOOCV is a very simple
method to select µ for interpolation problems. Let x` ∈ R|`|
be the known part of the original signal x over the vertices
in ` ⊂ V and θ be an estimator for interpolation. LOOCV
computes the following score (See Chapter 5.5.1 in [29]):

LOOCV(x`, θ(x`)) =
1

|`|
∑
i∈`

(θ−i(x`)i − xi)2

where θ−i(x`) is the estimation without using the i-th mea-
surement. This method leaves xi out at the estimation stage,
and calculates the error on it. The overall score is the average
error over the vertices in `. Note that this method needs
to compute the estimation θ−i(x`) for each individual i
which might not be computationally feasible. Fortunately, this
formula simplifies to the following for linear estimators in the
form of θ(y) = Ky [29]:

LOOCV(x`, θ(y)) =
1

|`|
∑
i∈`

(
θ(x`)i − xi

1− Ki,i

)2

(28)

which avoids re-computation.
LOOCV for RSF estimators. Similar to SURE, this score
can be adapted for the RSF based estimators. For example, in
case of θ̃(x`), it becomes:

LOOCV(x`, θ̃(x`)) =
1

|`|
∑
i∈`

(
θ̃(x`)i − xi

1− 1
N

∑N
k=1 S̃

(k)
i,i

)2

(29)
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and for θ̄, it can be derived in the same way. Notice that
every element in this expression is numerically available after
sampling N spanning forests. Thus, this score can be easily
computed for both estimators.

IV. RSF ESTIMATORS FOR OTHER GRAPH PROBLEMS

In this section, we explore a few graph problems in which
the RSF based estimators presented can replace expensive
exact computations.

A. Node Classification in semi-supervised learning

Consider a dataset consisting of elements one wishes to
classify. In the semi-supervised learning context, the class
label of a few elements are supposed to be known a priori,
along with a graph structure encoding some measure of affinity
between the different elements: the larger the weight of the
edge connecting two elements, the closer they are according
to some application-dependent metric, the more likely these
two elements belong to the same class. The goal is then to
infer all the labels given this prior information.

Among many options to solve this problem, label propaga-
tion [7] and generalized SSL framework [11] are two well-
known baseline approaches. In this section, we deploy x̃ and
x̄ to approximate the solutions given by these approaches.
Problem definition. Let us denote the labeled vertices by
` ⊂ V (typically |`| � |V| and the unlabeled ones by u = V\`.
Assume C distinct label classes and define the following
binary encoding of the prior knowledge for the c-th class:

∀i ∈ V,yc(i) =

{
1 if i is known to belong to the c-th class
0 otherwise

(30)
The matrix Y = [y1| . . . |yC ] ∈ Rn×C thus encodes the prior
knowledge. Many approaches to SSL formulate the problem
as follows. First, for each class c, compute the so-called
“classification function”, defined as:

fc = arg min
zc∈Rn

µ
∑
i∈V

q′i(yc(i)− zc(i))2 + z>c Lzc (31)

where µ and q′i’s are regularization parameters: µ sets the
global regularization level, and each q′i acts entry-wise (when
q′i is high, the corresponding entry in fc is close to the mea-
surement yc(i)). Eq. (31) has the following explicit solution:

fc = (L + Q)−1Qyc (32)

where Q = diag(q1, . . . , qn) and qi = µq′i. Thus, each
classification function fc can be viewed as a smoothed version
of the prior knowledge encoded in yc. As such, if fc(i) is
large, it implies that labels of class c are relatively dense
around node i. The last step in these SSL algorithms is to
assign each node i to the class arg maxc fc(i).

Label propagation and the generalized SSL framework are
two algorithms that adapt this solution in different ways. In
particular, by using different set of q′i’s in (31), label propaga-
tion is in fact a graph interpolation and the generalized SSL
framework may be understood as a graph TR. Thus, the RSF
estimators can be used to approximate the solution for both

algorithms. In the following, we discuss the corresponding
parameter settings for these algorithms along with their RSF
versions.

Label Propagation. The label propagation algorithm [7]
solves the Dirichlet problem for each class c, that is:

∀i ∈ V, Lfc(i) = 0

s. t. ∀i ∈ `, fc(i) = yc(i)
(33)

which is equivalent to (15) for µ = 0. Defining the classifica-
tion matrix F = [f1| . . . |fC ] ∈ Rn×C , one thus has:

Fi,c =

{
Yi,c, if i ∈ `
(−(Lu|u)−1Lu|`Y`|:)i,c, otherwise

(34)

where Y`|: is the matrix Y restricted to rows in `. Note in
passing that F corresponds to a special set of functions for
graphs called harmonic functions. Besides being the solution
of Dirichlet boundary problem, they have interesting connec-
tions with electrical networks and random walks [7].

Zhu et al. [7] provide a simple algorithm to compute
F without computing the inverse matrix. Starting from an
arbitrary initial F(0), at each iteration k, the algorithm updates
F(k) ← D−1WF(k−1). The iteration is completed by setting the
known labels F

(k)
`|: to Y`|:. They prove that the output of this

iteration converges to F as k →∞ (see Section 2.3 in [35]).
Here, we provide an RSF-based estimator to approximate

F. Two scenarii are possible. The first (unlikely) scenario is
when any node in u is connected to at least one node in `. In
this case, one can rewrite (34) as:

F = −K Q−1Lu|`Y with K = (LG\` + Q)−1Q (35)

where LG\` is the Laplacian of the reduced graph obtained
by removing the vertices (and the incident edges) in `,
Q ∈ R|u|×|u| is a diagonal matrix with Qi,i =

∑
j∈` w(i, j).

The condition of this first scenario ensures that Q is indeed
invertible; and RSFs on the reduced graph G \ ` can thus
estimate the columns of F.

However, when there exists at least one node in u that is not
connected to `, Q is no longer invertible and another approach
is needed. In this second scenario, the parameters are defined
over all vertices and set to qi = α > 0 for i ∈ ` and qi = 0 for
i ∈ u. The following proposition guarantees that as α → ∞,
the RSF estimator x̃ with this setting approximates the solution
given in Eq (34).

Proposition 3. Given the parameters qi = α > 0 for i ∈ `
and qi = 0 for i ∈ u, as well as the input vector yc ∈ Rn for
the RSF estimator x̃, the following is verified:

lim
α→∞

E [x̃] = fc.

Proof. See the supplementary material for the detailed proof.

From the random forest point-of-view, setting qi to infinity
for all nodes i in `, and to 0 otherwise, implies that all possible
realizations of ΦQ have exactly the same root set: `. Thus,
when using the estimator x̃, the measurements in ` are not
altered and are simply propagated to other vertices via the
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sampled random trees. In addition, the estimator x̄ boils down
to x̃ in this very specific case.

Generalized SSL framework. The generalized SSL frame-
work proposed in [11] can be seen as a graph TR. It defines
the classification function as follows:

fc =
µ

µ+ 2

(
I− 2

µ+ 2
D−σWDσ−1

)−1

yc

where µ > 0 is the regularization parameter and σ determines
which graph Laplacian is used: σ = 0, 0.5, 1 respectively
correspond to the combinatorial, normalized and random walk
graph Laplacian. This formula can also be written as:

fc = D1−σKDσ−1yc with K = (L + Q)−1Q

where Q = µ
2D. Notice that the cumbersome part in this

formula is to compute KDσ−1yc and it can be approximated
by the proposed estimators on the input vector y = Dσ−1yc.
Then, fc is obtained by left-multiplying the result by D1−σ .

Both solutions, label propagation and the generalized SSL,
can be considered as two different versions of a more generic
optimization problem. Label propagation puts a very high
confidence on the prior. x̃, for example, only propagates
the measurements of the labeled vertices (from the second
scenario’s perspective). Whereas, in generalized SSL, lower
confidence over the prior information is assumed, and thus,
the propagation of other measurements, which are all set
to 0 in this encoding, is authorized. The success of both
methods depends on the correctness of these assumptions
on the data. Section V provides empirical comparisons on
benchmark datasets.

B. Non-quadratic convex functions and Newton’s method

Consider the following generalized optimization problem:

x̂ = arg min
z∈Rn

µf(z) +
1

2
z>Lz (36)

where f : Rn → R is a generic twice-differentiable function
for the data fidelity term (e.g. previously f(z) = ||y − z||22).
A common occurence of the generalised form above is
when the function f above is a log-likelihood, i.e. f(z) =∑n
i=1 log p(yi|zi). This is used when the assumption that the

observations are Gaussian (given the signal) is inappropriate,
for instance when the observations are discrete. In such cases
f is not a quadratic function and there is typically no closed-
form solution for 36.

In these cases, iterative approaches are often deployed.
These approaches draw an iteration scheme to minimize the
objective or the loss function. One popular approach among
them is Newton’s method. Let L(z) denote the loss function,
then Newton’s method draws the following iteration scheme:

zk+1 = zk−α(HL(zk))−1∇L(zk) with α ∈ [0, 1], k = 1, 2, . . .
(37)

H and ∇ are the Hessian and gradient operators, respectively
and zk denotes the estimation at iteration k. Note that, by
definition of the Hessian operator, this method requires twice-
differentiability for the loss function.

Given this scheme, the methods proposed here may become
useful for approximating the inversion throughout the itera-
tions. We illustrate this usage in the following setup:

Assume an independent Poisson distribution for each like-
lihood at i:

P (yi|λ = zi) =
zyii exp(−zi)

yi!

where λ is the distribution parameter. This assumption is
often made in image processing applications to eliminate shot
noise [36]. Also, consider the following slightly modified loss
function:

L′(t) = −µ
n∑
i=1

logP (yi|λ = exp(ti)) +
1

2
t>Lt (38)

where exp(ti) = zi. The gradient ∇L′(t) reads:

∇L′(t) = µ exp(t)− µy + Lt

where exp operates entry-wise on vectors. Then, the Hessian
matrix becomes:

HL′(t) = µdiag(exp(t)) + L

With these two ingredients, a Newton iteration scheme be-
comes:

tk+1 = tk−α [µdiag(exp(tk)) + L]
−1

(µ exp(tk)−µy+Ltk)

The update term, which requires an inverse operation, can be
approximated by our RSF estimators. This approximation is
achieved by setting Q = µdiag(exp(tk)) and the graph mea-
surements y′ to µ−1 diag(exp(−tk))(µ exp(tk)−µy+ Ltk).
This particular case yields the following computation:

Ky′ = (Q + L)−1Qy′

= [µdiag(exp(tk)) + L]−1(µ exp(tk)− µy + Ltk)

which equals to the update in Newton’s method. Thus, the
RSF estimators can be easily used to compute each update
step with a cheap cost.

In the classical Newton’s method i.e. α = 1, convergence
of the result is not guaranteed. It might diverge or stuck in
a loop depending on the closeness of the initial point t0 to
the solution. Guessing a good initial point is not an easy task
and may require expensive computations in high dimensions.
Instead, modifying α is a more applicable option to ensure
convergence. Thus, Newton’s method is often combined with
an additional step at each iteration in which α is reset
accordingly. Line search algorithms [12] are simple and well-
understood methods for this purpose. At each iteration, if
needed, they damp the applied update by shrinking α. These
methods provide convergence, however, they may require more
iteration steps w.r.t. the pure Newton’s method with a good
initial point. In our case, the updates are stochastic and exact
convergence cannot be expected.
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C. l1-Regularization and iteratively reweighted least squares

As with the data fidelity term, many alternatives for the
regularization term are also available. Among them, l1-
regularization [37] is often deployed to obtain sparser solu-
tions. In [38], Sharpnack et al. adapts l1-regularization for
graphs as follows:

x̂ = argmin
z∈Rn

µ||y − z||2 + ||Bz||1 (39)

where B is the edge incidence matrix and ||Bz||1 =∑
(i,j)∈E

w(i, j)1/2|zi − zj |. In contrast to the l2 regularization,

a closed form solution for l1 case is not available. Thus,
iterative optimization schemes are usually utilized to compute
the solution. Iterative reweighted least square [13] (IRLS)
method is one that can be easily adapted for our RSF based
estimators. In this section, we derive the iteration scheme of
IRLS for the given problem and show that each iteration step
can be approximated by x̃ and x̄.

Let M = diag(abs(Bz))−1 where abs is the entry-wise
absolute value operator. An iteration scheme can be derived
by using this equality:

||Bz||1 = abs(z>B>)1 = abs(z>B>)M abs(Bz) = z>B>MBz

where 1 ∈ Rm is the all-ones vector. Then, the problem can
also be written as:

x̂ = argmin
z∈Rn

µ||y − z||2 + z>B>MBz> (40)

which can be iteratively solved by the following scheme:

zk+1 = (µI + B>MkB)−1µIy with Mk = diag(abs(Bzk))−1

A more detailed derivation and the convergence analysis of
this scheme can be found in [13]. Notice that, by definition,
B>MkB equals to a reweighted graph Laplacian Lk. Then,
computing the update at each iteration step immediately re-
duces to solve a graph Tikhonov regularization. Thus, x̃ or x̄
can be used for estimating the update.

V. EXPERIMENTS

We provide in this section several illustrations and run time
analysis of the proposed methods. In the first illustration, the
RSF based methods are run on two image denoising setups.
In these, we consider
• An image with a Gaussian noise: solution provided by

the RSF based Tikhonov regularization parameterized by
SURE.

• An image with a Poisson noise: solution provided by the
RSF based Newton’s method coupled with line search.

In both setups, the underlying graph is assumed to be a 2-
dimensional (2D) grid graph.

In the second illustration, the SSL node classification prob-
lem is considered on three benchmark datasets. We examine
the classification performances of Tikhonov regularization,
label propagation and the RSF versions of these algorithms.
In these experiments, the parameter selection for the Tikhonov
regularization is done by the RSF based leave-one-out cross
validation.

Finally, we briefly examine the computational time for sam-
pling a spanning forest which is the building block operation
for the proposed estimators. Then, we compare this quantity
with the computational time of computing Ly which is the
building block for state-of-the-art approaches, polynomial ap-
proximations or iterative approaches.

A. Image Denoising

A 2D grid graph is a natural underlying structure for images:
every pixel corresponds to a node and each pixel is connected
to its four direct neighbors with equal weights. Other structures
could be used (such as an 8-neighbour version of the grid
graph) and performances will depend on the chosen structure.
However, for the purpose of illustration, we will only consider
the simplest 4-neighbour grid graph.

In the first setup, noisy (with additive Gaussian noise)
measurements y of the original image x are given:

y = x + ε with ε ∝ N (0, σ2I)

To recover x, Tikhonov regularization is applied. Fig. 5
compares the exact result x̂ = Ky = (L + µI)−1µy, to its
forest-based approximations x̃ and x̄. The SURE method to
estimate the best value of µ is also illustrated for all three
estimations of the original image x (and we remark in passing
that they are consistent). The results confirms that x̄ produces
a better estimate for x̂ than x̃. Also, in Fig. 5d, the scores
computed for the RSF estimators are observed as upper bounds
of the scores for x̂ which is expected from the results in
Eq (27).

In the second setup, each pixel value is assumed to be
sampled from a Poisson distribution whose mean is the true
value of the pixel:

y ∝ Poisson(x)

To reconstruct x, Newton’s method is applied, as explained in
Section IV-B. The line search algorithm is used for picking
the value of α at each iteration to ensure convergence. Both
qualitative and quantitative results in Fig. 6 show that all
methods converge to the same solution. Fig. 6c shows that,
even though all three methods converge in less than 100
iterations, x̂ and x̄ minimize the loss function in a similar
way whereas x̃ diverges from this pattern and requires more
iterations for the convergence (due to a larger approximation
error at each step).

B. Node Classification

In this illustration, we run our methods to solve the node
classification problem discussed in Section IV-A. For the
generalized SSL framework, σ is set to 0, and µ is set by
RSF based cross-validation.

The experiments are done on three standard benchmark
datasets [39], namely Cora, Citeseer and Pubmed. In the first
two, the underlying graphs are disconnected, thus we use
the largest connected components. Also, in all datasets, the
orientations of the edges are omitted to operate on undirected
graphs. The general statistics of these datasets after the pre-
processing are summarized in Table I. Note that in these three
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(a) Original Image x (b) Noisy Measurments y,
PSNR = 14.2

(c) Exact solution x̂, PSNR =
19.4
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SURE with x-bar
SURE with x-hat

(d) SURE scores vs µ

(e) x̃ with N = 1 (f) x̄ with N = 1 (g) x̃ with N = 20, PSNR =
18.6
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Fig. 5: An image denoising experiment with additive Gaussian noise. a) the original image. b) a noisy version y = x + ε with ε N (0, σ).
c) the exact graph TR x̂ = Ky. Figure d) summarizes the SURE scores of x̂,x̃ and x̄ for different µ’s. In each, the value of µ that minimizes
the SURE score is selected. e-f) the two RSF estimates x̃ and x̄ based on only one sampled forest. g-h) same as e-f) but averaged over
N = 20 sampled forests.

(a) Original image x (b) Noisy image y,
PSNR=18.0
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(f) Denoised image
with x̂, PSNR=23.1

Fig. 6: An image denoising experiment with Poisson noise. a) original
image x. b) a noisy version y ∝ Poisson(x). Newton’s method is
deployed to recover x by minimizing the loss function in 38. For
three update options, namely x̂, x̃ and x̄, Newton’s method yields the
results shown on the bottom line. Figure c) shows the loss function
through the iterations for the three update options.

datasets, the class of each node is known. This will enable us
to test the different SSL frameworks (a small arbitrary fraction
of nodes will serve as pre-labeled nodes, and one tests whether
or not this is sufficient to infer the class of all nodes). More
precisely, we use the following procedure:

TABLE I: SSL dataset statistics after preprocessing

Dataset #Nodes #Edges #Classes
Citeseer 2110 3668 6

Cora 2485 5069 7
Pubmed 19717 44324 3

• m vertices are selected at random per class as the labeled
nodes,

• the parameter µ is set by LOOCV separately for x̂, x̃ and
x̄.

• the classification functions fc for each class c are com-
puted by the generalized SSL framework, label propaga-
tion and their RSF versions averaged over N repetitions,

• for each vertex i, we assign arg maxc Fi,c as its class and
calculate the classification accuracy as the ratio of cor-
rectly predicted labels to the total number of predictions.

In Fig. 7, the classification accuracy is reported as m and
N vary. The results are averaged over 50 realizations of the
m labeled vertices for all datasets.

In all experiments, x̄ performs better than x̃ as expected.
Moreover, for the first two datasets, Cora and Citeseer, x̄ has
a comparable performance with the exact solution. However,
in Pubmed, x̄ fails to perform as good as the x̂ for gSSL due
to larger approximation errors in both the parameter selection
and the estimation steps.

The empirical results yield that the proposed methods need
much less forest realizations to reach the exact solution of
LP rather than the generalized SSL. However, sampling a
forest for LP often takes more time if n is large and m
is relatively small. For example, in the Pubmed graph, for
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Fig. 7: The classification accuracy of the generalized SSL, LP and
their RSF variants are presented on the datasets Citeseer, Cora and
Pubmed. The RSF methods for the generalized SSL are illustrated
for N = 50, 500 forest realizations, whereas, these numbers for LP
are N = 5, 50. In these plots, the random classifier denotes the
accuracy of inferring classes at random and the constant classifier is
the accuracy of assigning the most occurring class to all unlabeled
vertices. The results for Citeseer, Cora and Pubmed datasets are
averaged over respectively 50 different set of labeled vertices.

m = 20, sampling a single forest for LP (resp. the generalized
SSL) takes 6.3 × 10−2 (resp. 1.4 × 10−3) seconds averaged
over 100 repetitions in a single threaded run time of a laptop.
Note that these figures strongly depend on m and the given
network. Thus, one needs to examine this trade-off with the
given dataset to adjust the total run time.

C. Run-time Analysis

Sampling a spanning forest is the repeated core operation in
the proposed estimators. Similarly, the matrix product Ly is the
building block operation for the state-of-the-art, polynomial
approximations and iterative methods. In this section, we
compare the times needed for these operations to give an order
of magnitude for the run-time of the proposed methods.

In Fig. 8, the average time needed for sampling a spanning
forest on different graphs are plotted while the value of q
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Fig. 8: Average computational times for the RSF sampling (solid
lines) and the sparse matrix multiplication Ly (dashed lines) are
compared. The entries of y are chosen uniformly between 0 and 1.
On the left plot, the underlying graphs are 2D grid with 104 nodes,
10-regular graph (every node has exactly 10 neighbors) with 104

nodes, Erdos-Renyi graph with 104 nodes (average degree is 10).
On the right, the graphs given by Citeseer and Pubmed datasets are
used. The experiments are run on a single thread on a laptop.

varies. As shown in the plots, the time to sample a spanning
forest via our naive Julia implementation remains comparable
with the time to compute the sparse matrix product Ly
through various graphs. Our implementation can be improved
in several ways by going beyond the scope of this work.
Nevertheless, the empirical results indicate that the times to
sample a spanning forest and the product Ly are within the
same order of magnitude.

VI. CONCLUSION

The Monte Carlo estimators proposed have a comparable
computational cost with state-of-the-art methods, can be used
as building blocks in various problems, and are amenable to
theoretical analysis. As we have shown, the proposed methods
are adaptable to various graph-based optimization algorithms
including the generalized SSL framework, label propagation,
Newton’s method and IRLS. Moreover, their use can be more
general than the problems involving graph Laplacians. In
particular, optimization problems with symmetric, diagonally
dominant regularisers can be reduced to graph Tikhonov
regularisation problems, along the lines of [40]. Future work
will continue to leverage the links between RSFs and graph-
related algebra to develop efficient estimators of graph-related
quantities e.g. effective resistances or tr(L†) where L† is the
Moore-Penrose inverse of L.
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