
HAL Id: hal-03012016
https://hal.science/hal-03012016

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Updating graph databases with Cypher
Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Martin Schuster, Petra Selmer, Hannes Voigt

To cite this version:
Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, et al.. Updating
graph databases with Cypher. 45th International Conference on Very Large Data Bases (VLDB), Aug
2019, Los Angeles, United States. pp.2242-2254, �10.14778/3352063.3352139�. �hal-03012016�

https://hal.science/hal-03012016
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Updating Graph Databases with Cypher

Alastair Green
Neo4j

alastair.green@neo4j.com

Paolo Guagliardo
University of Edinburgh

paolo.guagliardo@ed.ac.uk

Leonid Libkin
University of Edinburgh
libkin@inf.ed.ac.uk

Tobias Lindaaker
Neo4j

tobias.lindaaker@neo4j.com

Victor Marsault
∗

LIGM, UPEM/ESIEE-
Paris/ENPC/CNRS

victor.marsault@u-pem.fr

Stefan Plantikow
Neo4j

stefan.plantikow@neo4j.com

Martin Schuster
∗

Abbott Informatics
Petra Selmer

Neo4j
petra.selmer@neo4j.com

Hannes Voigt
Neo4j

hannes.voigt@neo4j.com

ABSTRACT
The paper describes the present and the future of graph up-
dates in Cypher, the language of the Neo4j property graph
database and several other products. Update features in-
clude those with clear analogs in relational databases, as
well as those that do not correspond to any relational op-
erators. Moreover, unlike SQL, Cypher updates can be ar-
bitrarily intertwined with querying clauses. After present-
ing the current state of update features, we point out their
shortcomings, most notably violations of atomicity and non-
deterministic behavior of updates. These have not been pre-
viously known in the Cypher community. We then describe
the industry-academia collaboration on designing a revised
set of Cypher update operations. Based on discovered short-
comings of update features, a number of possible solutions
were devised. They were presented to key Cypher users,
who were given the opportunity to comment on how update
features are used in real life, and on their preferences for
proposed fixes. As the result of the consultation, a new set
of update operations for Cypher were designed. Those led
to a streamlined syntax, and eliminated the unexpected and
problematic behavior that original Cypher updates exhib-
ited.

PVLDB Reference Format:
Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stephan Plantikow, Martin Schuster,
Petra Selmer, and Hannes Voigt. Updating Graph Databases
with Cypher. PVLDB, 12(12): 2242-2253, 2019.
DOI: https://doi.org/10.14778/3352063.3352139

∗Affiliated with the School of Informatics at the University
of Edinburgh during the time of contributing to this work.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3352063.3352139

1. INTRODUCTION
Updating relational databases is a well understood sub-

ject. Tuples can be inserted into a table, deleted from a
table, or values of some attributes of existing tuples can be
modified. Update statements that insert, delete, and modify
tuples are part of the SQL Standard. These statements are
separate from SQL queries; once a database is updated and
is in a consistent state, new queries can be asked about it.

Our understanding of updates in the popular graph
database model, however, is still very rudimentary. The
complexity of the graph model that combines stored data
with the graph topology allows for rather complex update
operations that can be intertwined with graph queries. Here
we present the story of update features in Neo4j [21], one of
the most popular property graph databases1. The query
language of Neo4j is called Cypher. It was inspired by
the developments of SQL, XPath and SPARQL. After its
invention at Neo4j in 2011, it has evolved to support a
comprehensive feature set based on extensive graph pattern
matching capabilities. Its implementations are not limited
to the Neo4j product, and include other products such as
SAP HANA Graph[19], RedisGraph[20], Agens Graph (over
PostgreSQL)[8] and Memgraph[4], as well as open-source
projects, such as Cypher for Apache Spark [1] and Cypher
over Gremlin [2]. Cypher is used in hundreds of production
applications across many industry vertical domains, such as
financial services, telecommunications, manufacturing and
retail, logistics, government and healthcare.

While the design of Cypher was influenced by SQL, the
way in which the language operates is rather different from
SQL. A statement of Cypher is a sequence of clauses, with
next clause taking as its input the result of the previous
one. Moreover, static and dynamic features are mixed freely:
one can start with a pattern matching clause, then update
a database based on the matched patterns, and then pro-
ceed with another pattern matching clause on the updated
database – all in one single statement.

When it comes to dynamic aspects of the language, the
facilities it provides are of two kinds. First, there are analogs
of the usual insertion, deletion, and modification clauses of

1https://db-engines.com/en/ranking/graph+dbms

https://db-engines.com/en/ranking/graph+dbms

SQL, though more complex ones, to reflect the fact that both
graph topology and stored data can be updated. Then there
are facilities that reflect more recent additions to the SQL
Standard, that mix updates and insertions in a single state-
ment, but again they do it in a more complicated fashion
reflecting the datamodel. Specifically, some pattern match-
ing clauses are designed in a way that they never fail: if a
match is not found, the database is updated in a way that
creates a match. One of many possible uses of such a facil-
ity is to populate a database with nodes and relationships:
those can be read from a file, and added to the database,
but only if they do not already exist.

The goal of this paper is to tell the story of dynamic as-
pects of Cypher and Neo4j. However, we do not only de-
scribe graph database updates. Instead, we explain what
they are, what the main issues with the current state of
affairs are, how to fix problems, and what future update
features will be. In more detail, we do the following.

• We first explain the current state of affairs. Update
features were added to Cypher in a rather ad hoc man-
ner, to address specific users’ needs. We survey them,
and explain a number of issues caused by the update
facilities of Cypher 9, the current release of the lan-
guage.

• We then describe how these issues were resolved in a
process that involved a collaboration between Neo4j,
its academic partner (the database group at the Uni-
versity of Edinburgh), and users of the Neo4j product.
A number of alternative solutions were proposed by the
academic team. They were presented to many users of
the Neo4j product (including participants of the open-
Cypher Implementers Meeting, as well as Field En-
gineering and Developer Relations Teams of Neo4j),
who were invited to comment on the proposals and
the real-life usage of update operators. Their answers
were then used to choose possible solutions for solving
problems with current update facilities.

• We present the outcome of this consultation, describ-
ing new update features of that will be available in the
future releases of Cypher. These could be useful for
other existing property graph query languages [23, 7],
and could inform the design of new ones.

Organization. In Section 2 we introduce the property
graph model and Cypher by example. In Section 3 we de-
scribe updates as they currently are in Neo4j’s implementa-
tion of Cypher. Section 4 explains the main issues with the
current state of Cypher’s dynamic features. In Section 6 we
outline various proposals for fixing these problems. Section 7
presents the decisions about new update features based on
interactions with Cypher’s user base. In Section 8 we out-
line the formal semantics of new Cypher updates. Section 9
provides a final summary and outline of the implementa-
tion plans in the Neo4j product. Full details of the formal
semantics of updates can be found in [12].

2. QUERYING GRAPHS WITH CYPHER
We give a brief introduction into the property graph model

and the Cypher query language, by means of examples.
Unlike the relational model, the graph data model stores

information in the form of a graph that consists of nodes and

relationships between those nodes. Nodes usually model
real-world entities, while relationships model connections
between those entities. Additional information about the
entities and the connections between them is stored in both
nodes and relationships in the form of node labels, relation-
ship types and (node or relationship) properties.

As a running example, consider the back-end of an online
marketplace where users can buy products that are offered
either by professional vendors or by other users. In this ex-
ample, nodes of the graph database represent users, vendors
and products, and relationships detail which products were
ordered by which users, and which users or vendors offer
which products. A very small property graph of this form
is given by the solid lines in Figure 1.

The basic properties of the property graph model are as
follows.

• Each node may have an arbitrary number of labels,
denoted by a leading colon; for example, nodes p1, p2
and p3 all have the label :Product. Node labels are
optional, i.e. there may be unlabeled nodes.

• Each relationship has precisely one source node, tar-
get node, and type, with the latter denoted by a colon;
for instance, the relationship between nodes u1 and
p1 is of type :ORDERED. The uniqueness of source and
target nodes means that relationships are always di-
rected from source to target, and there may never be
any “dangling relationships” (i.e. relationships with a
missing source or target). There may, however, be mul-
tiple relationships with identical types and properties
between the same nodes.

• Both nodes and relationships may have an optional
property map, given as a set of key-value pairs. In the
example, all nodes have id and name properties, while
relationships do not have any properties; in general,
property keys can also vary between nodes (or rela-
tionships, respectively).

We next describe the basic features of the Cypher lan-
guage, the query language of the Neo4j graph database
product. The querying fragment of the Cypher language
for property graphs uses an “ASCII art” representation of
nodes and relationships. For instance, the query

MATCH (p:Product)<-[:OFFERS]-(v:Vendor)

-[:OFFERS]->(q:Product)

WHERE p.name = "laptop"

RETURN v

can be used to find all vendors offering two products, one of
which has the name "laptop". We use this query for a very
brief introduction to the read-only fragment of Cypher; for
a more comprehensive overview, see e.g. [21, 13].

At their very core, Cypher queries consist of a sequence of
clauses that are evaluated on a property graph and manip-
ulate a driving table. In the context of Cypher, tables are
bags, or multisets, of consistent records, i.e., of key-value
maps with the same set of keys.

In the example, we start with an empty table, which the
first MATCH clause populates with two records (p:p1, v:v1,
q:p2) and (p:p2, v:v1, q:p1). Indeed, replacing variables p,
v, and q by the nodes given for them in each of the records
gives a match for the input pattern in the graph of Figure 1.

Readers experienced in SQL may wonder why the vari-
ables p and q cannot be matched to the same node (which

v1

:Vendor

id:60

name:"cStore"

p1

:Product

id:125

name:"laptop"

p2

:Product

id:125

name:"notebook"

u1

:User

id:89

name:"Bob"

u2

:User

id:99

name:"Jane"

p3

:Product

id:85

name:"tablet"

:O
FF
ER
S

:OFFERS

:ORDERED

:ORDERED

:O
FF
ER
S

:ORDERED

p4
:New_Product

id:0

:ORDERED

v2
:Vendor

:OFFERS

Figure 1: Property graph for the running examples of Sections 2 and 3. Solid lines indicate the initial graph; dotted lines –
the additions from Query 1; dashed lines – the additions from Query 4.

would yield two additional records); this is due to a fea-
ture in the pattern matching of Cypher requiring that dis-
tinct relationship patterns in a graph pattern have to be
mapped to distinct relationships in the graph. This en-
sures that outputs of queries are finite. For example, con-
sider a graph containing a single loop on node v. If the
same edge can be traversed multiple times, it is not clear
how many times the node v will be returned by the query
MATCH (v) -[*]-> (v) RETURN v that allows an arbitrary
number of edges on the path from v to v. Cypher elimi-
nates this ambiguity by disallowing multiple edge traversals
in pattern matching; this, however, is not without complex-
ity costs, see [13].

Next, the WHERE clause acts as a filter on the driving ta-
ble according to the condition given in the clause. In the
example, this would remove the record (p:p2, v:v1, q:p1)
from the driving table, as the name property of node p2 is
different from "laptop".

Finally, the RETURN clause projects all records of the driv-
ing table to the variable(s) given in the clause; in the ex-
ample, we would end up with a final table containing only
the record (v:v1). Note that tables are bags, i.e. without
the WHERE clause removing one record from the intermedi-
ary driving table, the final table would have contained two
copies of the record (v:v1).

Following this intuition, previous work in [13] formalized
the semantics of a Cypher clause C, given a property graph
G, as a mapping [[C]]G from tables to tables. That is, each
clause takes as input a driving table and produces from it an
output driving table. The semantics of a Cypher query can
then simply be derived from the semantics of its clauses by
composing their corresponding mappings from left to right,
and the output of a query is computed by feeding the empty
table to its semantic mapping as an input. Based on this
idea, a full formal semantics for the read-only fragment of
Cypher was given in [13]. This was part of an ongoing effort
to provide a formal language specification as part of creating
a standard for Cypher. Similar efforts for SQL have a long
history [9, 18] and are still ongoing [11, 14].

While the read-only fragment of Cypher, along with its
formalization, are relatively straightforward, it turns out

that updates to property graphs present additional chal-
lenges compared to the way that updates are handled in the
relational model. In particular, Cypher’s modular nature al-
lows for chaining arbitrary sequences of reading and writing
clauses in one single query, which raises questions regarding
atomicity of statements and transaction boundaries. In the
next section we present a brief overview of Cypher updates,
before outlining some of the most significant issues that the
current state of the art leads to.

3. UPDATES IN CYPHER 9
We now describe the state of update facilities in Cypher 9,

the current release of the language in Neo4j. The main syn-
tactic constructs are shown in Figures 2–5; we do not go into
the details, as most of the syntax is self-explanatory and in
line with the syntax of read-only queries (see [12, 13]). What
is worth noting are the different types of restricted patterns
for updates and the somewhat involved structure of queries
containing both reading and update clauses; we shall discuss
these points in more detail in Section 4.4. Here, in the same
spirit of the previous section, we introduce Cypher’s update
facilities by means of a few easy to follow examples.

The CREATE clause in Cypher (similar to the INSERT clause
in SQL) is used to insert new nodes or relationships into
the property graph. Similar to the MATCH clause, it uses an
“ASCII-art” style of representing nodes and relationships
and can insert entire paths. As a simple example, the fol-
lowing would insert a new product ordered by user 89:

Query 1

MATCH (u:User{id:89})

CREATE (u)-[:ORDERED]->(:New_Product{id:0})

In the example in Figure 1, this query would insert the dot-
ted node p4 and attached relationship.

Specifying node labels as well as properties for nodes or
relationships in newly created patterns is optional; relation-
ship types, on the other hand, have to be specified in order
to ensure that every relationship has a unique type.

Similar to the UPDATE clause in SQL, the clauses SET and
REMOVE in Cypher 9 are used to manipulate node labels and

〈query〉 ::= 〈clause sequence〉
[
UNION [ALL]? 〈query〉

]?
〈clause sequence〉 ::=

[
〈reading clause〉

]∗〈return〉 ∣∣ 〈reading clause〉∗〈update clause〉+ [〈with〉 〈clause sequence〉]?
Figure 2: Syntax of queries. The derivation rules for 〈reading clause〉, 〈with〉 and 〈return〉 are omitted; see [12, 13] for details.

〈update clause〉 ::= 〈set〉
∣∣ 〈remove〉

∣∣ 〈create〉 ∣∣ 〈delete〉 ∣∣ 〈merge〉
∣∣ 〈for each〉

〈set〉 ::= SET 〈set item〉
[
, 〈set item〉

]∗ 〈remove〉 ::= REMOVE 〈rem. item〉
[
, 〈rem. item〉

]∗
〈create〉 ::= CREATE 〈dir. upd. pat.〉

[
, 〈dir. upd. pat.〉

]∗ 〈delete〉 ::= DELETE 〈expr〉
[
, 〈expr〉

]∗
〈merge〉 ::= MERGE 〈upd. pat.〉 〈for each〉 ::= FOREACH (〈name〉 IN 〈expr〉 | 〈update clause〉)

Figure 3: Syntax of update clauses. The derivation rules for 〈expr〉 and 〈type〉 are omitted.

〈set item〉 ::= 〈expr〉 = 〈expr〉
∣∣ 〈expr〉 += 〈expr〉 ∣∣ 〈expr〉 〈label list〉

〈rem. item〉 ::= 〈expr〉 . 〈key〉
∣∣ 〈expr〉 〈label list〉 ; 〈label list〉 ::= : 〈label〉

[
: 〈label〉

]∗
Figure 4: Syntax of clause items used by REMOVE and CREATE. The derivation rules for 〈label〉 and 〈key〉 are omitted.

〈upd. pat.〉 ::=
[
〈name〉 =

]? 〈node pat.〉 [〈rel. upd. pat.〉 〈node pat.〉]∗
〈dir. upd. pat.〉 ::=

[
〈name〉 =

]?〈node pat.〉 [〈dir. rel. upd. pat.〉 〈node pat.〉]∗
〈node pat.〉 ::= (〈name〉? 〈label list〉? 〈map〉?)

〈rel. upd. pat.〉 ::=
[
<
]?
-[〈name〉? :〈type〉 〈map〉?]-

[
>
]?

〈dir. rel. upd. pat.〉 ::= -[〈name〉? :〈type〉 〈map〉?]->
∣∣ <-[〈name〉? :〈type〉 〈map〉?]-

Figure 5: Syntax of the patterns that appear in the MERGE and CREATE clauses. The derivation rules for 〈map〉 and 〈type〉 are
omitted.

property maps on both nodes and relationships. For in-
stance, the following query would change the id property,
add a new name property and replace the label :New_Product
with :Product on the newly created node from Query 1:

Query 2

MATCH (p:New_Product{id:0})

SET p:Product, p.id=120,p.name="smartphone"

REMOVE p:New_Product

The DELETE clause is used to remove nodes and relation-
ships from a property graph, with one subtlety: As property
graphs may contain no “dangling relationships” (i.e. each re-
lationship must have a source node and target node), any
DELETE clause supposed to delete nodes must also ensure
that those nodes do not have any relationships attached to
them. For instance, in the running example, after execution
of Queries 1 and 2, the query

MATCH (p:Product{id:120})

DELETE p

would fail, because the :Product node with id 120 (node
p4) is the source node of an :ORDERED relationship. In order
to delete this newly inserted node, we would also have to
match and delete its attached relationship:

MATCH ()-[r]->(p:Product{id:120})

DELETE r,p

Alternatively, the DETACH DELETE clause can be used to
delete nodes along with all relationships attached to them:

Query 3

MATCH (p:Product{id:120})

DETACH DELETE p

Due to the compositional nature of Cypher, Queries 1, 2
and 3 can be intertwined as in the following example (given
for purely illustrative purposes) that creates a new node,
changes its properties and then deletes it again:

MATCH (u:User{id:89})

CREATE (u)-[:ORDERED]->(p:New_Product{id:0})

SET p:Product,p.id=120,p.name="phone"

REMOVE p:New_Product

DETACH DELETE p

Finally, Cypher 9 offers a hybrid query/update clause
MERGE, that borrows the idea from the merge statement
present in recent versions of the SQL Standard, but expands
it with the full power of Cypher pattern matching. On spec-
ification of an input pattern, MERGE tries to find a match of
that pattern (like the MATCH clause), and where this match
fails, MERGE works as an update and creates a new instance
of the pattern (like the CREATE clause).

As an example, consider the following query, which spec-
ifies that each product in the graph should be offered by

some vendor and returns the (matched or newly created)
product/vendor pairs:

Query 4

MATCH (p:Product)

MERGE (p)<-[:OFFERS]-(v:Vendor)

RETURN p,v

In the example graph of Figure 1, the first line would
match the three :Product nodes p1, p2 and p3. For the for-
mer two, the MERGE clause finds a match (in the :Vendor

node v1), while for the latter, it does not find a match and
therefore creates a new :Vendor node v2, and an :OFFERS

relationship shown by dashed lines. Finally, the RETURN

clause returns the two :Product p1, p2, each paired with the
:Vendor node v1, and the :Product node p3, paired with the
newly created :Vendor node v2.

4. PROBLEMS WITH UPDATES
While the update operations described in the previous

section may seem clear and simple on the surface, they do
in fact have some problems that appear when one takes a
closer look. In this section, we discuss how the more com-
plex structure of the graphs and tables that Cypher operates
on (compared to the relational tables for SQL) leads to vio-
lations of some very basic properties one would expect from
update operations in databases. In particular, we will see
that updates violate the basic principle of atomicity. In-
tuitively, the reason behind this is that updates appear in
a statement where they are preceded by other clauses, and
thus they operate over the driving table, going over it tu-
ple by tuple (in a way similar to for each row triggers).
While doing so, such updates can see intermediate results,
i.e., those that were the result of update operations looking
at earlier rows in the driving table. In addition to violating
atomicity, some updates may be nondeterministic. Indeed,
the order in which they process the driving table, and the
lack of atomicity, may affect the end result. We now illus-
trate these issues by means of examples.

4.1 Problems with SET

In this section, we show how the behavior of SET in the
previous Neo4j implementation may be both non-atomic and
nondeterministic.

Example 1. For this example, we assume that the prop-
erty graph has already been populated, but due to an error
in data entry, the product ID numbers for the products “lap-
top” and “tablet” have been switched.

In order to avoid manual fetching and setting of product
ID numbers, experienced SQL programmers might expect
the following query to work:

MATCH (p1:Product{name:"laptop"}),

(p2:Product{name:"tablet"})

SET p1.id = p2.id, p2.id = p1.id

In the current implementation, however, this query behaves
the same as the following:

MATCH (p1:Product{name:"laptop"}),

(p2:Product{name:"tablet"})

SET p1.id = p2.id

SET p2.id = p1.id

In other words, the current semantics would first set the ID
of “laptop” to be the same as that of “tablet”, after which
both products bear the same ID number, and then perform
a “no-operation” by setting the ID of “tablet” to that of
“laptop”, at a point where both IDs are identical. Enforcing
the originally desired switch of the two ID properties, on the
other hand, is impossible without using auxiliary variables
in the current implementation.

Example 2. This example is very similar to Example 1;
here, we want to set the name of a product with ID number
85 to be the same as the name of a product with ID 125.
This is easily done by the following query:

MATCH (p1:Product{id:85}),(p2:Product{id:125})

SET p1.name = p2.name

Let us assume, however, that due to some error in data
entry, or dirty input data, the graph actually contains more
than one node with label :Product and ID number 125; this
situation is exemplified in Figure 1, where nodes p1 and p2
both have ID number 125, but different name properties. In
this case, it is unclear what result we would even expect
from the execution of the above query, and depending on
the order in which nodes are matched, node p3 might end
up with name set to either "notebook" or "laptop".

4.2 Problems with DELETE

In the current implementation of Cypher, the DELETE

clause violates atomicity. It is possible, for instance, to set
properties of deleted nodes. The following query (rather ar-
tificial, given for illustration purposes only) goes through
without an error and returns an empty node without any
labels or properties.

MATCH (user)-[order:ORDERED]->(product)

DELETE user

SET user.id = 999

DELETE order

RETURN user

As a minor issue, this raises the question of how deleted en-
tities may be manipulated after they have been deleted. In
particular, one wonders what happens if a deleted entity is
to be returned. Much more seriously, however, allowing this
query to go through without an error creates an intermedi-
ate state (after the first DELETE clause) where the current
working graph is in an illegal state – there are “dangling re-
lationships” without a start node. Complex data querying
may actually be executed on this illegal graph (e.g., MATCH
clauses), with an unclear meaning.

4.3 Problems with MERGE

In this section, we demonstrate issues with the current
behavior of MERGE. As a high-level overview, the current im-
plementation of MERGE works (as intended) in a “match-or-
create” fashion on a per-record base, that is, for each record
in the driving table, it tries to match an instance of the given
pattern in the current graph, and, if unsuccessful, creates an
instance in the graph.

While processing an update record-by-record is similar to
what SQL does, the main issue is that the current imple-
mentation of Cypher allows MERGE to read its own writes.
That is, if processing a record in the driving table creates
some nodes and relationships, these may be matched dur-
ing the processing of subsequent records of the driving table

(a)

u1

p

v1

u2 v2

:ORDERED

:OFFERS

:O
FF
ER
S

:O
RD
ER
ED

:ORDERED
:OFFERS

(b)

u1

p

v1

u2 v2

:ORDERED

:OFFERS

:O
FF
ER
S

:O
RD
ER
ED

Figure 6: Two possible output graphs in Example 3.

within the same MERGE clause. Not only does this behavior
violate the desired atomicity of clauses, but it may also lead
to cases where the output graph of a MERGE clause depends
on the order in which records in the driving table are pro-
cessed. Since tables in Cypher are assumed to be unordered
and may be reordered at will by the query-processing en-
gine, this means that the behavior of a MERGE clause may be
nondeterministic. For an illustration, consider the following
example.

Example 3. In this example, we demonstrate how the be-
havior of MERGE may be nondeterministic in the current
Neo4j implementation. For this example, we assume that
the input graph contains only nodes and no relationships,
and that the input table is already populated. This assump-
tion is reasonable, as the feedback from the user base tells
us that MERGE is often used to populate a graph based on a
table that has been produced by importing from a relational
database or a CSV file, and that it is a common practice to
input nodes first and relationships later.

The query contains the following MERGE clause:

Query 5

MERGE (user)-[:ORDERED]->(product)

<-[:OFFERS]-(vendor)

The associated driving table is the following:

user product vendor

u1 p v1
u2 p v2
u1 p v2

Here, u1, u2, p, v1 and v2 stand for nodes that are already
present in the graph, and we assume that these nodes do
not have any relationships yet.

The execution of Query 5 may produce two different
graphs depending on the evaluation order. Indeed, going
through the driving table bottom-up yields the graph in
Figures 6a, since none of the expected paths of length 2
can be matched. On the other hand, evaluating the driv-
ing table top-down yields the graph in Figure 6b, since the
path u1 −→ p −→ v2 can be matched after creating the paths
u1 −→ p −→ v1 and u2 −→ p −→ v2 .

4.4 Problems with the syntax
The full syntax for updates in Cypher 9 is somewhat

lengthy and cumbersome. This is due to two major factors.
First, the current implementation in Neo4j allows for read-

ing clauses (such as MATCH and WHERE) to be followed by a
sequence of update clauses. However, if a sequence of up-
date clauses is followed by reading clauses, a WITH clause

is required in between. While this rule is not strictly nec-
essary and exist for historic reasons, it turns WITH clause
into a clear demarcation line marking when effects of up-
date clauses become visible to reading clauses of the same
query.

Second, the CREATE and MERGE clauses, though similar in
behavior, allow for different types of patterns to be speci-
fied in their input. For CREATE, tuples of path patterns may
be given, but relationship patterns must carry a specified di-
rection, whereas MERGE only allows for a single path pattern,
where relationship patterns may also be undirected.

5. INPUT FROM NEO4J USERS
In order to come up with the redesign of update features

that would not only eliminate problems outlined in the pre-
vious section but would also satisfy the needs of Neo4j users,
it was decided to consult the user base to understand how
update features are used, and what is expected of them in
practice. Although there was a recent survey of users of
graph databases [22] that revealed much useful information,
it was not specific enough to address the usage of a partic-
ular language features, as we need here.

We have consulted three groups of users.

• The first group consisted of participants of the open-
Cypher Implementers Meeting (oCIM). This is the
meeting of the openCypher project [5] that aims to
deliver a full and open specification of the language;
it is attended by implementers of the language from
several companies and research projects.

• The second group consisted of members of the Neo4j
Field Engineering Team. They are responsible for
helping customers deliver enterprise-level solutions us-
ing Neo4j, troubleshooting issues with applications
in production environments, and exploring proof-of-
concept ideas.

• The third group involved the Neo4j Developer Rela-
tions Team. They are responsible for interacting with
and growing the developer community, and user train-
ing and support. Their members oversaw multiple
training sessions that involved about 500 Cypher pro-
grammers (thus significantly exceeding the number of
users who took the survey of [22]).

The consultation with openCypher implementers took
place during the 4th oCIM in May 2018. It concentrated pri-
marily on enforcing atomicity and determinism of updates
in Cypher updates. Upon the presentation of issues detailed
in the previous section, the proposal to enforce atomicity of
SET and DELETE received overwhelming support of partici-
pants.

However, Cypher implementers do not necessarily see how
updates are used in practice. While changes to SET and
DELETE are fairly straightforward, it is not so clear how
MERGE needs to be modified; indeed we shall see soon that
there are many different options. Thus, to choose them,
it was important to know how MERGE is actually used, and
what difficulties Cypher programmers experience with it.
For this, we undertook a survey within Neo4j in which we
solicited feedback from members of the Field Engineering
the Developer Relations Teams.

Most importantly, the survey revealed that users intu-
itively think that the behavior of MERGE is to create the

missing parts of a specified pattern, after first matching as
much of the pattern as possible. The notion that it oper-
ates on the entire pattern is counter-intuitive. Thus, by far
the most prevalent error caused by misunderstanding MERGE

is the unintended creation of duplicate nodes and relation-
ships. The majority of the survey participants observed on
multiple occasions errors caused by this misunderstanding
of MERGE.

The prevailing initial response to MERGE by new users in
training sessions is one of surprise when it comes to merging
patterns, and following that, some concern about how to de-
termine when they have made an error. They tend to expect
that the missing part of the pattern will be merged into an
existing pattern. On the other hand, the idea of merging
nodes – as opposed to patterns – does not cause problems.
Over half of the survey respondents said that at least 60% of
users at training sessions struggle with understanding MERGE

when it is presented to them for the first time.
A clear majority of the survey respondents were of the

opinion that the MERGE clause ought to be revised in the
following ways.

(i) Its semantics must be deterministic and atomic, and
it should be clear what precisely is being merged on,
and what is expected to be unique.

(ii) The term itself and the syntax of the clause ought to be
amended, to be closer in line with users’ understanding
of the semantics.

In the next section, we explain how to turn this wish list
into concrete proposals for new update features of Cypher.

6. PROPOSALS FOR NEW CYPHER
Given the problems presented in Section 4 and Cypher

users’ wishes outlined in Section 5, we now describe propos-
als for changing syntax and semantics of Cypher updates.

To start with, it is fairly clear how the problems with the
SET and DELETE clauses can be solved. Those statements
must enforce atomicity, i.e., they cannot see partial results
of deletions or changing of values. Indeed, these clauses have
their direct SQL counterparts (although they add more com-
plex pattern matching machinery), and thus we can adopt
well known solutions from the relational world.

The situation with the MERGE clause, on the other hand,
is more complicated. While it is clear that the users have
two primary wishes – atomicity and clarity with respect to
what is being merged on – there could be multiple ways of
achieving these.

As already pointed out in Example 3, the cause of the
nondeterministic behavior of the current implementation of
MERGE is its ability to read its own writes. Any proposal to
fix this would therefore have to separate the reading (MATCH-
like) parts of MERGE from its writing (CREATE-like) parts. The
easiest way of doing so would be the following.

Atomic MERGE. It creates a copy of the input pattern for
each record in the driving table for which the input pattern
could not be matched in the original input graph. Once all
these input patterns are created, the graph is modified in a
single atomic step, by adding all of them.

This version is very natural but at the same time is does
not address the intuition that MERGE should transform the in-
put graph with “minimal changes” into one where the input

pattern can be matched for each record in the driving table
– and this is indeed something that Neo4j users felt strongly
about. To address this, the next logical step is to still to
find all the matches in the original graph, but perform all
the writing in a temporary change graph, which then gets
minimized by collapsing similar nodes and relationships, and
afterwards is inserted into the input graph.

However, there are multiple ways in which similarity of
nodes and relationships can be defined, for the purpose of
collapsing them. For Atomic MERGE, no minimization is per-
formed at all. We now describe four ways of meaningfully
collapsing nodes and edges, and then illustrate them by
means of examples.

Grouping MERGE. The minimization is done by grouping
records in the driving table by the expressions appearing in
the pattern and then creating only one copy for each group.
That is, not only do duplicates get eliminated, but irrelevant
entries are disregarded.

Weak Collapse MERGE. In addition to the grouping per-
formed as above, all newly created nodes that have the same
labels and properties and are matched to the same position
of the input pattern in MERGE get collapsed into one; simi-
larly, all relationships that have the same types, properties,
source and target nodes (after node collapsing) and occur
in the same position of the input pattern get collapsed into
one.

Collapse MERGE. It behaves like Weak Collapse MERGE, ex-
cept that it allows to collapse nodes that match different
positions of the input pattern.

Strong Collapse MERGE. It lifts the restriction from Col-
lapse MERGE in that it also collapses relationships with iden-
tical types, properties, source and target nodes (after col-
lapsing) that match different positions in the input pattern.
This behavior lifts the restriction that patterns are matched
by traversing each edge at most once. Indeed, after collaps-
ing relationships, it is possible that the pattern in MERGE is
satisfied by traversing a relationship more than once.

We now give several examples illustrating the different
possible semantics proposed for MERGE. Throughout these
examples, we often assume that the input graph is empty,
while the input table is already populated. As explained
in the previous section, this assumption is not artificial: it
reflects the way in which a graph database may be initially
populated by importing data from a relational database or
a CSV file.

First, one may see that these new approaches resolve the
issue of nondeterministic behavior in Example 3.

Example 4. We consider the setting of Example 3 and
describe how the different proposed MERGE variants behave.

All of them avoid nondeterminism. Atomic or Grouping
semantics always yield the graph of Figure 6a, that is, create
the path of the input pattern for all three records in the
input table. All three variants of collapse MERGE create the
minimal graph (Figure 6b), as the relationships between u1

and p, and between p and v2 have identical properties and
are matched by the same positions of the pattern in MERGE.

98

125

98

125

98

null

98

null

99

125

99

null

(a) Atomic

98

125

98

null

99

125

99

null

(b) Grouping

98

125

99

null

(c) (Weak/Strong) Collapse

Figure 7: Resulting graphs for different semantics of MERGE in Example 5. Top-row nodes are labeled :User, bottom-row
nodes are labeled :Product, relationships are all of type :ORDERED, and values inside nodes denote values of their id attribute.

Example 5. In this example, we contrast the different pro-
posed semantics options for MERGE in some more detail.
In particular, we demonstrate how they handle duplicates,
node collapsing, and null values. The query in this scenario
is as follows:

MERGE (:User{id:cid})

-[:ORDERED]->(:Product{id:pid})

Assume that the input graph is empty, and consider the
following driving table:

cid pid date

98 125 2018-06-23
98 125 2018-07-06
98 null null

98 null null

99 125 2018-03-11
99 null null

Here, both atomic and grouping MERGE may create multiple
nodes for the same user ID if a user has multiple orders.
The main difference is that, if the same user and product
ID appear together in several records (possibly with differ-
ent order dates), atomic MERGE will create the corresponding
nodes multiple times while grouping MERGE only creates one
pair of nodes for each unique pair of cid/pid (regardless of
additional columns in the driving table). If the driving table
contains any null values, these are treated the same way as
regular IDs, i.e. a new node is created for each order with a
null ID (unless, in the case of grouping MERGE, another null
order associated with the same customer already exists).

Concretely, for the example table, Atomic MERGE will cre-
ate the graph with twelve nodes and six relationships in Fig-
ure 7a, while Grouping MERGE eliminates duplicate cid/pid
pairs and creates only the eight-node graph in Figure 7b.

All three versions of collapse MERGE show identical behav-
ior in this example, creating only a single product node for
each pid, a single customer node for each cid and a single re-
lationship for each unique cid/pid pair. If the driving table
contains any nulls, e.g. for pid, only a single corresponding
node with null product ID is created, and all orders asso-
ciated with null product IDs in the driving table are linked
to this “non-product” by an :ORDERED-relationship. With
the given table, this yields the graph shown in Figure 7c.

Example 6. This example highlights the difference be-
tween Weak Collapse MERGE and (Strong) Collapse MERGE.
The scenario is like the one given for Example 3, except for
the fact that this time we want to insert information about
sales between two users instead of sales between a user and
a vendor. Consider the query

MERGE (:User{id:bid})

-[:ORDERED]->(:Product{id:pid})

<-[:OFFERS]-(:User{id:sid})

with the following driving table:

bid pid sid

98 125 97
99 85 98

This query, executed on an empty graph, yields the results
displayed in Figure 8, depending on the semantics chosen.

As can be seen in that figure, Collapse and Strong Col-
lapse MERGE actually allow for combining the two copies of
the :User node with ID 98, as one would expect.

Example 7. We finally highlight the difference between
the behavior of the Collapse and Strong Collapse semantics.
Let us consider the following driving table.

a b c d e tgt

p1 p2 p3 p1 p2 p4

All values in the table are node ids that represent products
previously looked up in the graph. It tracks the last product
pages visited by customer (a–e) before making a purchase
(tgt). Here, the customer visited, in that order, the pages
of the products p1, p2, p3, then once again the pages of the
products p1 and p2, and finally added product p4 to the cart.

The Cypher statement below incorporates this search-
and-purchase query into the graph:

MERGE (a)-[:TO]->(b)-[:TO]->(c)-[:TO]->(d)

-[:TO]->(e)-[:BOUGHT]->(tgt)

The different resulting graphs, depending on the chosen
semantics, are shown in Figure 9.

Recall that the Strong Collapse semantics differs from the
semantics of MATCH in that separate relationship patterns in
the input pattern do not have to be matched to separate
relationships in the graph. This is illustrated by our exam-
ple. In fact, if after executing the above MERGE, one tries to
match the added pattern with

MATCH (a)-[:TO]->(b)-[:TO]->(c)-[:TO]->(d)

-[:TO]->(e)-[:BOUGHT]->(tgt)

the query would return no matches in the resulting graph
of the above MERGE with Strong Collapse semantics. This is
due to collapsing the two :TO edges from p1 to p2, making
it impossible to match the above pattern under the single-
edge-traversal semantics of Cypher pattern matching. How-
ever, if instead of the current Cypher matching semantics

:User
{id:98}

:User
{id:99}

:Product
{id:125}

:User
{id:97}

:Product
{id:85}

:ORDERED :OFFERS

:ORDERED

:User
{id:98}:OFFERS

(a) Atomic, Grouping, or Weak Collapse

:User
{id:98}

:User
{id:99}

:Product
{id:125}

:User
{id:97}

:Product
{id:85}

:ORDERED :OFFERS

:ORDERED

:OFFERS

(b) Collapse or Strong Collapse

Figure 8: Resulting graphs for different semantics of MERGE in Example 6.

one would use matching based on graph homomorphisms,
then for each of the above versions of merge, first merging a
pattern and then matching it will result in a positive match.
It is planned that subsequent versions of Cypher will offer
more flexibility in terms of pattern matching semantics, in-
cluding homomorphism-based (with suitable restrictions to
guarantee finite outputs). For them, Strong Collapse will be
a very natural choice.

7. DECISIONS ON NEW CYPHER
We now explain the decisions made by Neo4j in response

to the consultation with the users, and various proposals on
fixing problems with update facilities in Cypher 9. These
decisions have or will be proposed to the openCypher Im-
plementers Meeting where the design for future versions of
Cypher is ultimately decided. It will also be used as input
for the design of GQL [3].

Semantics for SET. The decision is that SET should be
atomic, i.e. all the changes in a single SET clause should
occur “at the same time”, so the query given in Example 1
should actually switch IDs as expected.

In Example 2 on the other hand, there is clearly no “right”
output, so any ambiguous SET clause like the one given there
should abort with an error.

To achieve both of these ends, the SET clause is evaluated
as follows. First, all the expressions within a SET clause
are evaluated on the input graph for all the records in the
input driving table, to accumulate all the changes to the
input graph that would be induced. If these changes are
well-defined (i.e. there are no attempts to set some property
to two conflicting values as in Example 2), they are then
applied to the input graph in order to produce an output
graph.

Semantics for DELETE. Likewise, DELETE should be atomic,
i.e. that “dangling relationships” should never occur at any
time during the processing of a query. Attempting to delete
any nodes without deleting, in the same clause, all relation-
ships still attached to them should return an error.

Cypher will follow a strict semantics which assumes that
all entities deleted within a DELETE clause are removed from
the input graph as soon as the clause is completely pro-
cessed, and any reference to a deleted entity in the driving
table is replaced by a null instead.

Semantics for MERGE. It was agreed that MERGE should be
made both deterministic and atomic. Given the options de-
scribed in the previous section, Neo4j decided to implement
the Atomic semantics from the previous section in Cypher

for Apache Spark [1] in the form of a new MERGE ALL clause
and the Stronge Collapse semantics in the form of a new
MERGE SAME clause, thereby providing the user with a choice
between semantics. These two semantics seem to strike a
good balance of solving use case requirements in Cypher for
Apache Spark, being semantically well defined, and straight-
forward to implement. The experience of using this im-
plementation will be informative for the evolution of open-
Cypher and GQL.

To illustrate this, using Example 5 with its driving table,
the statement

MERGE ALL (:User{id:cid})

-[:ORDERED]->(:Product{id:pid})

would produce the graph in Figure 7a, while

MERGE SAME (:User{id:cid})

-[:ORDERED]->(:Product{id:pid})

would result in the graph in Figure 7c. The query used in
Example 5 (without ALL or SAME) will no longer be allowed.

Syntax. To streamline the syntax, it was decided to drop
the requirement of WITH clauses between writing and reading
clauses, and to treat both simply as clauses. The syntax of
CREATE and MERGE was unified in that both clauses should
allow for tuples of path patterns with directed relationships.
The latter change eliminates some of the “MATCH-like” capa-
bility of MERGE to match relationships regardless of direction,
but also removes an additional source of non-determinism in
the direction of relations to be created. This led to the up-
dated syntax for Cypher displayed in Figure 10; all tokens
whose derivation rules are not detailed here refer to those
given in Figures 2–5 (or [12, 13], respectively). We note that
the syntax tokens 〈upd. pat.〉 and 〈rel. upd. pat.〉 are no longer
required in the new syntax.

8. SPECIFICATION OF UPDATES
Unlike many other languages that are defined by means

of a specification in natural language, the read-only core of
Cypher has been fully formalized [13, 12], in the same spirit
of some programming languages [17, 6, 15, 16], as well as
partial specifications of SQL’s semantics [10, 24, 14]. In this
section we explain how to extend the formal semantics of the
read-only core of Cypher to the full language, which includes
querying and update features.

Specifically, we provide the formal semantics of the update
constructs specified by the SET, DELETE, CREATE, REMOVE and
MERGE clauses. Giving full details of the semantics of all con-
structs entails significant space requirements; thus, we only

p1

p2

p3

p4

:T
O

:TO

:TO :BOUGHT

:T
O

(a) Atomic, Grouping, Weak Collapse, or Collapse

p1

p2

p3

p4

:T
O

:TO

:TO :BOUGHT

(b) Strong Collapse

Figure 9: Resulting graphs for different semantics of MERGE in Example 7.

〈clause sequence〉 ::=
[
〈clause〉

]∗ [〈return〉 ∣∣ 〈update clause〉]
〈clause〉 ::= 〈reading clause〉

∣∣ 〈update clause〉
〈merge〉 ::= MERGE ALL 〈dir. upd. pat.〉

[
, 〈dir. upd. pat.〉

]∗∣∣ MERGE SAME 〈dir. upd. pat.〉
[
, 〈dir. upd. pat.〉

]∗
Figure 10: Modification of Cypher syntax.

explain the general principles behind the semantics of up-
dates, and concentrate on the most interesting MERGE clause.
A complete version of the semantics is available in [12].

8.1 Principles of the semantics
The formal semantics of the core fragment of Cypher relies

on the following relation and function.

• The pattern matching relation checks if a path p in a
graph G satisfies a pattern π, under an assignment u
of values to the free variables of the pattern. This is
written as (p,G, u) |= π.

• The semantics of expressions associating a value [[e]]G,u

with an expression e, a graph G and an assignment u.

While the exact definitions of these can be found in [12], pre-
vious examples of Cypher queries should provide the reader
with sufficient intuition about pattern matching to follow
the rest.

Given a graph G, the semantics of a read-only clause C
is defined in [12] as a function [[C]]roG that takes a driving
table and returns a modified driving table (and similarly for
queries consisting of read-only clauses). In order to take into
account the dynamical aspects considered in this article, we
extend this definition as follows.

• The semantics of queries (resp., clauses) associates a
query Q (resp., clause C) with a function [[Q]] (resp.,
[[C]]) that takes as input a graph-table pair (G,T), and
returns a graph-table pair (G′, T ′).

Here G′ is the updated graph, and T ′ is the modified driving
table.

The semantics of read-only clauses/query is cast in this
framework in the natural way: given a read-only clause C,
a graph G and a table T , then we set: [[C]](G,T) =
(G, [[C]]roG (T)). Semantics of read-only queries is done simi-
larly. In other words, the semantics of read-only clauses and
queries does not modify the graph database, as expected.

Note that the semantics of a query Q should not be con-
fused with the output of Q. Indeed, the evaluation of a
query starts with the graph in the database and the table

containing one empty tuple. This graph-table pair is then
progressively changed by applying functions that provide the
semantics of Q’s clauses. The composition of such functions,
i.e., the semantics of Q, is a function again that defines as
follows the graph G′ to be committed to memory and the
table T ′ output to the user:

output(Q,G) = (G′, T ′) = [[Q]](G,T())

where T() is the table containing the single empty tuple ().

8.2 Semantics of update clauses
We now give an overview of the formal semantics for up-

date clauses in Cypher. For most clauses, this semantics is
quite straightforward (if technical), with the notable excep-
tion of the MERGE clauses, which requires a detailed defini-
tion of when nodes and relationships may be collapsed in
MERGE SAME. For this reason, here we only give the seman-
tics of the MERGE clause and provide high-level sketches of
the semantics of other clauses; for the formal details please
refer to [12].

Composition of clauses. As already sketched above, se-
quences of clauses are evaluated from left to right in a com-
positional manner; i.e., if C is a clause and S̄ is a sequence of
clauses, we have [[C S]](G,T) = [[S]]

(
[[C]](G,T)

)
. For unions

of queries containing updates, output tables are unioned
as for read-only queries, while updates are treated as side-
effects in a left-to-right fashion, i.e. for queries Q, Q′, we
apply query Q to the input graph-table pair, then apply Q′

to the resulting graph and input table, and finally combine
the graph resulting from Q′ with the union of tables derived
from Q and Q′.

The SET clause. The semantics of SET is defined by means
of a two-step process. In the first step, the list s of all
set items given with the clause are evaluated on the input
graph G and table T , and all changes to the graph result-
ing from this are collected in two relations. The relation
propchanges(T, s) contains all changes to property maps and
the relation labchanges(T, s, n) contains label changes to all
nodes n in G. The latter relation is unproblematic (because
SET can only add node labels and no conflicts may appear
here), while the former may contain conflicting changes to
properties, as in Example 2. If there are conflicts, the se-
mantics is undefined and the execution of the clause results
in error. Otherwise, in the second step, the changes col-
lected in the two relations are applied to the input graph to
obtain an updated graph.

The REMOVE clause. The semantics of REMOVE is straight-
forward, as label or property removals may not incur any
conflicts; changes induced by given removal items are sim-
ply evaluated and applied inductively from left to right.

The CREATE clause. The semantics of the CREATE clause
proceeds in three steps. First, by a process of saturation,
all entities (nodes, relationships, paths) in the given pattern
that do not carry a variable addressing them are decorated
with a temporary variable. Then, nodes are created induc-
tively, followed by the creation of relationships; during this
creation, the driving table is updated to bind variables to the
created entities. Finally, as the updated graph is returned,
all temporary variables assigned during saturation are pro-
jected out of the driving table, and the updated graph and
table are returned.

The (DETACH) DELETE clause. The semantics of deleting
clauses are again quite straightforward. First, the input ex-
pressions are evaluated, and all nodes and relationships to
be deleted are collected. For the DELETE clause, if deleting
the collected nodes and relationships would leave any dan-
gling relationships, the deletion fails; for DETACH DELETE, all
relationships attached to collected nodes are added to the
collection instead. Finally, all collected entities are removed
from the input graph, and all references to these entities
within the driving table are replaced by null values.

The MERGE clause
We now define formally the semantics of the MERGE ALL and
MERGE SAME clauses. Even though we reference the semantics
of the MATCH and CREATE clauses, which can be found in [12],
an intuitive understanding of pattern matching (as given in
Section 2) and CREATE (explained above) will suffice.

Let π be a tuple of update patterns. We start with the
simpler case of MERGE ALL π. For a graph G and a driving
table T , the semantics of MERGE ALL is as follows.

[[MERGE ALL π]](G,T) = (Gcreate, Tmatch] Tcreate)

where

 (G,Tmatch) = [[MATCH π]](G,T)
Tfail =

{{
u ∈ T | [[MATCH π]](G, {{u}}) = ∅

}}
(Gcreate, Tcreate) = [[CREATE π]](G,Tfail)

Here {{}} brackets indicate bag semantics, and] is bag
union, that adds up duplicates. In particular, u occurs as
many times in Tfail as in T if the condition is satisfied.

The semantics of MERGE SAME is defined by collapsing nodes
and relations from the graph (and table) resulting from the
semantics of MERGE ALL. Recall [12] that a property graph is
formalized as G = 〈N,R, src, tgt, ι, λ, τ〉 where (1) N is a set
of nodes, (2) R is a set of relationships of G, (3) src, tgt : R→
N are functions that map each relationship to its source and
target nodes, (4) λ is a function that maps each node to a
(possibly empty) set of labels, (5) τ is a function that assigns
to each relationship in R its type, and (6) ι maps each node
or relationship to a set of key-value pairs. That is, we have a
set K of keys, and ι is a function from (N ∪R)×K to values;
ι(n, k) = v means that the value of key k ∈ K associated
with a node n is v (and likewise for relationships). If no
value is defined for key k, then ι(n, k) = null.

Now assume that [[MERGE ALL π]](G,T) = (G′, T ′), where
G′ = 〈N ′, R′, src′, tgt′, ι′, λ′, τ ′〉.

Definition 1. Two nodes n1, n2 ∈ N ′ are collapsible, de-
noted by n1 ∼ n2, if all of the following conditions hold:

(i) λ′(n1) = λ′(n2);

(ii) ι′(n1, k) = ι′(n2, k) for each k ∈ K; and

(iii) either n1 and n2 are not part of N , or n1 = n2.

The latter condition is to ensure that any nodes that were
already present in the original input graph are only collapsi-
ble with themselves, and not with any other node, whether
already present or newly created.

Being collapsible is an equivalence relation over N ′. Thus,
we can partition N ′ into non-empty subsets N1, · · ·Nk such
that 1) two elements taken from the same subset are col-
lapsible, and 2) two elements taken from different subsets
are not collapsible. From each subset Ni, we choose an
arbitrary representative that we denote by ni. Note that
these choices do not make the semantics nondeterministic:
the output graph-table pairs are the same up to id renam-
ing. Then, for each node n in N ′, we set [n] = ni, where i
is the unique index such that n ∈ Ni.

Definition 2. Two relationships r1, r2 ∈ R′ are collapsible,
denoted by r1 ∼ r2, if all of the following conditions hold:

(i) τ ′(r1) = τ ′(r2);

(ii) ι′(r1, k) = ι′(r2, k) for each k ∈ K;

(iii) src′(r1) ∼ src′(r2);

(iv) tgt′(r1) ∼ tgt′(r2); and

(v) either r1 and r2 are not part of R, or r1 = r2.

Collapsibility is also an equivalence relation over R′, and
we may then define [r] for each relationship id r just like we
did for node ids.

Finally, the semantics of MERGE SAME is as follows.

[[MERGE SAME π]] = (G′′, T ′′)

where G′′ = 〈N ′′, R′′, src′′, tgt′′, ι′′, λ′′, τ ′′〉, with

• N ′′ = {[n] | n ∈ N ′};

• R′′ = {[r] | r ∈ R′};

• src′′(r) = [src′(r)] for every r ∈ R′′;

• tgt′′(r) = [tgt′(r)] for every r ∈ R′′;

• ι′′(v, k) = ι′(v, k) for every v ∈ (N ′′ ∪ R′′) and every
k ∈ K;

• λ′′(n) = λ′(n) for every n ∈ N ′′;

• τ ′′(r) = τ ′(r) for every r ∈ R′′;
and where T ′′ is obtained from T ′ by replacing every occur-
rence of an element x of N ′ ∪R′′ with [x].

9. CONCLUSIONS
We analyzed update features of Cypher, a widely used

graph query language implemented in the Neo4j database
product, and several others. We identified a number of is-
sues and shortcomings in the current implementation and
proposed a number of fixes, with which we then consulted
the user base, to decide on the final modifications to Cypher
updates. These restored atomicity and determinism of up-
date clauses in the language.

The issues of the existing semantics of Cypher 9 update
clauses revealed in this study as well as the proposed refine-
ments and corrections are very valuable input to the Neo4j
engineering teams. Neo4j plans to integrate the refinements
and corrections into its Cypher implementation in future
version of the Neo4j database system under the existing dep-
recation regime to avoid or minimize query breakage for cus-
tomers. In the Cypher for Apache Spark™ project [1] and
its related upcoming product Neo4j Morpheus, MERGE ALL

and MERGE SAME clauses as part of multiple graphs and graph
construction capabilities of Cypher 10.

Acknowledgments
Authors at the University of Edinburgh were supported by
a grant from Neo4j Inc. and EPSRC grant M025268.

10. REFERENCES
[1] Cypher for Apache Spark, Oct. 2018.

https://github.com/opencypher/

cypher-for-apache-spark/.

[2] Cypher for Gremlin, Oct. 2018. https:
//github.com/opencypher/cypher-for-gremlin/.

[3] Graph Query Language GQL, 2018.
https://www.gqlstandards.org/.

[4] MemGraph, Oct. 2018. https://memgraph.com/.

[5] openCypher Project, 2018.
http://www.opencypher.org/.

[6] H. Abelson et al. Revised report on the algorithmic
language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998.

[7] R. Angles, M. Arenas, P. Barceló, P. Boncz,
G. Fletcher, C. Gutiérrez, T. Lindaaker, M. Paradies,
S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt.
G-CORE: A core for future graph query languages. In
Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18. ACM, 2018.

[8] Bitnine. AgensGraph, Oct. 2018.
https://github.com/bitnine-oss/agensgraph/.

[9] S. Ceri and G. Gottlob. Translating SQL into
relational algebra: Optimization, semantics, and
equivalence of SQL queries. IEEE Transactions on
Software Engineering, 11(4):324–345, 1985.

[10] S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette:
An automated prover for SQL. In CIDR, 2017.

[11] S. Chu, K. Weitz, A. Cheung, and D. Suciu.
HoTTSQL: Proving query rewrites with univalent
SQL semantics. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2017, pages
510–524. ACM, 2017.

[12] N. Francis, A. Green, P. Guagliardo, L. Libkin,
T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,
M. Schuster, P. Selmer, and A. Taylor. Formal
semantics of the language Cypher. CoRR,
abs/1802.09984, 2018.
https://arxiv.org/abs/1802.09984.

[13] N. Francis, A. Green, P. Guagliardo, L. Libkin,
T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,
P. Selmer, and A. Taylor. Cypher: An evolving query
language for property graphs. In Proceedings of the
2018 International Conference on Management of
Data, SIGMOD ’18, pages 1433–1445. ACM, 2018.

[14] P. Guagliardo and L. Libkin. A formal semantics of
SQL queries, its validation, and applications. PVLDB,
11(1):27–39, 2017.

[15] Y. Gurevich and J. K. Huggins. The semantics of the
C programming language. In Computer Science Logic,
pages 274–308, 1992.

[16] R. Harper. Practical Foundations for Programming
Languages. Cambridge University Press, 2016.

[17] R. Milner, M. Tofte, and R. Harper. Definition of
Standard ML. MIT Press, 1990.

[18] M. Negri, G. Pelagatti, and L. Sbattella. Formal
semantics of SQL queries. ACM Transactions on
Database Systems, 16(3):513–534, 1991.

[19] M. Paradies. Graph pattern matching in SAP HANA.
First openCypher Implementers Meeting, Feb. 2017.
https://tinyurl.com/ycxu54pr.

[20] Redis Labs. RedisGraph, Oct. 2018.
https://oss.redislabs.com/redisgraph/.

[21] I. Robinson, J. Webber, and E. Eifrem. Graph
databases. O’Reilly Media, 2013.

[22] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T.

Özsu. The ubiquity of large graphs and surprising
challenges of graph processing. PVLDB,
11(4):420–431, 2017.

[23] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi.
PGQL: A property graph query language. In
Proceedings of the Fourth International Workshop on
Graph Data Management Experiences and Systems,
GRADES ’16. ACM, 2016.

[24] M. Veanes, N. Tillmann, and J. de Halleux. Qex:
Symbolic SQL query explorer. In Logic for
Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 6355 of LNCS, pages 425–446.
Springer, 2010.

https://github.com/opencypher/cypher-for-apache-spark/
https://github.com/opencypher/cypher-for-apache-spark/
https://github.com/opencypher/cypher-for-gremlin/
https://github.com/opencypher/cypher-for-gremlin/
https://www.gqlstandards.org/
https://memgraph.com/
http://www.opencypher.org/
https://github.com/bitnine-oss/agensgraph/
https://arxiv.org/abs/1802.09984
https://tinyurl.com/ycxu54pr
https://oss.redislabs.com/redisgraph/

	Introduction
	Querying Graphs with Cypher
	Updates in Cypher 9
	Problems with updates
	Problems with SET
	Problems with DELETE
	Problems with MERGE
	Problems with the syntax

	Input from Neo4j Users
	Proposals for New Cypher
	Decisions on New Cypher
	Specification of updates
	Principles of the semantics
	Semantics of update clauses

	Conclusions
	References

