Alessandro Cotronei

On Wider Output Sieves

We describe and compare several novel sieve-like methods. They assign values of several functions (i.e., the prime omega functions ω and Ω and the divisor function d) to each natural number in the considered range of integer numbers. We prove that in some cases the algorithms presented have a relatively small computational complexity. A more detailed output is indeed obtained with respect to the original Eratostene's Sieve.

Introduction

The use of sieve theory is one of the most used way to find primes since the third century B.C.E. Despite faster methods are available [START_REF] Atkins | Prime Sieves using Binary Quadratic Forms[END_REF], this old method is still in wide use today because of the simplicity of its implementation. Howevere there is a relevant downside in particular from its use: the big number of repeated operations. We will start by showing an algorithm that solves this problem and introduce several novel ways of sieving natural numbers with a wider output (hence the title). We will show also several other algorithms that work in a similar way. Sections of this paper are organized with respect to the output for each algorithm.

We refer to the original sieve in the following form, that uses O(n log log n) basic operations (i.e., additions) and O(n) bits of storage [START_REF] Sorenson | An introduction to prime number sieves[END_REF]:

Algorithm 1 Eratostene's Sieve 1: Input: n.

2: Consider an array of natural numbers 1, 2, ..n -1, n. Mark the lowest unmarked number of the list p (2 in the first case) as prime.

6:

for i multiple of p not exceeding n do 7:

Mark i Composite.

Alternatively cancel out i.

8: Output: Characteristic Prime function or equivalently, all prime numbers ≤ n.

We discuss several characteristics for n = p a1 1 p a2 2 ...p a k k with p i distinct primes [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]:

• the little omega prime function ω(n) = k. ω(1) = 0.

• the big omega prime function Ω(n) = a 1 + a 2 + ... + a k . Ω(1) = 0.

• the divisor function d(n) = (a 1 + 1)(a 2 + 1)...(a k + 1). d(1) = 0.

We make also use of several other functions as the prime counting functions π(x) and the generalized prime counting function π * k (x), defined as the number of prime numbers ≤ x (resp. positive integers ≤ x that can be written as product of not necessarily distinct of k prime numbers) [START_REF] Nathanson | Elementary Methods in Number Theory[END_REF].

We use some theorems as the Prime Number Theorem in the form:

π(x) = O x log x
, and a generalization

in the form π * k (n) = O x(log log x) k-1 (k -1)! log x [7].
We also make use of Abel's Identity [START_REF] Nathanson | Elementary Methods in Number Theory[END_REF]:

y≤x a(n)f (n) = A(x)f (x) -A(y)f (y) - x y A(t)f (t)dt,
where A(x) = 0 if x < 1, f has continuous derivative over the considered interval and

A(x) = n≤x a(n).
We give several estimates in terms of the big O notation [START_REF] Nathanson | Elementary Methods in Number Theory[END_REF] for computational complexity and bit use (memory consumption) for the algorithms.

We split this paper in three sections, each of them describes algorithms with a different function (resp. ω, Ω, d) as output.

3 Method with output ω

First Method

The first method uses a slight modification in the original sieve to evaluate the funcion ω(n) for each number in an interval of consecutive natural numbers that includes 1. It has the same computational cost with the algorithm from which it derives (if we consider the addition step as expensive as the canceling out step of the original algorithm). At the same time the memory required for the implementation is higher because the algorithm stores integer numbers (corresponding to the ω function) instead of logical values (sometimes zeroes and ones). This will be true for each algorithm we present. We want to remark that this algorithm does not discard the repeated operations of canceling out as in the original Eratostene's Sieve:

Algorithm 2 Modified Eratostene's Sieve 1 (With output ω)

1: Input: n.

2: Consider an array with indices in the natural numbers 2, 3, ..., n -1, n and an array of natural numbers and size n, we call this A.

3: a ← 0. Mark the lowest number of the list p such that a(p) ∈ {0, 1} (2 in the first case) as prime.

6:

for i multiple of p not exceeding n do 7:

a(i) ← a(i) + 1. If we assume that that memory allocation is without unused bits for each stored value, then the number of bits used is:

n k=2 log 2 (ω(k)) .
It is not our interest to give a more precise estimate for this quantity since an actual implementation of the corresponding method would not be practical.

4 Methods with output Ω

Second Method

In this procedure we determine for each number the corresponding Ω function by multiplying numbers with known Ω for prime numbers (so that the Omega is increased by one by this procedure). We mainly work with intervals of natural numbers between consecutive powers of two. We call these sets I n :

Definition 1 (I n). We define the set

I n as {2 n , 2 n + 1, ..., 2 n+1 -2, 2 n+1 -1} or equivalently {x ∈ N : 2 n ≤ x < 2 n+1 -1}. Remark 2. It is obvious that a ∈ I n ⇐⇒ log 2 a = n.
We have

I 0 = {1}, I 1 = {2, 3}.
The following proposition gives a hint on how multiplied numbers between intervals behave:

Proposition 1. If m ∈ I q and n ∈ I r , then mn ∈ I q+r ∪ I q+r+1 .
Proof. From the Hypotheses, we have 2 q ≤ m < 2 q+1 and 2 r ≤ n < 2 r+1 . If follows that 2 q+r ≤ mn < 2 q+r+2

and the latter is equivalent to the thesis.

We will use the following Lemma to obtain numbers with m prime factors:

Lemma 1 (Main Lemma for Method 2). If m ∈ I r , and m has k prime factors (k ≤ r) and q = Q(r, k), one of the following two statements holds:

• there exists a prime number in p ∈ I s , s ≤ q and a number with k -1 prime factors t ∈ I r-s such that pt = m.

• there exists a prime number in p ∈ I s , s ≤ q and a number with k -1 prime factors t ∈ I r-s-1 such that pt = m.

Proof. Let m ∈ I r , m with k prime factors (2 ≤ k ≤ r) and let q = Q(r, k). We want to prove first that it has at least a prime factor p ∈ I s , s ≤ q. First of all we have that l = max{p prime : p ≤ 2 We can now enunciate the following algorith:

Algorithm 3 Sieve-Like Method (With output Ω)

1: Input: n.

2: Consider a vector B of size 2 n+1 .

3: for i=1 to n do 4:

for j=i-1 to 2 do This step must be skipped for i = 1

5:
r ← Q(i, j).

6:

for k=1 to r do 7:

For each p prime in I k and for each t with j -1 factors in I i-k , store pt as number with j factors.

Result is in I i or I i+1 .

8:

Store all remaining number in the interval I i as primes.

9: Output: B ≡ Ω for all numbers < 2 n and some numbers m:

2 n ≤ m < 2 n+1 .
If we assume that step 7 takes only one operation as set multiplication, the computational complexity is in the same order of magnitude with respect to:

n i=2 2 j=i-1 1 + i+1 j k=1 1 ∼ n i=2 2 j=i-1 1 + i + 1 j ≤ n i=2 (i -2 + (i + 1) log(i)) = O(n 2 log n).
Where we used again Abel's summation formula to evaluate the last sum. This computational cost is very convenient, since the algorithm assigns the function ω to all the numbers between 1 and 2 n . In practical configurations, the implementation could be much more expensive since set multiplication could be not feasable for regular computers. If we consider Prime Number Theorem and its generalization concerning π * k (x) (see introduction) to estimate roughly the number of prime numbers and numbers with distinct prime factors in the proper intervals (in particular we estimate the prime numbers in I k by approximating them by π(2 k+1) -π(2 k) and numbers with j -i prime factors in I i-k in a similar way), we obtain:

n i=2 2 j=i-1 1 + i+1 j k=1 2 i (k -1) (log 2) 2 (k 2 + k)(j -2)! (log log 2 i-k+1) j-2 i -k + 1 - (log log 2 i-k) j-2 i -k .
Being this sum really complex to estimate, we estimate a bigger sum doing several majorizations:

n i=2 2 j=i-1 1 + i+1 j k=1 2 i (k -1) (log 2) 2 (k 2 + k)(j -2)! (log log 2 i-k+1) j-2 i -k + 1 ∼ n i=2 i-1 j=2 1 + 2 i (log 2) 2 (j -2)! i+1 j k=1 1 ki (log(i log 2)) j-2 ∼ n i=2 i-1 j=2 1 + 2 i (log 2) 2 (j -2)! i+1 j k=1 1 ki (log i) j-2 * ∼ n i=2   (i -2) + 2 i i i-1 j=2 (log i) j-2 (j -2)! (log(i + 1) -log j)   * * ∼ n i=2   (i -2) + 2 i i i-1 j=2 (log i) j-1 (j -2)!   ∼ n i=2 i -2 + 2 i = O(2 n+1
).

Where we have used several majorations and approximations, as the logarithmic approximation of the harmonic series (*, see [START_REF] Nathanson | Elementary Methods in Number Theory[END_REF]) and Taylor expansion for the function e x (**, see [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]).

We want to remark that if we consider m = 2 n , the computational complexities are respectively O (log 2 m) 2 log log 2 m or equivalently O (log m) 2 log log m and O(2m), those amounts are smaller then the corresponding complexities of Eratostene's Sieve. However this algorithm uses more multiplications, that can be more intrinsecally expensive then additions, as used in the original sieve.

The memory consumption is given by the sum of the memory consumption for storing the values of Ω and conveniently, the number of the interval interval I n for each number. Both of these values can be approximated by 2 n+1 log 2 (n + 1), i.e., the number of numbers to be stored times the maximum number of bits needed to store the corresponding Ω function (resp. the interval), At most n + 1, see proposition 4 (resp. Remark 2).

The overall memory consumption is therefore proportional to O(2 n+1 log(n+1)). Again if we consider m = 2 n , the overall memory consumptions are proportional to O (m log (1 + log 2 m))) and O (m log log m)).

A few properties can make the implementation of the algorithm even more efficient. We suggest some of them, but other ideas could go in the direction of using the additional Ω values in the biggest interval computed by the algorithm to evaluate the function in the whole interval or avoiding redundant calculations by checking the range of the operations before they are performed:

Proposition 2. If m + 1 ≤ 2n then Q(m, n) = 1.
From the hyphothesis we have m + 1 n ≤ 2 and 2

m+1 n ≤ 2 2 = 4. Therefore l = max{p prime : p ≤ 2 m+1 n ≤ 4}
can contain only the primes 2 and 3, both belonging to I 1 . We have reached the thesis.

The following Proposition is a generalization of the previous one and can be proved similarly:

Proposition 3. If m + 1 ≤ n(t + 1) then Q(m, n) ≤ t.
This Proposition can avoid some calculations for the numbers with n not necessarily distinct factors in I n : Proof. By use of the Fundamental Theorem of Arithmetic we notice that 2 n is the smallest number with the required characteristics because the existence of a smaller number with this properties would imply the existence of a prime number smaller than 2. If we now notice that 2 n-1 • 3 is another number with the required number of factors in the correct interval, we must prove that the interval cannot contain numbers with factors bigger than 3 repeated more then once and factors bigger than 5. But this is a consequence of the following inequalities that consider p i , i ∈ {1, ..., n} as (not necessarily distinct) prime numbers:

p 1 • p 2 • ... • p n ≥ 2 n-2 • 3 • 3 = 2 n-2 • 9 > 2 n-2 • 8 = 2 n+1 , p 1 • p 2 • ... • p n ≥ 2 n-1 • 5 > 2 n-2 • 4 = 2 n .
We finally give some tables that show some data on how numbers are repetedly counted as output of the algorithm (as 12 = 2 • 6 = 3 • 4, where both 2 and 3 are indeed in I 1):

Third and Fourth Method

In this section we describe some modifications of Eratostene's method that rely on the calculation of the number of prime divisors for each number in the interval 1, ..., n. The output is again the function Ω:

Algorithm 4 Modified Eratostene's Sieve 2 (With output Ω)

1: Input: n.

2: Consider an array of natural numbers and size n, we call this C.

3: a ← 0.

4: p ← 2. 5: while p ≤ √ n do 6:
Mark the lowest number of the list p such that a(p) ∈ {0, 1} (2 in the first case) as prime.

7:

Evaluate the multiplicity of p for each number (which is multiple of p) up to at least n (n p numbers).

8:

for i multiple of p do 9:

a(i) ← a(i) + multiplicity of p in i.

10: Output: C ≡ Ω for all numbers ≤ n.

By construction this method yields as output the Ω function for all the numbers in the array. We need a convenient method to evaluate the multiplicity v p (n) of p in n and complete the algorithm. One possible way is to use the following properties of v p (n):

Proposition 5. v p (n) = 1 for each p prime, n multiple of p such that n < p 2 .

Proof. This is obvious as a multiple of p has v p (n) ≥ 1 and v p (n) cannot exceed 2 as n < p 2 . Proposition 6. v p (n) = p(n + p l) for each p prime, l, n ∈ N, n < p l .

Proof. let v p (n) = l, then there exists b coprime with p such that n = p l b. If now we consider n + p k = p l b + p k = p l (b + p k-l) and since the last multiplicand is coprime with p in any case with n < p l , we have the thesis.

The following algorithm follows from the last Propositions. We can generate indeed the prime multiplicity of p for each multiple of p by copying properly some values. A small number of other operations is needed:

Algorithm 5 Prime Multiplicity Generation 1

1: Input: p,n.

2: Consider an array A of natural numbers and size n p .

3: b ← log p (n) .

4: assign 1 to the first p -1 entries of A.

Unless they exceed the size of A, in that case A ← 1 and exit. Assign the correct value (log p s) to the first unassigned entry s of A.

7:

Copy the first assigned numbers in the interval [1, p i] p times.

8:

Delete the last number of the array A. change the last entry of the array to l.

12: Output: Multiplicity of p for all multiples of p smaller than n.

Another possibility, that relies on the multiplication of prime powers of every prime numbers in the interval by numbers which are not divisible by the prime number itself and store them with the exponent of the respective powers is the following:

Algorithm 6 Prime Multiplicity Generation 2

1: Input: p,n.

2: b ← log p (n) .

3: Consider an array Ā of natural numbers and size n p .

4: for i from 1 to b do This step could be empty.

5:

for j not multiple of p, p i-1 j ≤ n p do 6:

Ā(p i-1 * j) = i.

7: Output: Multiplicity of p for all multiples of p smaller than n.

The computational complexity of the incomplete algorithm Modified Eratostene's Sieve 2 is again in the order of O(n log log n), as the cost of the original Eratostene's method. The two methods can be overlapped. In the first case (using Prime Multiplicity Generation 1 as step 7) the additional complexity is given by:

p≤n   1 + log p (n) i=2 (2 + p)   = p≤n 1 + (2 + p)(log p (n) -1) = p≤n -1 -p + (2 + p) log p (n) = O n 2 log n ,
which makes the first part complexity of the algorithm negligible. This estimate has been made by using Abel's summation formula and Prime Number Theorem [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF]. In particular the dominant term of the sum is

p log p (n) .
In the second case (Second algorithm as step 7), the computational complexity is:

p≤n   1 + log p (n) i=1 j =kp,p i-1 j≤ n p 1    ∼ p≤n   1 + np p -1 log p (n) i=1 1 p i    * * * ∼ p≤n   1 + np p -1    1 -1 p (1+log p n) 1 -1 p -1       ∼ p≤n 2 + -p + 1 p - 1 n = O n 2 log n .
We have used an identity concerning geometric series (***), several approximations and again Abel's Identity.

The amount of bits used is given by the logarithm of the maximum size of Ω in the considered interval times the dimension of the interval. If we consider Ω(n) = O(log n) [START_REF] Mathworld | DistinctPrimeFactors[END_REF], the final bit consumption is O(n log log n).

These final estimates take into account the fact that the memory used from Modified Eratostene's Sieve 2 is at most in the same order of magnitude.

Methods with output d

We can modify Algorithm 4 so that the output is the function d, we only change step 9 so the final output is multiplied instead of being summed:

Algorithm 7 Modified Eratostene's Sieve 3 (With output d)

1: Input: n.

2: Consider an array of natural numbers and size n, we call this C.

3: a ← 0. Mark the lowest number of the list p such that a(p) ∈ {0, 1} (2 in the first case) as prime.

7:

Evaluate the multiplicity of p for each number (which is multiple of p) up to at least n (n p numbers).

8:

for i multiple of p do 9:

a(i) ← a(i) • (1+multiplicity of p in i).

10: Output: C ≡ d for all numbers ≤ n.

The computational complexity is comparable with those used from the original method.

The maximum memory consumption is given by Gronwall's approximation [START_REF] Gronwall | Some asymptotic expressions in the theory of numbers[END_REF] d(n) = O(n log log n) and it is in the same order of magnitude with O(n log n).

3 :

 3 p ← 2.

 in particular we have p ≤ 2 r+1 k and if we take p = min{s prime, s > p}, we have from the definition of p, p > 2 r+1 k . If by absurd the smallest prime of m is p, we have m = p 1 • ... • p k ≥ pk > 2 r+1 k •k = 2 r+1 . We have obtained an absurd since m would not belong anymore to the interval of the Hypotheses. To prove the remaining part of the Lemma, we first notice that if we use the Fundamental Theorem of Arithmetic is obvious that if pt = m then t must have exactly k -1 prime factors. The final part of the lemma follows from Proposition 1. It is also useful to make the following definition: Definition 3 (Q function). Let m, n ∈ N, we define the function Q(m, n) as follows: let l = max{p prime : p ≤ 2 m+1 n }, then there exist unique r ∈ N such that l ∈ I r , we define Q(m, n) := r or equivalently (Remark 2) Q(m, n) := log 2 l .

Proposition 4 .

 4 Each set I n contains exactly 2 numbers with n prime factors (Numbers m such that Ω(m) = n), namely 2 n and 2 n-1 • 3.The same set I n contains no numbers with at least n + 1 prime factors.

5 :

 5 for i from 2 to b do 6:

9:

 Copy the first assigned numbers in the interval [1, p b] until the number n p is reached.10: if n p = p l for some l ∈ N then 11:

4: p ← 2 . 5 :

 25 while p ≤ √ n do 6:

 It is clear that at the end of the algorithm the array a is coinciding with the function ω because every number of the array is increased by one (instead of being marked as true or false or canceled like in the original sieve) for each prime number lower or equal. This method still uses O(n log log n) additions as it does not contain modification with respect to the original algorithm, but a bigger amount of memory has to be assigned. We have to store ω(k) ∀i ∈ 1, 2, ..., n so the required maximum amount is n log 2 max

			1≤k≤n	ω(k)	that can be
	bounded by O n log	log(n) log log(n)	where we have used the fact that ω(n) is at most O	log(n) log log n	[8].
	8: Output: A ≡ ω ∀l ∈ {1, 2, ..., n}.			

Table 1 :

 1 Repeated output from Algorithm 2.

	Numbers with repeated output 12 18 24 30 36 42 45 48 50 54 60 ...
	Number of repetitions	2	2	2	2	2	2	2	2	2	2	2 ...
	Corresponding Ω	3	3	4	3	4	3	3	5	3	4	4 ...

Table 3 :

 3 Smallest numbers with amount of repetitions from Algorithm 2

	Smallest number with higher number of repetitions Number of repetitions Corresponding Ω
	2	1	1
	12	2	3
	70	3	3
	1050	4	5
	182490	5	6
	1771770	6	7

Last affiliation: University of Kiel (Germany). ORCID: https://orcid.org/0000-0002-5495-6863.

Acknowledgements

The author of this paper wishes to thank Roberto Amato (University of Messina), Francesco Belardo (University of Naples), Enzo Maria Li Marzi (University of Messina) and Thomas Slawig (University of Kiel) for their valuable mentorship. The author wishes to thank also Daniela Giumbo (University of Messina) for the valuable suggestions that led to the improvement of this manuscript.

Conclusions

The shown methods can evaluate several functions in a way that the primality of any number is obtained, together with other informations. Of course we can have algorithms that yield only prime numbers as output, as in classical Sieve Theory, by considering that prime numbers are characterized by ω(p) = 1, Ω(p) = 1 and

In the end we have achieved additional precision at a bigger cost for memory consumption. Modern machines will be able to front this cost more and more easily. These methods, however, are not published with the aim to be the best possible, but to give new directions in the study of sieve theory.