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1 Introduction

Fractional differential equations and inclusions arise naturally in various fields of
science, with numerous applications [1,35,8,36,12,25,18,21,23,24,39]. Over the
years, the search for discussing properties of solutions of fractional differential equa-
tions, namely: existence, uniqueness, attractiveness, controllability, observability, among
others, has been of great community attention [26–29,6,4,9,34,38]. Some authors
dedicate to discuss more analytical properties of solutions, others already direct to
applications.

In recent years, Benchohra et al. [24] and Chang et al. [11], have investigated the
existence of solutions for impulsive functional inclusions Eq.(1) with p(t) = 1 and
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E-mail: vanterlermatematico@hotmail.com, jose.vanterler@edu.ufabc.br

Kishor D. Kucche
Department of Mathematics, Shivaji University, Kolhapur-416 004, Maharashtra, India.



2 J. Vanterler da C. Sousa, Kishor D. Kucche

Eq.(1), respectively
(p(t)y′(t))′ ∈ F(t,ut), t ∈ J = [0,a], t 6= tk, k = 1,2, · · · ,m,

δy(t)|t=tk = Ik(y(t−k )), k = 1,2, · · · ,m,

δy′(t)|t=tk = Jk(y(t−k )), k = 1,2, · · · ,m,

y(t) = φ(t), t ∈ [−r,0],y′(0) = η .

(1)

Other works on existence, uniqueness, controllability involving differential equa-
tions of a integer order, can be obtained at [17,3,5,7,11,14,20].

Em 2018 Wang et al. [35] discuss the controllability of non-instantaneous impul-
sive semilinear differential inclusions involving integer and fractional order deriva-
tives i.e., 

x′(t) ∈ A(t)x(t)+F (t,xt)+B(u(t)) ,a.e.t ∈
i=m⋃
i=1

(si, ti+1]

x
(
t+i
)
= gi

(
ti,x
(
t−i
))

i = 1, ...,m

x(t) = gi
(
t,x
(
t−i
))

, t ∈
i=m⋃
i=1

(ti,si]

x(t) = Ψ (t) , t ∈ [−r,0]

and 

CDα
si,tx(t) ∈ A(t)x(t)+F (t,xt)+B(z(t)) ,a.e.t ∈

i=m⋃
i=1

(si, ti+1]

x
(
t+i
)

= gi
(
ti,x
(
t−i
))

i = 1, ...,m

x(t) = gi
(
t,x
(
t−i
))

, t ∈
i=m⋃
i=1

(ti,si]

x(t) = Ψ (t) , t ∈ (−r,0]

where α ∈ (0,1), CDα
si,t(·) is the Caputo fractional derivative with lower limit si of

order α , A is the infinitesimal generator of C0-semigroup {T (t) : t ≤ 0}, and the con-
trol function z is given is given in Lp(J,X), p > 1

α
, a Banach space of admissible

control functions.
In the present paper, we highlight the advances in the theory of fractional differen-

tial equations involving fractional derivatives with respect to another function, since
they are more general and global operators that allow the discussion and analysis of
a wide class of particular cases. The discussions of these problems are motivated by
the fractional operators, ψ-Hilfer and ψ-Caputo. Some works in this segment can
be obtained at [19,22,15,16,2]. Although there is an interesting range of published
works, many open questions and problems, as well as new tools need to be presented,
in this sense, one of the main purpose of this work, is to provide new results for the
area and consequently contribute to its strengthening.

Let 0 = t1 < t1 < · · · < tp < tp+1 = T , where T is a positive constant. Consider
F : [0,T ]×D→P(Rn) is a multivalued map, where D = {ξ : [−r,0]→Rn, ξ is con-
tinuous everywhere except for a finite number of points t at which ξ (t−) and ξ (t+)
exist with ξ (t−) = ξ (t) } , and P(Rn) is the family of all nonempty subsets of Rn.
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Motivated by the above work and the innumerable open questions, in this paper,
we consider the α th order impulsive fractional functional differential equations

CDα,ψ
0+ u(t) ∈ F(t,ut), t ∈ J = [0,T ], t 6= tk, k = 1,2, · · · , p,

δu(i)(tk) = Iik(u(t−k )), i = 0,1, · · · ,m−1, k = 1,2, · · · , p,
u(t) = φ(t), t ∈ [−r,0],
u(i)(0) = ηi, i = 1,2, · · · ,m−1,

(2)

where CDα,ψ
0+ (·) is the ψ-Caputo fractional derivative of order m−1<α ≤m, m∈N,

φ ∈D and Iik ∈C(Rn
,Rn) (i= 0,1, ...,m−1,k = 1,2, ..., p). Moreover, u(i) : [0,T ]→

Rn which are piecewise continuous in [0,T ] with points of discontinuity of the first
kind at the points tk ∈ [0,T ], i.e., there exists the limits u(i)(t+k ) < ∞ and u(i)(t−k ) =

u(i)(tk) < ∞, u(m) : [0,T ]→ Rn, and δu(i)(tk) = u(i)(t+k )− u(i)(tk) (i = 0,1, ...,m−
1,k = 1,2, ..., p). For any continuous function u defined on [−r,T ]/

{
t1, ..., tp

}
and

any t ∈ [0,T ], we denote by ut the element of D defined by ut(θ) = u(t + θ), θ ∈
[−r,0]. Here ut(·) represents the history of the state form t− r, up to the present time
t.

For the discussion of the main results of this paper, we will consider the following
conditions:

(A1) F : [0,T ]×D→P(Rn) has the property that F(·,ξ ) : [0,T ]→ Pcp(Rn) is mea-
surable for each ξ ∈ D.

(A2) There exists nonnegative constants cik (i = 0,1, ...,m−1,k = 1, ...,p) such that
|Iik(u(tk))− Iik(v(tk))|, Iik(0) = 0, i = 0,1, ...,m−1, k = 1, ..., p and for all u,v ∈
Ω .

(A3) There exists a function l ∈L1([0,T ],R+) such that Hd(F(t,ξ ),F(t,ϕ))≤ l(t)||ξ−
ϕ||D, for a.e. t ∈ [0,T ] and any ξ ,ϕ ∈ D, and Ed(0,F(t,0)) ≤ l(t), for a.e. t ∈
[0,T ].

(A4) Let F : [0,T ]×D→P(Rn) be a nonempty, compact valued multivalued map
such that (t,ξ )→ F(t,ξ ) is L ×B measurable, and ξ → F(t,ξ ) is l.s.c for a.e.
t ∈ [0,T ].

(A5) There exists a function M ∈ L1([0,T ],R+) such that
||F(t,ξ )||= sup{|v(t)| : v(t) ∈ F(tξ )} ≤M(t) for each t ∈ [0,T ].

We will here highlight the main contributions of this article explicitly and clearly.
The first main contribution is to discuss the existence of solutions for the Eq.(2), that
is, the following results:

Theorem 1 Assume that (A1), (A2) and (A3) are satisfied. Then Eq.(2) has at least
one solution on [−r,T ], provided

L =
(ψ(T )−ψ(0))α−1

Γ (α)
ψ(T )‖l‖L1 +

p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(0))i

i!
Cik < 1.

Theorem 2 In addition to (A4) and (A5), assume that the following condition hold:

(A6) There exists constants dik(i= 0,1, · · · ,m−1, k= 1,2, · · · , p), such that |Iik(u(tk))| ≤
dik|u(tk)| for each u ∈ Ω . Then Eq.(2) has at least one solution on [−r,T ], pro-
vided
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L =
p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(tk))i

i!
dik < 1.

The second and third main contributions, is to guarantee the uniqueness and sta-
bility of solutions for Eq.(2), in other words, is to discuss the following results:

Theorem 3 In addition to (A2), (A4) and (A5), assume that the following condition
hold:

(A7) There exists non-negative constant b, such that | f (u)(t)− f (v)(t)| ≤ b‖u− v‖Ω

for any u,v ∈Ω where f is deduced in the proof of Theorem 2. Then Eq.(2) has a
unique solution on [−r,T ], provided

L =
b(ψ(T )−ψ(0))α

Γ (α +1)
+

p

∑
k=1

m−1

∑
i=0

Cik
ψ(T )i

i!
< 1.

Theorem 4 Assume that all the conditions of Theorem 3 hold. Then the solution of
the Eq.(2) is uniformly stable.

In the rest, the paper is organized as follows. In section 2, we present definitions
and essential results in obtaining the main results of this paper. Section 3 is divided
into 3 subsections, each of which discusses a contribution from this paper, that is, the
existence, uniqueness and uniform stability of solutions from Eq.(2).

2 Preliminaries

In this section, we present some fundamental concepts and results for the develop-
ment of this paper.

Let (X ,d) be a metric space and N : X → P(X) be a multivalued map with
nonempty values. We use the notations P(X) = {Y ∈P(X) : Y 6= 0}, Pcl(X) = {Y ∈
P(X) :Y closed}, Pb(X)= {Y ∈P(X) : Y bounded}, Pc = {Y ∈P(X) : Y convex},
and Pcp(X) = {Y ∈P(X) : Y compact}.

Let α ∈ (0,1) and f ∈ L1 [a,b] , [a,b] be a finite or infinite interval of the real
line R (−∞ ≤ a < b ≤ ∞). Also let ψ (·) be an increasing and positive continuous
function on [a,b] , having a continuous derivatives ψ ′ (x) 6= 0 on (a,b). The left-sided
and right-sided fractional integrals of a function f with respect to another function ψ

on [a,b], is defined [30–32]

I α;ψ
a+ f (x) =

1
Γ (α)

∫ x

a
ψ
′ (s)(ψ (t)−ψ (s))α−1 f (s)ds. (3)

On the other hand, let n− 1 < α < n, with n ∈ N, I = [a,b] , is the interval such
that −∞≤ a < b≤∞ and there exist two function f ,ψ ∈Cn ([a,b] ,R) such that ψ is
increasing and ψ ′ (x) 6= 0, for all x ∈ I. The ψ-Hilfer fractional derivatives left-sided
and right-sided HDα,β ;ψ

a+,x (·) function or order α and type 0 ≤ β ≤ 1 is defined by
[30–32]

HDα,β ;ψ
a+,x f (x) = I

β (n−α);ψ
a+,x

(
1

ψ ′ (x)
d
dx

)n

I
(1−β )(n−α);ψ

a+,x f (x) . (4)
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The ψ-Hilfer fractional derivatives defined as above can we written in the follow-
ing form

HDα,β ;ψ
a+,x f (x) = I γ−α;ψ

a+,x D γ;ψ
a+,x f (x)

where D γ;ψ
a+,x(·) is left-sided ψ-Riemann-Liouville fractional derivative.

Taking limit β → 1 on both sides of Eq.(4), we have the Caputo fractional deriva-
tive with respect to another function, given by [30]

CDα;ψ
a+,x f (x) = I

(n−α);ψ
a+,x

(
1

ψ ′ (x)
d
dx

)n

f (x) . (5)

For the formulation of the main result of this paper, we use the Caputo fractional
derivative with respect to another function given by Eq.(5).

For the definitions and lemmas presented below, we use the following references
[37,1,8,10,13,33].

Definition 1 A multivalued map N : [0,T ]→ Pcl(X) is said to be measurable if for
each x ∈ X the function g : [0,T ]→ R+, defined by

g(t) = Ed(x,N(t)) = inf{|x− z| : z ∈ N(t)}

belongs to L1([0,T ],R).

Definition 2 Let X be a nonempty closed subset of Rn, and N : X →P(Rn) be a
multivalued map with nonempty closed values. N is lower semicontinuous (l.s.c) on
X if the set {x ∈ X : N(x)∩C 6= /0} is open for each open set C in Rn.

Definition 3 Let A12 ⊆ [0,T ]×D. A12 is L ⊗B if A12 belongs to the σ -algebra
generated by all sets of the form J ×D where J is Lebesgue measurable in [0,T ]
and D is Borel measurable in D.

Definition 4 Let X de a separable metric space and N : X →P(L1([0,Y ],Rn)) be
a multivalued operator. We say N has property (BC) if:

1. N is (l.s.c).
2. N has nonempty closed and decomposable values.

In order to define the solutions of Eq.(2), we consider the following spaces:

PC =

{
u : [0,T ]→ Rn|uk ∈C((tk, tk+1],Rn),k = 0, ..., p

and there exist u(t−k ) and u(t+k ) with u(t−k ) = u(tk),k = 0, ..., p

}
,which is a Banach space with the norm ||u||PC = max

{
||uk||(tk,tk+1], k = 0, ..., p

}
where uk is the restriction of u to (tk, tk+1], k = 0, ..., p.

Definition 5 Let F : [0,T ]×D→P(Rn) be a multivalued map with nonempty com-
pact values. Assign to F the multivalued operator F : Ω →P(L1([0,T ],Rn)) by
letting F (u) =

{
v ∈ L1([0,T ],Rn)|v(t) ∈ F(t,ut) for a.e t ∈ [0,T ]

}
. The operator F

is called the Niemytzki operator associated with F .
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Definition 6 A function u ∈Ω is said to be a solution of Eq.(2) if u satisfies Eq.(2).

Definition 7 A multivalued operator N : X → Pcl(X) is called:
1. γ-Lipschitz if and only if there exists γ > 0 such that Hd(N(x),N(y)) ≤ γd(x,y)

for each x,y ∈ X .
2. contraction if and only if it is γ-Lipschitz with γ < 1.

Definition 8 Let F : [0,T ]×D→P(Rn) be a multivalued map with nonempty com-
pact values. We say F is of lower semicontinuous type (l.s.c type) if its associated
Niemytzki operator F is l.s.c and has nonempty closed and decomposable values.

Definition 9 The muultivalued map N has a fixed point if there exists x∈ X such that
x ∈ N(x). The set of fixed points of the multivalued map N will be denoted by Fix N.

Definition 10 For a function u : [−r,T ]→ Rn, the set

SF,u =
{

v ∈ L1([0,T ],Rn)|v(t) ∈ F(t,ut)
}

is known as the set of selection functions.

Definition 11 F has a measurable selection if there exists a measurable function
(single-valued) h : [0,T ]→ Rn such that h(t) ∈ SF,u for each t ∈ [0,T ].

We will present some essential results from [37,8,10,13,33] to discuss the main
results of this paper.

Lemma 1 Let Hd : P(X)×P(X)→ R+∪{∞} by

Hd(A,B) = max{supa∈AEd(a,B),supb∈BEd(A,b)}
. Then (Pb,cl(X),Hd) is a metric space and (Pcl(X),Hd) is a complete metric space.

Lemma 2 Let Ω = D∪PC. Then Ω is a Banach space with norm

||u||Ω = max{||u||D, ||u||PC}
.

Lemma 3 Let X be a separable metric space and N : X →P(L1([0,T ],Rn)) be a
multivalued operator which has property (BC). Then N has a continuous selection,
i.e., there exists a continuous function f : X → L1([0,T ],Rn) such that f (x) ∈ N(x)
for each x ∈ X.

Lemma 4 Let X be a normed linear space with S ⊂ X convex and 0 ∈ S. Assume
H : S→ S is a completely continuous operator. If the set

ε(H) = {x ∈ S|x = λH(x) for some λ ∈ (0,1) is bounded}
is bounded, then H has at least one fixed point in S.

Lemma 5 Let (X ,d) be a complete metric space. If N : X → Pcl(X) is a contraction,
then Fix N 6= /0.

Lemma 6 H ⊆ Ω is a relatively compact set if and only if H ⊆ Ω is uniformly
bounded and equicontinuous on each Jk (k = 0, ...,p), where J0 = [−0,r], Jk =(tk, tk+1]
(k = 0, ...,p).

Lemma 7 Let F : [0,T ]×D→P(Rn) be a multivalued map with nonempty, com-
pact values. Assume (A4) and (A5) hold. Then F is of l.s.c type.
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3 Mains results

In this section, we will discuss the main results of this paper, i.e., first we will in-
vestigate the existence of solutions through the fixed point technique and the Arzela-
Ascoli theorem and through the necessary and sufficient conditions (A1)-(A6), as
presented in the introduction. In this sense, assuming the conditions (A2), (A4) and
(A5) imposing the condition a new condition (A7), we obtain the uniqueness of solu-
tions via the Banach fixed point theorem. Finally, we discuss the uniform stability of
solutions.

3.1 Existence of solutions

Theorem 5 Assume that (A1), (A2) and (A3) are satisfied. Then Eq.(2) has at least
one solution on [−r,T ], provided

L =
(ψ(T )−ψ(0))α−1

Γ (α)
ψ(T )‖l‖L1 +

p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(0))i

i!
Cik < 1.

Proof First, we consider multivalued map G : Ω→P(Ω) defined by G (u)= {g ∈Ω},
where

g(t) =



φ(t), t ∈ [−r,0]

φ(0)+
m−1

∑
i=1

ηi

i!
(ψ(t)−ψ(0))i +

1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 h(s)ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(u(tk)), t ∈ [0,T ] and h ∈ SF,u.

It is clear that the fixed points of G are solutions of Eq.(2). For each u ∈ Ω , the set
SF,u is nonempty since by (A1), f has measurable selection.

We shall show that, G satisfies the assumptions of Lemma 5. The proof will be
divided into two steps.

Step 1: G (u)⊆Pcl(Ω) for each u ∈Ω .
Indeed, let {un} ∈ G (u) such that un→ u∗. Then there exists hn ∈ SF,u, such that

for each t ∈ [0,T ],

un(t) = φ(0)+
m−1

∑
i=1

ηi

i!
(ψ(t)−ψ(0))i +

1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 hn(s)ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(u(tk)).

Since F(0,ψ) has compact values and (A5) hold, we may pass to a subsequence
if necessary to get that hn converges to h in L1([0,T ],Rn) and hence h ∈ SF,u. Then,
for each t ∈ [0,T ]

un(t)→ u∗(t) = φ(0)+
m−1

∑
i=1

ηi

i!
(ψ(t)−ψ(0))i +

1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 h(s)ds
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+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(u(tk)).

So u∗ ∈ G (u), and in particular, G (u)⊆Pcl(Ω).
Step 2. It can be shown that there exists L < 1 such that Hd (G (u),G (ū))≤L ‖u−
ū‖Ω for all u, ū ∈Ω .

Let u, ū ∈ Ω and g ∈ G (u). Then there exists h(t) ∈ F(t,ut) such that for each
t ∈ [0,T ]

g(t) = φ(0)+
m−1

∑
i=1

ηi

i!
(ψ(t)−ψ(0))i +

1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 h(s)ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(u(tk)).

From (A3) it follows that, for each t ∈ [0,T ),

Hd (F(t,ut),F(t, ūt))≤ l(t)‖ut − ūt‖D.

Hence there exists w(t) ∈ F(t, ūt) such that

|h(t)−w(t)| ≤ l(t)‖ut − ūt‖D, t ∈ [0,T ].

Consider U : [0,T ]→Pcl(Rn), given by U(t)= {w(t) : |h(t)−w(t)| ≤ l(t)‖ut − ūt‖D}.
Since, the multivalued operator V (t) = U(t)∩F(t, ūt) is measurable, there exists a
function h̄(t) which is a measurable selection for V . So, h̄(t) ∈ F(t, ūt) and |h(t)−
h̄(t)| ≤ l(t)‖ut − ūt‖D for each t ∈ [0,T ].

We define, for each t ∈ [0,T ],

g(t) = φ(0)+
m−1

∑
i=1

ηi

i!
(ψ(t)−ψ(0))i +

1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 h̄(s)ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(ū(tk)).

Then, we have

|g(t)− ḡ(t)|

=

∣∣∣∣ 1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 h(s)ds− 1

Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 h̄(s)ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(u(tk))− ∑

0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(ū(tk))

∣∣∣∣∣
≤ 1

Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 |h(s)− h̄(s)|ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
|Iik(u(tk))−Iikū(tk)|



Existence, uniqueness and stability of fractional impulsive functional differential inclusions 9

≤ (ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )

∫ t

0
|h(s)− h̄(s)|ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(T )−ψ(tk))
i

i!
Cik |u(tk)− ū(tk)|

≤ (ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )

∫ t

0
l(s)‖us− ūs‖Dds

+
p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(tk))
i

i!
Cik |u(tk)− ū(tk)|

≤ (ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )‖u− ū‖Ω

∫ t

0
l(s)ds

+
p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(tk))
i

i!
Cik‖u− ū‖Ω

≤

{
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )‖l‖L1 +

p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(tk))
i

i!
Cik

}
‖u− ū‖Ω . (6)

So, ‖g(t)− ḡ(t)‖Ω ≤L ‖u− ū‖Ω . By an analogous reasoning, obtained by inter-
changing the roles of u and ū, it follows that Hd (G(u),G(ū))≤ L‖u− ū‖Ω . Therefore
G is contraction . By Lemma 5, G has a fixed point which is solution of Eq.(2).

Theorem 6 In addition to (A4) and (A5), assume that the following condition holds:

(A6) There exists constants dik(i= 0,1, · · · ,m−1, k= 1,2, · · · , p), such that |Iik(u(tk))| ≤
dik|u(tk)| for each u ∈ Ω . Then Eq.(2) has at least one solution on [−r,T ], pro-
vided

L =
p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(tk))i

i!
dik < 1.

Proof Note that (A4), (A5) and Lemma 7 imply that f is of L. S. C. type. Then,
from Lemma 3, there exists a continuous function f : Ω → L1([0,T ],Rn) such that
f (u) ∈ F(u), for each u ∈Ω .

We consider
CDα,ψ

0+ u(t) = f (u)(t), t ∈ J = [0,T ], t 6= tk, k = 1,2, · · · , p,
δu(i)(tk) = Iik(u(tk)), i = 0,1, · · · ,m−1, k = 1,2, · · · , p,
u(t) = φ(t), t ∈ [−r,0],
u(i)(0) = ηi, i = 1,2, · · · ,m−1.

(7)

We shall show that T satisfies all assumptions of Lemma 4. The proof will be
given in four steps.

Step 1: T is continuous.
Since the functions f and Iik are continuous, this conclusion can be easily ob-

tained.
Step 2: T maps arbitrary bounded subset of Ω into on bounded set in Ω .
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Let Ba = {u ∈Ω : ‖u‖Ω ≤ a} be arbitrary bounded subset of Ω and u ∈ Ba, then
there exists f ∈ F(u) such that for t ∈ [0,T ],

T (u)(t) = φ(0)+
m−1

∑
i=1

ηi

i!
(ψ(t)−ψ(0))i +

1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 f (u)(s)ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Iik(u(tk)). (8)

Using the conditions (A5) and (A6), we have

|T (u)(t)| ≤ |φ(0)|+
m−1

∑
i=1

|ηi|
i!

(ψ(T )−ψ(0))i +
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )

∫ T

0
| f (u)(s)|ds

+
p

∑
k=1

m−1

∑
i=0

(ψ(T )−ψ(0))i

i!
|Iik(u(tk))|

≤ |φ(0)|+
m−1

∑
i=1

|ηi|
i!

(ψ(T )−ψ(0))i +
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )

∫ T

0
|M(s)|ds

+
p

∑
k=1

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
dik|u(tk)|

≤ |φ(0)|+
m−1

∑
i=1

|ηi|
i!

(ψ(T )−ψ(0))i +
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )‖M‖L1

+
p

∑
k=1

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
dik‖u‖Ω

for each t ∈ [0,T ].
Therefore, for each u ∈ Ba, we have

‖T (u)‖Ω ≤ |φ(0)|+
m−1

∑
i=1

|ηi|
i!

(ψ(T )−ψ(0))i +
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )‖M‖L1 +L ‖u‖Ω

≤ |φ(0)|+
m−1

∑
i=1

|ηi|
i!

(ψ(T )−ψ(0))i +
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )‖M‖L1 +L a.

(9)

Therefore, T (Ba) is bounded.
Step 3. T maps arbitrary bounded set of points into equicontinuous set in Ω .
Let τ1,τ2 ∈ (tk, tk+1), k = 1,2, · · · , p,τ1 < τ2, and u ∈ Ba be arbitrary bounded

subset of Ω . By (8) we get

|T (u)(τ2)−T (u)(τ1)|

≤
m−1

∑
i=1

|ηi|
i!

[
(ψ(τ2)−ψ(tk))

i− (ψ(τ1)−ψ(tk))
i
]

+

∣∣∣∣ 1
Γ (α)

∫
τ2

τ1

ψ
′(s)(ψ(τ2)−ψ(s))α−1 f (u)(s)ds
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+
1

Γ (α)

∫
τ1

0
ψ
′(s)
(
(ψ(τ2)−ψ(s))α−1 +(ψ(τ1)−ψ(s))α−1

)
f (u)(s)ds

∣∣∣∣
+

p

∑
k=1

m−1

∑
i=0

(ψ(τ2)−ψ(tk))
i

i!
|Iik(u(tk))|+

p

∑
k=1

m−1

∑
i=0

(ψ(τ1)−ψ(tk))
i

i!
|Iik(u(tk))|

≤
m−1

∑
i=1

|ηi|
i!
(
ψ(τ2)

i−ψ(τ1)
i)+ ∣∣∣∣∣ 1

Γ (α)

∫
τ2

τ1

m−1

∑
i=0

Ci
m−1ψ

′(s)ψ(s)α−1−i
ψ(τ2)

i f (u)(s)ds

+
1

Γ (α)

∫
τ1

0

m−1

∑
i=0

Ci
m−1ψ

′(s)ψ(s)α−1−i (
ψ(τ2)

i−ψ(τ1)
i) f (u)(s)ds

∣∣∣∣∣
+

p

∑
k=1

m−1

∑
i=0

(ψ(τ2)−ψ(tk))
i +(ψ(τ1)−ψ(tk))

i

i!
|Iik(u(tk))|

≤
m−1

∑
i=1

|ηi|
i!
(
ψ(τ2)

i−ψ(τ1)
i)+ ∣∣∣∣∣ 1

Γ (α)

∫
τ2

τ1

m−1

∑
i=0

Ci
m−1ψ

′(s)ψ(s)α−1−i
ψ(τ2)

i f (u)(s)ds

+
1

Γ (α)

∫
τ1

0

m−1

∑
i=0

Ci
m−1ψ

′(s)ψ(s)α−1−i (
ψ(τ2)

i−ψ(τ1)
i) f (u)(s)ds

∣∣∣∣∣
+

p

∑
k=1

m−1

∑
i=0

1
i!

i

∑
j=0

C j
i dik

(
ψ(τ2)

j−ψ(τ1)
j)

ψ(τk)
i− j

≤ (ψ(τ2)−ψ(τ1))
m−1

∑
i=1

|ηi|
i!

ψ(T )i−1

(i−1)!
+

1
Γ (α)

[
ψ
′(T )ψ(T )α−12m−1

∫
τ2

τ1

f (u)(s)ds

+ψ
′(T )ψ(T )α−2 (ψ(τ2)−ψ(τ1))

∫
τ1

0
| f (u)(s)ds|

m−1

∑
i=1

iCi
m−1

]

+a
p

∑
k=1

m−1

∑
i=0

1
i!

i

∑
j=0

dik
(
ψ(τ2)

j−ψ(τ1)
j)

ψ(τk)
i− j

≤ (ψ(τ2)−ψ(τ1))
m−1

∑
i=1

|ηi|
i!

ψ(T )i−1

(i−1)!
+

1
Γ (α)

[
ψ
′(T )ψ(T )α−12m−1

∫
τ2

τ1

M(s)ds

+ψ
′(T )ψ(T )α−2 (ψ(τ2)−ψ(τ1))‖ f‖L1

m−1

∑
i=1

iCi
m−1

]

+a(ψ(τ2)−ψ(τ1))
m−1

∑
i=1

2iψ(T )i−1

(i−1)!
dik

≤ (ψ(τ2)−ψ(τ1))
m−1

∑
i=1

|ηi|
i!

ψ(T )i−1

(i−1)!
+

1
Γ (α)

[
ψ
′(T )ψ(T )α−12m−1

∫
τ2

τ1

M(s)ds

+ψ
′(T )ψ(T )α−2 (ψ(τ2)−ψ(τ1))m2m−1‖ f‖L1

]
+a(ψ(τ2)−ψ(τ1))

m−1

∑
i=1

2iψ(T )i−1

(i−1)!
dik.
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According to the completely continuity of integrable function M, the right hand
side of the above inequality tends to zero as τ2 → τ1. The convergence for the uses
τ2,τ1 ∈ (0, t1] and [−r,0] is obvious. Then T (Ba) is equicontinuous set in Ω .

As a consequences of Step 1 to Step 3 together with Lemma 6 and the Ascoli-
Arzela theorem, we conclude that T : Ω →Ω is completely continuous.

Step 4: The set ε(T ) = {u ∈Ω : u = λT (u), for some 0 < λ < 1} is bounded.
For each u ∈ ε(T ), by (9), we have

‖u‖Ω = λ‖T (u)‖Ω

≤ |φ(0)|+
m−1

∑
i=1

|ηi|
i!

(ψ(T )−ψ(0))i +
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )‖M‖L1 +L ‖u‖Ω

Then

‖u‖Ω ≤
|φ(0)|+

m−1

∑
i=1

|ηi|
i!

(ψ(T )−ψ(0))i +
(ψ(T )−ψ(0))α−1

Γ (α)
ψ
′(T )‖M‖L1

1−L

i.e. ε(T ) is bounded.
In view of Lemma 4, we deduce that T has a fixed which in turn is a solution of

Eq.(2).

3.2 Uniqueness of solutions

Theorem 7 In addition to (A2), (A4) and (A5), assume that the following condition
hold:

(A7) There exists non-negative constant b, such that | f (u)(t)− f (v)(t)| ≤ b‖u− v‖Ω

for any u,v ∈Ω where f is deduced in the proof of Theorem 2. Then Eq.(2) has a
unique solution on [−r,T ], provided

L =
b(ψ(T )−ψ(0))α

Γ (α +1)
+

p

∑
k=1

m−1

∑
i=0

Cik
ψ(T )i

i!
< 1.

Proof By (8), for any u,v ∈Ω , and each t ∈ [0,T ], we obtain

|T (u)(t)−T (v)(t)| ≤ 1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 | f (u)(s)− f (v)(s)|ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
|Iik(u(tk))−Iik(ū(tk))|

≤ b
Γ (α)

‖u− v‖Ω

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Cik|u(tk)− ū(tk)|
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≤ b
Γ (α +1)

‖u− v‖Ω (ψ(T )−ψ(0))α +‖u− v‖Ω ∑
0<tk<t

m−1

∑
i=0

(ψ(T ))i

i!
Cik

≤

(
b

Γ (α +1)
(ψ(T )−ψ(0))α +

p

∑
k=1

m−1

∑
i=0

(ψ(T ))i

i!
Cik

)
‖u− v‖Ω .

So
‖T (u)−T (v)‖Ω ≤L ‖u− v‖Ω .

Thus all conditions of the fixed point theorem of Banach are satisfied. Then Eq.(2)
has a unique solution on [−r,T ].

3.3 Uniformly stable of solutions

Theorem 8 Assume that all the conditions of Theorem 3 hold. Then the solution of
the Eq.(2) is uniformly stable.

Proof Let u(t) be a solution of Eq.(2), and let ū(t) be a solution of Eq.(2) satisfying
condition X̄(0) = φ̄(0), then

u(t)− ū(t)=



φ(t)− φ̄(t), t ∈ [−r,0],

φ(0)− φ̄(0)+
1

Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 | f (u)(s)− f (ū(s))|ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
[Iik(u(tk))−Iik(ū(tk))] , t ∈ [0,T ].

So we get for each t ∈ (0,T ]

‖u(t)− ū(t)‖ ≤ ‖φ(0)− φ̄(0)‖+ 1
Γ (α)

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 ‖ f (u)(s)− f (ū)(s)‖ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
‖Iik(u(tk))−Iik(ū(tk))‖

≤ ‖φ − φ̄‖+ b
Γ (α)

‖u− ū‖∞

∫ t

0
ψ
′(s)(ψ(t)−ψ(s))α−1 ds

+ ∑
0<tk<t

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Cik‖u(tk)− ū(tk)‖

≤ ‖φ − φ̄‖+ b
Γ (α +1)

‖u− ū‖∞ (ψ(T )−ψ(0))α

+‖u− ū‖∞

p

∑
k=1

m−1

∑
i=0

(ψ(t)−ψ(tk))
i

i!
Cik

≤ ‖φ − φ̄‖+

(
b

Γ (α +1)
(ψ(T )−ψ(0))α +

p

∑
k=1

m−1

∑
i=0

(ψ(T ))i

i!
Cik

)
‖u− ū‖∞.
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So we have
‖u− ū‖∞ ≤ ‖φ − φ̄‖+L ‖u− ū‖∞.

This gives

‖u− ū‖∞ ≤
1

1−L
‖φ − φ̄‖.

Therefore, if ‖φ − φ̄‖ < δ (ε), then ‖u− ū‖ < ε which implies that the solution of
Eq.(2) is uniformly stable.
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