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Most network models describing solute transport in the brain microcirculation use
the well-mixed hypothesis and assume that radial gradients inside the blood vessels
are negligible. Recent experimental data suggest that these gradients, which may
result from heterogeneities in the velocity field or consumption in the tissue, may
in fact be important. Here, we study the validity of the well-mixed hypothesis in
network models of solute transport using theoretical and computational approaches.
We focus on regimes of weak coupling where the transport problem inside the
vasculature is independent of the concentration field in the tissue. In these regimes,
the boundary condition between vessels and tissue can be modelled by a Robin
boundary condition. For this boundary condition and for a single cylindrical capillary,
we derive a one-dimensional cross-section average transport problem with dispersion
and exchange coefficients capturing the effects of radial gradients. We then extend
this model to a network of connected tubes and solve the problem in a complex
anatomical network. By comparing with results based on the well-mixed hypothesis,
we find that dispersive effects are a fundamental component of transport in transient
situations with relatively rapid injections, i.e. frequencies above one Hertz. For slowly
varying signals and steady states, radial gradients also significantly impact the spatial
distribution of vessel/tissue exchange for molecules that easily cross the blood brain
barrier. This suggests that radial gradients cannot be systematically neglected and that
there is a crucial need to determine the impact of spatio-temporal heterogeneities on
transport in the brain microcirculation.

Key words: blood flow, porous media

1. Introduction
The human cerebral circulation can be decomposed into three main components:

the large surface vessels (pial arteries and veins, figure 1a) that connect the brain to
the heart; smaller vessels (arterioles and venules) that branch off from these large
vessels and dive into the cortex (figure 1b); and the capillary bed forming a complex
interconnected network that perfuses throughout the grey matter (figure 1c). Together,
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FIGURE 1. Schematics of molecular transport processes at different scales in the brain 
with (a) scale of the whole brain; (b) scale of the cortex; (c) scale of a microvascular 
network; (d) scale of a single capillary vesse!. This figure is a modified version of figure 1 
in Lorthois et al. (2014a). 

the arterioles, venules and capillary bed represent the brain microcirculation. They 
play a central role in cerebral homeostasis as they control exchanges between the 
vasculature and the brain tissue (figure ld). This includes the delivery of vital 
molecules (oxygen and nutrients) to neurons and the removal of toxic wastes 
(e.g. CO2, amyloid) through the blood-brain barrier, i.e. the semi-permeable layer of 
endothelial cells forming the walls of cerebral microvessels (Abbott et al. 2010). 
The microcirculation also plays a key role in various pathologies, e.g. vessels 
that get stalled or clogged are involved in stroke and neurodegenerative diseases 
such as Alzheimer's disease (Gorelick et al. 2011; Zlokovic 2011; Brundel et al.

2012; Cruz-Hernandez et al. 2019). Accurate models of blood flow and molecular 
transport in large microvascular networks are needed in order to better understand the 
mechanisms associated with these pathologies, to translate results from animal models 
to humans and to assess the efficacy of new treatment strategies (Cruz-Hernandez 
et al. 2019). Such models could also improve diagnosis by enriching the intra voxel 
models of mass transport (see e.g. Barnes, Quarles & Yankeelov 2014) used in the 
interpretation of clinical imaging techniques such as perfusion or functional magnetic 
resonance imaging (Holdsworth & Bammer 2008). 

Developing such microvascular transport models is challenging. The main difficulty 
in doing so is to accurately capture the multiscale and multiphysics nature of the 
problem, which couples nonlinear effects in the rheology of blood (Pries et al.

1989; Pries & Secomb 2005), molecular transfers across complex biological tissues 
(Abbott et al. 2010; Kutuzov, Flyvbjerg & Lauritzen 2018) and effects linked to the 
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FIGURE 2. Flow rates and Péclet numbers within a mouse microvascular network, as
computed in Cruz-Hernández et al. (2019). (a) Flow rates in a network that contains
more than 15 000 vessels for a volume of approximately 1 cubic millimetre. It was
obtained post mortem and imaged by two photon microscopy (Tsai et al. 2009; Blinder
et al. 2013). The topology is described by an adjacency matrix, storing the list of all
edges (e.g. 0, 1 and 2) connected to a given vertex (e.g. B), as illustrated for a single
bifurcation. (b) Distribution of the radial Péclet numbers, 〈U〉R/DV , based on the blood
flow distribution shown in (a) for a diffusion coefficient Dmol = 10−9 m2 s−1. Each dot
represents a different vessel and the coloured surface shows the local density of points.

geometry/topology of the vasculature (Lorthois & Cassot 2010). The most widespread
approach to modelling such systems, is to consider each microvessel as a tube and
the microvasculature as a network of connected tubes (illustrated in figure 2(a), see
also Pries et al. (1990), Goldman & Popel (1999), Secomb et al. (2004), Fang et al.
(2008), Obrist et al. (2010), Linninger et al. (2013), Kojic et al. (2017), Peyrounette
et al. (2018), and Sweeney, Walker-Samuel & Shipley (2018)). The advantage of this
representation is that it simplifies the treatment of each vessel, making it possible
to model large volumes and to capture the global topology of the network. The
disadvantage, however, is that its accuracy heavily relies on the quality of the
models used to represent each individual tube and the couplings between tubes. This
framework is well established for blood flow (Pries et al. 1990; Lorthois, Cassot &
Lauwers 2011; Fry et al. 2012) and accurately describes both in vivo and in vitro
data (Pries & Secomb 2005; Cruz-Hernández et al. 2019). However, we shall see
that the same is not true of models of molecular transport (Goldman & Popel 1999;
Secomb et al. 2004; Fang et al. 2008; Linninger et al. 2013; Kojic et al. 2017;
Sweeney et al. 2018), which need to be improved. Most of them indeed rely on the
well-mixed hypothesis and assume that radial gradients inside the blood vessels are
negligible. The validity of this hypothesis requires detailed examination.

To illustrate this, let us first consider effective models of scalar transport in tubes,
i.e. a larger class of problems that is central to many applications involving heat
transfer, such as heat pipes in heat exchangers (Faghri 1995; Reay, Kew & McGlen
2014) or solute transport, such as microchannels in labs-on-chip (Bello, Rezzonico
& Righetti 1994; Weigl & Yager 1999; Beard 2001). Since the influential works
of Taylor (1953) and Aris (1956), who focused on Poiseuille flow in impermeable
straight cylinders, this problem has been extended to a large variety of configurations,
including other velocity fields, e.g. Fan & Hwang (1965) and Gentile, Ferrari &
Decuzzi (2008), and more complex geometries, e.g. Brenner & Stewartson (1980) and



Koch & Brady (1985). Fundamental to scalar transport in a tube is the impact of radial
gradients on the concentration field. These gradients, even if small in magnitude in the
asymptotic regime, yield a huge increase in the longitudinal dispersion coefficient at
sufficiently large Péclet numbers. For impermeable tubes, this is a consequence of the
radial velocity gradient and the dispersion is often said to be shear induced or shear
augmented. When the tube is permeable or semi-permeable, couplings between the
scalar fields inside and outside the tube may yield additional gradients. In particular,
sources or sinks in the domain surrounding the tube may generate strong radial
concentration gradients within the tube. To study transport in the microcirculation,
many authors (Reneau, Bruley & Knisely 1969; Levitt 1972; Bate, Rowlands & Sirs
1973; Lane & Sirs 1974; Hellums 1977; Tepper, Lee & Lightfoot 1978; Lincoff,
Borovetz & Inskeep 1983; Baxter, Yuan & Jain 1992; Fallon & Anuj 2005; Grinberg
et al. 2005; Secomb 2015) have considered a model axisymmetric system, called the
Krogh cylinder, consisting of a single straight capillary surrounded by an annulus of
tissue (Krogh 1919). For this model system, results in Levitt (1972) and Lincoff et al.
(1983) suggest that Péclet numbers are small in the capillary bed and therefore that
dispersive effects are negligible. However, the Krogh cylinder overly simplifies the
geometry of the microvasculature so that extrapolation to realistic cases is difficult.
For instance, cumulative effects may occur within networks, where dispersion and
intravascular gradients might become important only for a large system. Further,
since the Péclet number scales with both the characteristic length of the problem and
the average velocity within each vessel, dispersive effects may become important in
arterioles and venules (Lincoff et al. 1983) that are larger in diameter and where
blood flows faster.

We argue that recent developments in microscopy techniques are a key element
in assessing the validity of the well-mixed hypothesis. For example, in vivo data in
Sakadžić et al. (2014) show radial gradients of oxygen within arterioles, therefore
experimentally demonstrating that the well-mixed hypothesis is not always valid.
Other experiments also allow us to re-evaluate the importance of dispersive effects.
Multiphoton microscopy (Denk, Strickler & Webb 1990; Shih et al. 2012), for
example, can be used to determine the velocity within the brains of living rodents
(Santisakultarm et al. 2012; Taylor et al. 2016) and infer the distribution of Péclet
numbers in microvascular networks. Another approach consists in combining large
post mortem anatomical network geometries (Tsai et al. 2009) with simulations of
blood flow (Schmid et al. 2017; Cruz-Hernández et al. 2019) to calculate the velocity
field throughout the network. Figure 2(b) shows the corresponding distribution of
Péclet numbers for a molecule with high diffusivity (10−9 m2 s−1), which provides
a lower bound for the Péclet numbers. It shows that most Péclet numbers are above
1 and suggests that, contrary to estimations made in Levitt (1972) and Lincoff
et al. (1983), Taylor’s dispersion may be important in a significant proportion of the
smallest capillaries.

In this work, we use a theoretical approach to ask whether the well-mixed
hypothesis is adapted to describing molecular transport in the brain microcirculation.
Our goal is to understand how radial concentration gradients affect intravascular
transport, mass fluxes throughout the blood–brain barrier and molecular uptake within
the tissue. Our strategy is to focus on situations of weak couplings between the
vessels and tissue, so that the vascular network can be treated independently from the
tissue (§ 2). We first use multiscale asymptotics to identify such situations. Then, we
derive a generic form of the transport model for cross-section-averaged concentrations
in tubes (§ 3.1) and networks (§ 3.2). We finally study the impact of dimensionless
parameters and velocity profile on effective coefficients (§ 4.1) and compare our
model with the well-mixed hypothesis at vessel (§ 4.2) and network scale (§ 4.3).



FIGURE 3. Schematic of solute transport within a single capillary. Here Cv is the local 
concentration of solute within the vessel and Cr the local concentration within the tissue. 
U(r) represents the velocity profile; Dv the diffusion coefficient of the solute within the 
vessel; Km is the membrane permeability; Dr denotes the diffusion coefficient within the 
tissue; and M (Cr) the consumption rate of solute within the tissue. 

2. Problem set-up

Here, we set up the modelling bases of the problem of solute transport. Our goal
is to derive a network model for complex microvascular architectures. To this end, 
we first consider the case of a rigid, straight, long and narrow cylinder embedded in 
an infinite domain of tissue, as illustrated in figure 3. The solute can be metabolized 
within the tissue but behaves as a passive tracer in vessels, e.g. a nutrient. Following 
Pries et al. (1990) and Secomb (2017), the blood is considered as a continuous 
fluid. The vessel walls are supposed to act as a membrane, semi-permeable to solute 
and impermeable to fluid (Lorthois et al. 2014a; Kutuzov et aL 2018). We also 
assume that the tissue surrounding the vessel is a continuous medium with uniform 
properties (Levitt 1972; Lincoff et al. 1983; Hellums et al. 1995; Goldman & Popel 
1999; Secomb et al. 2004; Fallon & Anuj 2005; Fang et al. 2008; Linninger et al. 
2013; Kojic et aL 2017; Sweeney et al. 2018) where transport is mainly diffusive 
(Nicholson 2001; Holter et al. 2017; Kutuzov et al. 2018). Since the aspect ratio 
(radius over length) of the vessel is small, the flow is treated as invariant along the 
vessel length and the velocity profile is independent of the axial position along the 
vessel. Using these hypotheses, we first write the mass balance equations within the 
vessel and tissue (§§ 2.1 and 2.2). Then we use multiscale asymptotics to describe 
the different transport regimes and identify situations of weak coupling where the 
vessel can be treated separately from the tissue (§ 2.3). 

2.1. Microscopie transpon equations and boundary conditions 

In order to derive the three-dimensional (3-D) local transport equations for the 
concentration within both vessels and tissue, we consider a binary solvent/solute 
mixture in each domain. The diffusion flux in vessels and tissue is determined using 
Fick's first law. With these assumptions, the mass balance equation for solute within 
vessels can be written as 

ô,(pvYv) =V· (-pyUYv + PvDvVYv), (2.1) 

where Pv is the local mass density in the vessel (kg m-3), Yv the local solute mass
fraction, U the local velocity (m s- 1) and Dv the molecular diffusion coefficient
(m2 s- 1) of the solute in vessels.



Transport in the tissue is mainly diffusive so that we have

∂t(ρTYT)=∇ · (ρTDT∇YT)−M, (2.2)

where ρT is the local density of the tissue (kg m−3), YT the local solute mass fraction,
DT is the molecular diffusion coefficient (m2 s−1) of the solute within the tissue and
M the local metabolic reaction rate (kg m−3 s−1). Here, DV 6= DT and both are
assumed to be uniform and constant. We consider that the solute is dilute and does
not modify the densities. We can therefore write

CV = ρVYV, (2.3)
CT = ρTYT, (2.4)

where ρV and ρT are uniform and constant and CV and CT are the local mass
concentration (kg m−3). Hence, equations (2.1) and (2.2) now yield

∂tCV =∇ · (−UCV +DV∇CV), (2.5)
∂tCT =∇ · (DT∇CT)−M, (2.6)

which are the local transport equation for the concentration of solute within the vessels
and tissue.

The metabolic reaction rate M is modelled using a Michaelis–Menten kinetics,
which is standard for oxygen (Secomb et al. 2004) or glucose (Atkins & De Paula
2011). Consequently, equation (2.6) becomes

∂tCT =∇ · (DT∇CT)−MT
CT

C0 +CT
, (2.7)

where MT is the maximal metabolic rate (kg m−3 s−1) and C0 the concentration
(kg m−3) at which the metabolic reaction term equals half its maximal value.

Finally, the vessels and tissue are coupled together through the blood–brain barrier.
We treat this barrier as a geometric manifold (infinitely thin layer) with transmission
boundary conditions connecting the two domains. Assuming that there is no sorption
of solute molecule onto the barrier, mass conservation reads

− n · (DV∇CV)=−n · (DT∇CT), (2.8)

where n is the unit normal vector pointing outward from the vessel. To represent the
selective action of the blood–brain barrier, we use a membrane condition in the form

− n · (DV∇CV)=Km(CV − λCT), (2.9)

with Km the membrane permeability (m s−1). Here, Km is primarily introduced as a
parameter allowing us to model the ability of a given molecule to pass the barrier.
The limit Km → 0 corresponds to a molecule that cannot pass the barrier, resulting
in a homogeneous Neumann boundary condition. On the other hand, Km→∞ leads
to CV = λCT , which corresponds to thermodynamic equilibrium and may be obtained
through equality of chemical potentials with λ the partition coefficient (Atkins & De
Paula 2011). This boundary condition, which is analogous to the thermal resistance
in heat transfer, is widely used in microcirculation (Lincoff et al. 1983; Fang et al.
2008; Vikhansky & Wang 2011; Sweeney et al. 2018) and captures the selectivity of
blood/tissue exchanges through the blood–brain barrier.



2.2. Non-dimensionalization of transport equations
The local transport problem, equations (2.5) and (2.7)–(2.9), is non-dimensionalized
using the characteristic vessel length, L, and the associated diffusive time scale, L2/DV .
The concentration field is non-dimensionalized using Cinlet in the vessel and C0 in the
tissue. Here, Cinlet corresponds to the concentration at the vessel inlet and C0 to the
concentration at which the metabolic reaction term equals half its maximal value. The
dimensionless initial-boundary value problem now reads

∂tCV =−Pe∇ · (U∗CV)+∇
2CV, (2.10)

∂tCT = η∇
2CT − ηDaT

CT

1+CT
, (2.11)

−n · ∇CV =−n · (ηγ∇CT), (2.12)
−n · ∇CV =Dam(CV − λγCT), (2.13)

where Pe = 〈U〉L/DV is the longitudinal Péclet number based on the cross-section-
averaged velocity 〈U〉 = (1/πR2)

∫ ∫
U · n dS and U∗ = U/〈U〉 is the normalized

velocity; DaT =MTL2/C0DT is the longitudinal Damköhler number within the tissue;
η = DT/DV is the diffusivity ratio; Dam = KmL/DV is the longitudinal membrane
Damköhler number; and γ = C0/Cinlet is the ratio of reference concentrations. The
corresponding radial Péclet and Damköhler numbers, based on the cylinder radius
instead of its length, are

Peradial = εPe, DaT,radial = ε
2DaT, Dam,radial = εDam, (2.14a−c)

where

ε =
R
L

(2.15)

is the aspect ratio of the tube.

2.3. Asymptotic transport regimes
Due to the strong couplings between the vessel and tissue, it is not possible to
derive a general 1-D effective transport equation for the cross-section-averaged
concentration inside the vessel by simply averaging equation (2.10). As mentioned
in the Introduction, one way to obtain such an effective model is to consider a
subset of possible geometries, e.g. the Krogh cylinder. The main drawback of this
approach is that it makes generalization to realistic microvascular architectures
difficult. Another alternative is to identify regimes where couplings between the
vessel and the tissue are relatively weak, so that the transport within each vessel
can be treated as independent of the transport within the tissue. To this end, we use
multiscale asymptotics (Bensoussan, Lions & Papanicolaou 1978; Davit et al. 2013)
to identify the specific scalings of the control parameters, expressed as powers of ε
(e.g. Pe=O(ε i)), that yield weak couplings. In the following, we will further assume
that, for small molecules like water, oxygen or nutrients, λ = O(1) and η = O(1).
In addition, we suppose that the characteristic concentration in the tissue is small
compared to the characteristic concentration inside the vessel, so that γ = O(ε),
as it is the case for oxygen (Sweeney et al. 2018). Doing so reduces the set of
dimensionless numbers, for a given geometry, to Pe, DaT and Dam.



For the cylindrical geometry at hand (figure 3), the spatial differential operators have
the following expressions:

∇• = er∂r • +ez∂z•, (2.16)

∇
2
• =

1
r
∂r(r∂r•)+ ∂

2
z •, (2.17)

with er and ez the unit vectors associated with the transverse and longitudinal
directions. In such a configuration, there are primarily two scales of variations for
the differential operators, the longitudinal scale z and the transverse scale r. In order
to highlight those scales in (2.16) and (2.17), we rescale the radial coordinate and
introduce the following change of variable:

ερ = r. (2.18)

Equations (2.16) and (2.17) then become

∇• = ε−1er∂ρ • +ez∂z•, (2.19)

∇
2
• = ε−2 1

ρ
∂ρ(ρ∂ρ•)+ ∂

2
z • . (2.20)

For the rest of this section, we therefore define the following notations:

∇• =∇z • +ε
−1
∇ρ• (2.21)

and
∇

2
• =∇

2
z • +ε

−2
∇

2
ρ • . (2.22)

The main idea is then to separate the length scales of variation of the concentration
fields in both vessel and tissue into different components and search for solutions in
the form of series of powers of ε

CX =
∑

i

ε iCX,i(r, z, t) X = V, T. (2.23)

Injecting the above derivative expressions and the series form of the solution into the
transport equations within vessel and tissues ((2.10) and (2.13)) yields∑

i

ε i∂tCV,i

=

∑
i

ε i(−Pe(∇z · (U∗CV,i)+ ε
−1
∇ρ · (U∗CV,i))+∇

2
z CV,i + ε

−2
∇

2
ρCV,i), (2.24)

∑
i

ε i∂tCT,i =
∑

i

ε i

η∇2
z CT,i + ε

−2η∇2
ρCT,i − ηDaT

CT,i

1+
∑

k

εkCT,k

 . (2.25)

Doing the same for the boundary conditions at the vessel wall leads to

−

∑
i

ε in · (∇zCV,i + ε
−1
∇ρCV,i)=−

∑
i

ε in · ηγ (∇zCT,i + ε
−1
∇ρCT,i), (2.26)

−

∑
i

ε in · (∇zCV,i + ε
−1
∇ρCV,i)=

∑
i

ε i(Dam(CV,i − λγCT,i)). (2.27)



In (2.24), we have ε−1∇ρ · (U∗CV,i)= 0 since there is only axial convection. Similarly,
in (2.26) and (2.27) the terms n · ∇zCV,i and n · ∇zCT,i vanish as n (here er) is
orthogonal to ∇z• (here ez∂z•).

For each set of scalings of the dimensionless parameters (Pe, DaT , Dam), we obtain
a nested sequence of subproblems corresponding to the different powers of ε, which
allows us to identify the leading-order concentration fields (CV,0, CV,1, CT,0, CT,1).
Effective transport equations for the cross-section-averaged concentration are then
obtained by averaging the resulting equations in space via the following operator:

〈•〉 =
1

πε2

∫∫
•r dr dθ =

1
π

∫∫
•ρ dρ dθ (2.28)

so that in general
〈CV〉 =

∑
i

ε i
〈CV,i〉. (2.29)

For concision, this cross-section-averaged concentration 〈CV〉 is simply referred to as
the average concentration in the rest of this paper. Inspired by the work of Mei (1992),
Auriault & Adler (1995) and Allaire et al. (2010), we illustrate how this approach can
be used to obtain the well-known regime of Taylor’s dispersion. We show that, in this
case, the boundary conditions ((2.12) and (2.13)) degenerate into Neuman boundary
conditions, consistent with the impermeable walls of Taylor’s case (§ 2.3.1). Then, we
go on to generalize this study to a large range of parameter scalings and to identify
the regimes in phase space that correspond to weak vessel–tissue couplings (§ 2.3.2).
For all these scalings, we further show that the membrane boundary condition (2.13)
degenerates into a Robin-type boundary condition at the vessel walls.

2.3.1. Recovering Taylor’s dispersion
Taylor’s dispersion is obtained when molecules primarily remain inside the vessels

and the Péclet number is large enough. The corresponding set of scalings reads

Pe=O(ε−1), Dam =O(ε2), DaT =O(ε−3). (2.30a−c)

Because the Péclet number is large, it is necessary to decompose the time derivative
within the vessel using two time scales to capture both the contributions of
longitudinal convection and longitudinal diffusion to the effective transport. This
reads

∂t• = ∂t∗ • +Pe∂τ•, (2.31)

where t∗ corresponds to the time variation of longitudinal diffusion and τ corresponds
to the time variation of longitudinal convection.

In addition, DaT =O(ε−3) implies that the tissue Damköhler is very large. In such
a regime, we expect the concentration in the tissue to be small so that the reaction
rate can be approximated by a first-order kinetics. Note that taking into account the
nonlinearity in the reaction rate does not change the results and only leads to tedious
additional calculations that are not necessary for understanding the procedure. For this
set of parameters, in the limit ε→ 0, equations (2.24) and (2.25) lead to

CT,0 = 0 O(ε−3), (2.32)

∇
2
ρCV,0 = 0

η∇2
ρCT,0 − η(ε

3DaT)CT,1 = 0

}
O(ε−2), (2.33)
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(εPe)∂τCV,0 =−(εPe)∇z · (U∗CV,0)+∇
2
ρCV,1

η∇2
ρCT,1 − η(ε

3DaT)CT,2 = 0

}
O(ε−1), (2.34)

∂t∗CV,0 + (εPe)∂τCV,1 =−(εPe)∇z · (U∗CV,1)+∇
2
z CV,0 +∇

2
ρCV,2

∂tCT,0 = η∇
2
z CT,0 + η∇

2
ρCT,2 − η(ε

3DaT)CT,3

}
O(1). (2.35)

Equation (2.26) becomes

−n · ∇ρCV,0 = 0, (2.36)
−n · ∇ρCV,i =−η(ε

−1γ )n · ∇ρCT,i−1, i> 0, (2.37)

and equation (2.27)

−n · ∇ρCV,i = 0, i 6 2, (2.38)
−n · ∇ρCV,3 = (ε

−2Dam)CV,0, i= 3. (2.39)
−n · ∇ρCV,i = (ε

−2Dam)(CV,i−3 − λ(ε
−1γ )CT,i−4), i> 3. (2.40)

By mathematical induction, we obtain that CT,i= 0∀i∈N inside the tissue, so that the
problem is fully controlled by intravascular transport. Equation (2.38) further shows
that, at leading order, there is no diffusive flux at the vessel/tissue interface so that the
membrane boundary condition degenerates into a homogeneous Neumann condition.
Therefore, the model is equivalent to an impermeable wall, which obviously removes
all vessel/tissue couplings and corresponds to Taylor’s dispersion regime. The effective
transport equation is obtained by averaging equation (2.35) using the operator defined
in (2.28). This leads to

∂t∗〈CV,0〉 + εPe∂τ 〈CV,1〉 =−εPe∇z · 〈U∗CV,1〉 + ∇
2
z 〈CV,0〉 + 〈∇

2
ρCV,2〉, (2.41)

which can be further simplified by noticing that 〈∇2
ρCV,2〉 = 0 using the divergence

theorem and the boundary condition at the vessel wall (2.38). To obtain an expression
for 〈U∗CV,1〉 in (2.41), we consider equation (2.33) and use the divergence theorem
to obtain CV,0 =CV,0(z). Therefore, equation (2.34) can be written as

(εPe)∂τCV,0 =−(εPe)U∗(ρ) · ∇zCV,0 +∇
2
ρCV,1. (2.42)

Averaging equation (2.34) leads to

(εPe)∂τ 〈CV,0〉 =−(εPe)〈U∗〉 · ∇z〈CV,0〉. (2.43)

We have already shown that CV,0 = CV,0(z), which implies that 〈CV,0〉 = CV,0.
Consequently, we can subtract (2.43) from (2.42) to obtain

(εPe)Ũ(ρ) · ∇zCV,0 =∇
2
ρCV,1, (2.44)

where Ũ = U∗ − 〈U∗〉 is the local perturbation of the velocity field. We then have a
solution in the form

CV,1 = (εPe)b(ρ) · ∇zCV,0, (2.45)

where b is the closure variable which solves

Ũ=∇2
ρb, (2.46)

n · ∇ρb= 0, (2.47)
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with uniqueness obtained via the average constraint

〈b〉 = 0. (2.48)

In this regime, the definition of the average concentration implies that

〈CV〉 = 〈CV,0〉,

〈CV,1〉 = 0,

}
(2.49)

so that injecting (2.45) into (2.41) leads to

∂t∗〈CV〉 = (1− ε2Pe2
〈U∗ · b〉)∇2

z 〈CV〉. (2.50)

Now, substituting ∂t∗〈CV〉 using (2.31) yields

∂t〈CV〉 = Pe∂τ 〈CV〉 + (1− ε2Pe2
〈U∗ · b〉)∇2

z 〈CV〉. (2.51)

Finally, using (2.43) in the above expression leads to

∂t〈CV〉 =−Pe〈U∗〉 · ∇z〈CV〉 + (1− ε2Pe2
〈U∗ · b〉)∇2

z 〈CV〉, (2.52)

which is the effective transport equation, where (1 − ε2Pe2
〈U∗ · b〉) represents an

effective diffusion coefficient for Taylor’s regime with a general expression of the
velocity field U∗. In the remainder of this work, we will call this the generalized
Taylor’s dispersion model. The closure variable b captures the radial gradients
of concentration that stem from gradients in the velocity profile. The expression
−ε2Pe2

〈U∗ · b〉 in (2.52) characterizes hydrodynamical dispersion effects.
As expected, the dispersion coefficient scales as the square of the Péclet number,

potentially leading to differences of several orders of magnitude in the spreading of
average concentration when compared to the well-mixed hypothesis (CV ≈ 〈CV〉). The
latter is equivalent to CV,1= 0, yielding b= 0, and 〈U∗ · b〉= 0 in (2.52), and therefore
cancelling all dispersive effects.

2.3.2. Phase diagram: identification of weak couplings
The approach illustrated for the generalized Taylor’s dispersion in the above

section has been repeated for a large range of scalings of Pe, Dam, DaT . Although
the developments are tedious, they are relatively systematic and well described in the
literature (e.g. see Koch & Brady 1985; Mei 1992; Auriault & Adler 1995; Auriault
2005). Therefore, we only present here a summary of the results obtained, in the
form of phase diagrams of transport regimes. The key point is that, for some specific
scalings, the membrane boundary condition can be simplified into a classic Robin
boundary condition, which we will show corresponds to weak vessel/tissue couplings.
These scalings are represented by the dotted regions in the phase diagram of transport
regimes, displayed in the parameter plane (Pe,Dam) for DaT =O(ε−3) in figure 4(a)
and in the parameter plane (DaT, Dam) for Pe = O(1) in figure 4(b). They include
a variety of cases that will be described thereafter, such as impermeable cases or
situations where the concentration within the tissue is very small because the reaction
in the tissue is almost instantaneous. Among these regions of weak couplings, some
scalings lead to equations that can be homogenized using multiscale asymptotics,
and the others to equations that cannot be homogenized. An example of such a
region is the case where Pe = O(ε−2), Dam = O(ε2) and DaT = O(ε−3). For these
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FIGURE 4. Phase diagrams of transport regimes in (a) the (Pe, Dam) plane for DaT =

O(ε−3) and in (b) the (DaT, Dam) plane for Pe = O(1). Dotted areas correspond to
regimes of weak couplings where the membrane condition becomes a classic Robin
condition. Green areas, which highlight the main result of this figure, correspond to
parameter regimes for which it is possible to derive an effective transport equation
for the cross-section-averaged concentration by multi-scale asymptotics. The associated
transport regimes are labelled by roman numerals with: I, molecular diffusion only; II,
molecular diffusion with effective reaction; III, advection and molecular diffusion; IV,
advection, molecular diffusion with effective reaction; V, generalized Taylor’s dispersion;
VI, advection, effective diffusion and effective reaction; VII, effective advection, effective
diffusion and effective reaction.

scalings, multiscale asymptotic analysis shows that both CV,0 and CV,1 are spatially
homogeneous. The associated transport equation for the average concentration yields

∂t〈CV,0〉 =−εPe∇z · (〈U∗CV,2〉), (2.53)

where 〈U∗CV,2〉 cannot be made explicit without writing all the remaining transport
equations corresponding to the higher-order concentration fields (CV,1, CV,2...), making
it impossible to homogenize, as discussed in Auriault & Adler (1995). Below, we thus
focus on the homogenizable regions. These have been highlighted in green in figure 4.
Each roman numeral corresponds to a different class of transport equation involving
various effective coefficients, such as the effective diffusion coefficient introduced in
(2.52). The expressions for these effective coefficients are given in appendix A so that,
in the following, we only focus on the structure of transport equations.

For small values of the membrane Damköhler number (Dam = O(ε i), i > 2), the
membrane boundary condition degenerates towards a Neumann condition at leading
orders ( j 6 2)

n · ∇ρCV,j = 0, j 6 i, (2.54)
n · ∇ρCV,j = (ε

−iDam)CV,j−(i+1), j= i+ 1. (2.55)

n · ∇ρCV,j = (ε
−iDam)(CV,j−(i+1) − λ(ε

−1γ )CT,j−(i+2)), j> i+ 1. (2.56)

Hence, in these regimes, intravascular transport is fully decoupled from the tissue and
solely depends on the Péclet number. For a low Péclet number (Pe = O(ε i), i > 1),
transport is purely driven by molecular diffusion (domain I in figure 4a) and
convection plays a negligible role. In this regime the effective transport equation
is

Domain I : ∂t〈CV〉 = ∇
2
z 〈CV〉. (2.57)



When the Péclet number increases (Pe = O(1)), convection and molecular diffusion
play similar roles (domain III in figure 4a,b) so that the effective transport equation
reads

Domain III : ∂t〈CV〉 =−Pe∇z〈CV〉 + ∇
2
z 〈CV〉. (2.58)

For even larger values of the Péclet number (Pe= O(ε−1)), shear-enhanced diffusion
dominates (generalized Taylor’s regime, domain V in figure 4a) and the influence
of radial gradients of concentration cannot be neglected (see § 2.3.1). The effective
transport equation is

Domain V : ∂t〈CV〉 =−Pe∇z〈CV〉 +Deff (Pe)∇2
z 〈CV〉, (2.59)

where the effective diffusion coefficient Deff (Pe) is strictly larger than one. For Pe=
O(ε i), i<−1, it is no longer possible to formally derive an effective transport equation
for the average concentration, as discussed before for the case Pe=O(ε−2).

For larger membrane Damköhler numbers (Dam=O(ε i), i< 2), the vessel walls are
no longer impermeable. Starting with Dam =O(ε), the membrane boundary condition
degenerates towards Neumann and Robin conditions at leading orders ( j 6 2)

n · ∇ρCV,j = 0, j 6 1, (2.60)

n · ∇ρCV,2 = (ε
−1Dam)CV,0, j= 2. (2.61)

n · ∇ρCV,j = (ε
−1Dam)(CV,j−(i+1) − λ(ε

−1γ )CT,j−(i+2)), j> 2, (2.62)

so that the transport in the vessel remains independent of the transport inside the
tissue. Then, for Dam = O(ε i), i < 1, the transport in the vessel becomes strongly
coupled to the tissue and, in general, the problem cannot be restricted to intravascular
transport. The only exception is when the Damköhler number in the tissue is large
(DaT =O(ε i), i6−3). In such regimes, all molecules passing through the vessel walls
are instantaneously metabolized, which always results in CT being negligible (similar
to § 2.3.1). In this situation, the membrane condition reads

n · ∇ρCV,j = 0, j 6 i, (2.63)
n · ∇ρCV,j = (ε

−iDam)CV,j−(i+1), j> i, (2.64)

in the range Dam =O(ε i),−1 6 i< 1 and

CV,j = 0, j 6−(i+ 2), (2.65)
n · ∇ρCV,j+i+1 = (ε

−iDam)CV,j, j>−(i+ 2), (2.66)

in the range Dam=O(ε i), i<−1. Equations (2.63) and (2.64) show that, for moderate
(Dam=O(1)) to large (Dam=O(ε−1)) membrane Damköhler numbers, the membrane
condition degenerates towards Neumann and Robin conditions at leading orders ( j62).
For a very large membrane Damköhler number (Dam=O(ε i), i<−1), equations (2.65)
and (2.66) show that the membrane condition degenerates towards Dirichlet and Robin
conditions. In both cases transport within the vessel is independent of the transport
inside the tissue.

Now, from the diffusive regimes (Pe = O(ε i), i > 1, Domain I), increasing the
membrane Damköhler number (Dam = O(ε i) − 1 < i < 2, domain II in figure 4a)
yields

Domain II : ∂t〈CV〉 = ∇
2
z 〈CV〉 −Keff (Dam)〈CV〉, (2.67)



where Keff (Dam) > 0 is the effective reaction rate representing the exchanges with
the tissues. To obtain (2.67), for the specific scaling Dam = O(1), it is necessary to
introduce an additional time scale so that ∂t•= ∂t∗ •+ ε

−1Dam∂ν•, where ∂ν represents
the time scale associated with radial diffusion through the blood–brain barrier.

For a moderate Péclet number (Pe = O(1), domain III), increasing the membrane
Damköhler number (Dam =O(ε i) − 1< i< 2, domain IV in figure 4a,b) means that
we have

Domain IV : ∂t〈CV〉 =−Pe∇z〈CV〉 + ∇
2
z 〈CV〉 −Keff (Dam)〈CV〉. (2.68)

Again, to obtain (2.68), for the specific scaling Dam =O(1), it is necessary to use a
time scale decomposition analogous to the one introduced for domain II.

For larger Péclet numbers (Pe = O(ε−1), domain V), increasing the membrane
Damköhler number (Dam = O(ε), domain VI in figure 4a) also results in the
appearance of an effective reaction rate

Domain VI : ∂t〈CV〉 =−Pe∇z〈CV〉 +Deff (Pe)∇2
z 〈CV〉 −Keff (Dam)〈CV〉, (2.69)

and increasing further the membrane Damköhler number (Dam=O(1), domain VII in
figure 4a) introduces an additional effective convection term,

Domain VII : ∂t〈CV〉 =−Ueff (Pe,Dam)∇z〈CV〉 +Deff (Pe)∇2
z 〈CV〉 −Keff (Dam)〈CV〉,

(2.70)
where Ueff (Pe, Dam) > 0 is the effective velocity. In order to obtain (2.70), it
is necessary to introduce two additional time scales so that ∂t• = ∂t∗ • +Pe∂τ •
+ε−1Dam∂ν• to account for both longitudinal convection and radial diffusion through
the blood–brain barrier.

For very large Péclet numbers (Pe = O(ε i), i < −1), it is again not possible to
derive an effective transport equation for the average concentration. Similarly, it is
not possible to derive such an equation for a very large membrane Damköhler number
(Dam =O(ε i), i 6−1).

All the above results have been obtained by assuming that the reference concentra-
tion in the tissue was small compared to the reference concentration in the vessel
so that γ = O(ε). For the case where the reference concentrations are comparable,
i.e. when γ = O(1), we find similar results except that, in the (DaT, Dam) plane,
domain IV is only valid for Dam=O(ε) when strong reaction takes place in the tissue,
i.e. DaT =O(ε i), i 6−3.

In summary, in all cases of weak couplings (figure 4, dotted areas), the membrane
boundary condition can be simplified into a Robin condition that captures the
Neumann case for Dam = O(ε i), i > 2 ((2.54) and (2.55)), the Robin case for
Dam = O(ε i), −1 6 i < 2 ((2.63) and (2.64)) and the Dirichlet case for Dam =

O(ε i), i < −1 ((2.65) and (2.66)). The corresponding local transport equations are
therefore equivalent to

∂tCV =−Pe∇ · (UCV)+∇
2CV, (2.71)

−n · ∇CV =DamCV . (2.72)

These equations can only be homogenized by multiscale asymptotics for the specific
scalings highlighted in green in figure 4, and correspond to different classes of
effective transport equations (Domains I–VII).



Altogether, equations (2.71) and (2.72) model situations for which the transport
problem inside the vasculature is independent of the concentration field in the tissue
and the concentration field in the tissue is controlled by the concentration field within
the vessel. In such situations, the concentration in the tissue can be reconstructed
a posteriori, for instance using Green’s functions approaches (see Hsu & Secomb
1989), based on the knowledge of the flux at the vessel wall ((2.12) and (2.72)). In
that sense, vessels and tissue are weakly coupled.

3. Effective transport model for weak couplings

While the existence of various classes of transport equations is not an issue
for effective models at the scale of a single vessel, it becomes problematic when
studying transport in microvascular networks. Indeed, a wide range of parameter
scalings co-exist in networks, as illustrated in figure 2(b) for Péclet numbers, and
using the equations above would imply switching between the different classes of
equations for each vessel.

To overcome this difficulty, the main idea of this section is that the regimes of
validity of the homogenizable Robin boundary condition having been identified in
figure 4 (green regions), we now can use (2.71) and (2.72) as a starting point to derive
a unified effective transport equation encompassing all the above classes (Domains
I–VII). Getting inspiration from the more general problem of solute transport in
porous media with surface reaction, e.g. Shapiro & Brenner (1986), Golfier, Quintard
& Whitaker (2002) and van Duijn et al. (2008), we adopt the method of volume
averaging with closure (Whitaker 1999; Davit et al. 2013) for a single vessel (§ 3.1)
and generalize it to microvascular networks (§ 3.2).

3.1. Unified transport equation for single vessels
3.1.1. Spatial averaging

From now on, we will use the radial coordinate r instead of ρ with r = ερ to
describe the transport in the transverse direction. Therefore, ε now only represents
the dimensionless radius of the vessel, so that r = ε corresponds to the vessel wall
and CV(ε, z, t) is the concentration at the wall. The differential operators ∇• and ∇2

•

are applied following the definitions given in (2.16) and (2.17). With these definitions,
we can proceed to the first step of volume averaging, which consists in averaging
equation (2.71) using the operator defined in (2.28). This leads to

∂t〈CV〉 =−Pe∇ · 〈U∗CV〉 + ∇
2
〈CV〉 +

1
πε

∫
(n · ∇CV) dθ, (3.1)

where (1/πε)
∫
(n · ∇CV) dθ is the cross-section-averaged mass flux across the blood–

brain barrier stemming from averaging the radial component of the Laplacian operator.
The above equation constitutes the basis for the unified effective transport equation
with only 〈U∗CV〉 and (1/πε)

∫
(n · ∇CV) dθ left to be made explicit as functions of

〈CV〉. To do so, we use a perturbation decomposition for both the concentration and
velocity fields,

CV = 〈CV〉(z)+ C̃V(r, z), (3.2)

U∗ = 〈U∗〉 + Ũ(r), (3.3)



where the velocity field perturbation Ũ is the same as the velocity field introduced in
(2.44). Applying the average operator on (3.2) and (3.3) yields

〈C̃V〉 = 0, (3.4)

〈Ũ〉 = 0, (3.5)

since 〈U∗〉 and 〈CV〉 do not depend on radial position, and averaging them does not
change their values. Introducing the perturbation decomposition for the concentration
field into (2.71) and (2.72) yields

∂t〈CV〉 + ∂tC̃V =−Pe∇ · (U∗〈CV〉)− Pe∇ · (U∗C̃V)+∇
2
〈CV〉 + ∇

2C̃V, (3.6)
−n · ∇〈CV〉 − n · ∇C̃V =Dam〈CV〉 +DamC̃V . (3.7)

Subtracting (3.1) from (3.6) leads to

∂tC̃V = −Pe∇ · (Ũ〈CV〉 +U∗C̃V − 〈ŨC̃V〉)+∇
2C̃V

−
1
πε

∫
n · (∇〈CV〉 +∇C̃V) dθ, (3.8)

− n · ∇〈CV〉 − n · ∇C̃V =Dam〈CV〉 +DamC̃V . (3.9)

Assuming that the perturbation field relaxes much faster than the average fields (quasi-
stationarity, see discussions in Davit et al. (2013)), we can write

− Pe∇ · (Ũ〈CV〉 +U∗C̃V − 〈ŨC̃V〉)+∇
2C̃V +

1
πε

∫
Dam(〈CV〉 + C̃V) dθ = 0. (3.10)

At this stage, to solve the solute transport problem within the vessel, one would have
to solve both the average transport problem (3.1) and the perturbation problem formed
by (3.9) and (3.10). To uncouple these equations, a closure must be introduced.

3.1.2. The closure problem
The following order-one closure is used:

C̃V = α(r)〈CV〉(z)+ β(r)∂z〈CV〉(z), (3.11)

with α and β two functions of the radial position, r. Since variables depending on r
and z are now separated, it is possible to write the perturbation problem in cylindrical
coordinates. Substituting the closure in (3.9) and (3.10) and further assuming that
second-order derivatives can be neglected leads to

(−PeŨ − PeU∗α + 〈PeŨα〉 + β ′′ + 2ε−1Damβ(ε))∂z〈CV〉

+ (α′′ + 2ε−1Dam(1+ α(ε)))〈CV〉 = 0 (3.12)

and
(α′(ε)+Dam(1+ α(ε)))〈CV〉 + (β

′(ε)+Damβ(ε))∂z〈CV〉 = 0, (3.13)

with

•
′
=

d
dr
•, (3.14)



•
′′
=

1
r

d
dr

(
r

d
dr
•

)
. (3.15)

Equations (3.12) and (3.13) must remain valid for any value of 〈CV〉 or ∂z〈CV〉. The
closure variables must thus solve the following set of ordinary differential equations:

α′′ + 2ε−1Dam(1+ α(ε))= 0, (3.16)
−PeŨ − PeU∗α + 〈PeŨα〉 + β ′′ + 2ε−1Damβ(ε)= 0, (3.17)

with the following boundary conditions

α′(ε)+Dam(1+ α(ε))= 0, (3.18)
β ′(ε)+Damβ(ε)= 0. (3.19)

Finally, equation (3.4) is used to obtain

〈α〉 = 0, (3.20)
〈β〉 = 0. (3.21)

The linear system formed by (3.16)–(3.21) defines the closure problem, which can be
solved analytically for specific velocity profiles (e.g. a generic polynomial profile see
§ 4.1 and appendix B). The closure variables are then injected into equation (3.1) in
order to make explicit 〈U∗CV〉 and (1/πε)

∫
(n · ∇CV) dθ .

3.1.3. The effective transport equations (weak coupling averaged and well-mixed
models)

Injecting the solution of the closure problem into the averaged transport equation
(3.1) leads to

∂t〈CV〉 =−Ueff ∂z〈CV〉 +Deff ∂
2
z 〈CV〉 −Keff 〈CV〉, (3.22)

with the effective velocity

Ueff = Pe+ Pe〈αU∗〉 + 2ε−1Damβ(ε), (3.23)

the effective diffusion coefficient

Deff = 1− 〈PeU∗β〉 (3.24)

and the effective reaction rate

Keff = 2ε−1Dam(1+ α(ε)). (3.25)

We note that Deff has an expression similar to the effective diffusion coefficient
introduced in (2.52) for the general Taylor’s dispersion regime, except that here
〈PeU∗β〉 describes the effect of radial gradient of concentration on axial dispersion
induced by both the velocity profile and the molecular exchanges. Consequently,
equations (3.22)–(3.25) can be seen as the unified version of the effective transport
equations for the average concentration. In the following, these equations will be
referred to as the weak coupling averaged (WCA) model. The effective coefficients in
this model depend on the Péclet and the membrane Damköhler numbers. They also



depend on the shape of the velocity profile, which controls the interactions between
the velocity and concentration gradients at microscopic scale.

For comparison, we are now deriving the effective transport equation using the
well-mixed hypothesis, for which we neglect radial gradients of concentration, so
that CV ≈ 〈CV〉. Similarly to the volume averaging procedure, we start by averaging
equation (2.71) which leads to

∂t〈CV〉 =−Pe∇ · 〈U∗CV〉 + ∇
2
〈CV〉 +

1
πε

∫
(n · ∇CV) dθ, (3.26)

where n = er is the unit vector associated with radial direction. Now, using the
decomposition of the concentration field introduced in (3.2) for the last term of the
above equation leads to

∂t〈CV〉 =−Pe∇ · 〈U∗CV〉 + ∇
2
〈CV〉 +

1
πε

∫
(n · ∇〈CV〉 + n · ∇C̃V) dθ. (3.27)

By definition of the averaging operator, we know that 〈CV〉 = 〈CV〉(z). Therefore we
have n⊥∇〈CV〉, leading to n ·∇〈CV〉=0. In addition, since we assume that CV ≈〈CV〉,
we can deduce that 〈U∗CV〉 ≈ 〈U∗〉〈CV〉, turning the above equation into

∂t〈CV〉 =−Pe∇ · (〈U∗〉〈CV〉)+∇
2
〈CV〉 +

1
πε

∫
(n · ∇C̃V) dθ. (3.28)

The same analysis can be done starting from the Robin condition at the vessel wall
(3.7), which leads to

− n · ∇C̃V =Dam〈CV〉. (3.29)

Finally, equations (3.28) and (3.29) can be combined to yield

∂t〈CV〉 =−Pe∂z〈CV〉 + ∂
2
z 〈CV〉 − 2ε−1Dam〈CV〉. (3.30)

This is the well-mixed version of the effective transport equation for the average
concentration, for which we have

UWM = Pe, (3.31)
DWM = 1, (3.32)

KWM = 2ε−1Dam. (3.33)

Equations (3.30)–(3.33) will be referred to as the well-mixed (WM) model. These
expressions are consistent with previous developments as they can be directly obtained
by solving the closure problem defined by (3.16)–(3.21) when Pe→ 0 and Dam→ 0.
In these limits, we have α′′= 0 and β ′′= 0 within the vessel, α′= 0 and β ′= 0 at the
vessel wall, and therefore α = β = 0 with the average condition. This leads to

Ueff −UWM = Pe〈αU∗〉 + 2ε−1Damβ(ε), (3.34)
Deff −DWM =−〈PeU∗β〉, (3.35)

Keff −KWM = 2ε−1Damα(ε), (3.36)

which means that the well-mixed hypothesis not only leads to misestimating of the
dispersion coefficient, but also the other effective parameters.



3.2. Extension to microvascular networks
Here, we extend the WCA and WM models from a single tube to a network. In
§ 3.2.1, we start by quickly presenting the blood flow model that allows us to predict
the velocity in each vessel of a microvascular network. Then, in § 3.2.2, we use
these velocity fields to derive the constitutive equations of molecular transport for the
particular case of a bifurcation and show that they can be used for larger network
geometries.

3.2.1. Blood flow
The vasculature is treated as a network of interconnected tubes, where the stationary

flow rate distribution is computed using a nonlinear network approach described in
Pries et al. (1990), Lorthois et al. (2011) and Cruz-Hernández et al. (2019). This
approach, where blood is considered as a homogeneous fluid and red blood cells
are treated as a volume fraction (haematocrit), accounts for the complex rheological
properties of blood flow in microcirculation through two in vivo empirical laws. The
first one, which accounts for the Fåhraeus–Lindquist effect, describes the average
dissipation at vessel scale through an apparent viscosity which depends on the tube
diameter and haematocrit, so that a linear relationship between the flow rate and the
pressure drop can be written in each tube (Pries & Secomb 2005). The distribution
of haematocrit in the network and phase-separation effects are captured by the
second empirical law (Pries et al. 1989) that links haematocrit and flow rate ratios at
bifurcations. This problem is nonlinear and is solved iteratively (see e.g. Lorthois et al.
2011; Fry et al. 2012; Cruz-Hernández et al. 2019) for given boundary conditions
(e.g. imposed pressures at network inlets and outlets, imposed haematocrit at network
inlets), yielding the pressure, the flow rate and the haematocrit within the network.

3.2.2. Molecular transport
To extend the effective transport problems derived in § 3.1.3 to microvascular

networks, the relationships between the average concentration at the ends of connected
tubes must be modelled. In the brain, these networks are mainly composed of
bifurcations connecting three vessels. Thus, we only detail here the specific case of a
single bifurcation with three vessels, schematized in figure 2(a). We start by writing
the effective transport equation for the average concentration within each vessel of
the bifurcation

(∂t〈CV〉 +Ueff ∂z〈CV〉 −Deff ∂
2
z 〈CV〉 +Keff 〈CV〉)i = 0, (3.37)

where i ∈ {0, 1, 2} denotes the vessel index for the three vessels connected to a
central bifurcation vertex, B, which we consider to be a material point with no volume,
consistent with the 1-D form of the WCA effective equation. At the bifurcation vertex,
the average concentration is assumed to be continuous. Therefore, we introduce 〈C〉B
the average concentration at the bifurcation (vertex B) and 〈CV〉i(zB) the concentration
in vessel i in the limit z→ zB, the position of B. We have

〈CV〉i(zB)= 〈C〉B i ∈ {0, 1, 2}. (3.38)

The total molecular flux conservation is also imposed as∑
i

∫∫
ni · (Uapp〈CV〉ez −Deff ∂z〈CV〉ez)i(zB) dSi = 0, i ∈ {0, 1, 2}. (3.39)



Here ni and dSi are the normal vector and elementary surface associated with the
cross-section of vessel i, and

Uapp =Ueff − 2ε−1Damβ(ε) (3.40)

is the apparent velocity, which is different from the effective velocity. The term
2ε−1Damβ(ε) in the effective velocity (3.23) indeed directly comes from the exchange
term in (3.1), hence it models molecules exiting the vessel through the blood–brain
barrier. However, when considering the intravascular flux, only the flow velocity
corresponding to convection must be used. This can be proven by considering the
physical expression of the flow in terms of CV , not 〈CV〉, and using the closure
relationships. Finally, to close the system formed by (3.37)–(3.39), we impose
standard boundary conditions, such as a Dirichlet or Neumann conditions at the
inlets and outlets. This approach, illustrated for a simple bifurcation, can be extended
to an entire network in a straightforward manner.

4. Results
Our goal is to apply the above developments to complex networks. For that

purpose, we first need to evaluate the range of dimensionless parameters encountered
in the brain microcirculation. Values of Pe can be estimated from figure 2(b), where
the radial Péclet number (εPe) is typically between 10−3 and 102 for small, highly
diffusible vital molecules such as oxygen. These numbers increase by an order of
magnitude for a solute with a tenfold lower diffusivity, as is the case for gadolinium
(Benson et al. 2010; Wieseotte, Wagner & Schreiber 2014), an intravascular contrast
agent frequently used in clinical imaging. The radial Damköhler number (εDam)
typically varies between 0 for such an intravascular tracer to an upper bound value
corresponding to small, vital molecules diffusing easily through the blood–brain
barrier. For such molecules, an upper bound for the membrane permeability can be
roughly estimated as Km = DV/e, where e is the thickness of the endothelial layer
('10−6 m, Kutuzov et al. 2018). This yields εDam = R/e, i.e. larger than 1 in all
vessels. For this range of parameters, we study the behaviour of Ueff , Deff and Keff as
a function of Pe and Dam (§ 4.1) for each vessel separately. Together, these parameters
control the average concentration in the WCA model. To further assess their impact,
we compare this model with the well-mixed model at vessel scale (§ 4.2) and network
scale (§ 4.3).

4.1. Impact of the dimensionless parameters and velocity profile on effective
coefficients

Here, we derive explicit expressions of Ueff , Deff and Keff for a generic polynomial
expression of the velocity profile (§ 4.1) and study in detail the case of a two-
parameter velocity profile including both bluntness and slip velocity (§ 4.1.2), which
are characteristic of microvascular blood flows (see e.g. Damiano, Long & Smith
2004; Roman et al. 2012; Lei et al. 2013; Roman et al. 2016).

4.1.1. General polynomial shape
We consider the following polynomial approximation for the velocity profile:

U∗ =
i=N∑
i=0

wi

( r
ε

)i
, (4.1)



with wi chosen so that 〈U∗〉 = 1. This expression allows us to solve the closure
problems (3.16)–(3.21) and obtain analytical expressions of α and β (see appendix B).
Using (3.23)–(3.25), we then obtain analytical expressions of Ueff , Deff and Keff as
functions of the aspect ratio and the Péclet and membrane Damköhler numbers.

The effective velocity varies linearly with the Péclet number and can be written as

Ueff = Pe(1+U+), (4.2)

where U+ is an apparent overspeed defined by

U+ =−
4εDam

εDam + 4

∑
i

wi
i

(i+ 2)(i+ 4)
+

2(εDam)
2

(εDam + 4)2
∑

i

wi
i2
+ 2i+ 8

(i+ 2)(i+ 4)(i+ 6)
.

(4.3)
We will show later that U+ is positive for all velocity fields considered in § 4.1.2,
a posteriori justifying its denomination. This overspeed only depends on the
membrane Damköhler number and the aspect ratio (4.3). Recalling that εDam,
the radial membrane Damköhler number, represents the magnitude of vessel/tissue
exchanges compared to diffusion at microscopic scale suggests that the apparent
overspeed is directly linked to radial gradients of concentration resulting from
the vessel/tissue exchanges. Consistent with this idea, we have εDam = 0 for an
impermeable tube yielding U+ = 0 for any velocity profile. As a result, the effective
velocity is equal to the Péclet number, as expected from the phase diagram in
figure 4. Moreover, in the diffusion-limited regime, when εDam → ∞, U+ always
remains bounded, which is critical for consistency at large membrane Damköhler
numbers.

The effective diffusion coefficient can be written as

Deff = 1+
(εPe)2

Pe2
c

, (4.4)

where εPe is the radial Péclet number and Pec is a critical Péclet number, strictly
positive and bounded for all velocity fields considered later, defined by

Pe−2
c = −2

∑
i

∑
j

wiwj

(i+ 2)( j+ 2)

(
j

(i+ 4)(i+ j+ 4)
−

j
4( j+ 4)

)
−

2εDam

εDam + 4

∑
i

∑
j

wiwj

(i+ 2)( j+ 2)( j+ 4)

(
2( j+ 2)
(i+ j+ 6)

−
j+ 4

(i+ j+ 4)

−
2j

(i+ 4)
+
( j+ 2)2

2( j+ 6)

)
+

2(εDam)
2

(εDam + 4)2
∑

i

∑
j

wiwj( j2
+ 2j+ 8)i

4(i+ 2)(i+ 4)( j+ 2)( j+ 4)( j+ 6)
. (4.5)

For a given velocity profile, the critical Péclet number only depends on the radial
membrane Damköhler number. As expected, in the case of Taylor’s dispersion
(εDam = 0, w0 = 2, w1 = 0, w2 = −2, N = 2), the critical Péclet number is equal to
√

48.
The critical Péclet number can be interpreted in two different ways. First, it

represents a regime threshold in terms of radial Péclet number. When εPe > Pec,



the contribution of radial gradients of concentration to the axial effective diffusion
becomes larger than the contribution of molecular diffusion. Alternatively, it can be
viewed as the sum of the contributions of different effects. Equation (4.4) can indeed
be rewritten as

Deff = 1+ (εPe)2Λimpermeable + (εPe)2Λcouplings(εDam), (4.6)

where Λimpermeable is independent of the membrane Damköhler number and represents
the contribution of the radial gradients in the case of an impermeable membrane, while
Λcouplings captures the coupling between the velocity profile and exchanges at the vessel
walls.

Finally, the effective reaction rate is

Keff =
8ε−1Dam

εDam + 4
, (4.7)

which does not depend on the velocity profile and monotonically increases with the
membrane Damköhler number. Once again, this effective reaction rate is bounded
when Dam→∞, which is critical for consistency in the diffusion-limited regime.

4.1.2. Two-parameter velocity profile
We now consider the following two-parameter velocity profile

U∗
( r
ε

)
=

(n+ 2)
k(n+ 2)− 2

(
k−

( r
ε

)n)
, (4.8)

with k > 1, n > 2. The parameter k controls the slip velocity and the parameter n
controls the bluntness of the velocity profile. This form of velocity profile allows us
to capture both the slip (red blood cells can roll along the walls, see Roman et al.
2012, Sherwood et al. 2014) and the perturbation of the velocity profile induced by
the presence of the red blood cells (flatter profiles may result from the migration of
red blood cells towards the centre of the vessel, see e.g. Pries, Secomb & Gaehtgens
1996, Santisakultarm et al. 2012, Roman et al. 2016).

Figure 5 shows the velocity as a function of the radial position for different
values of (k, n). The particular case k = 1, n = 2 corresponds to Poiseuille flow.
Increasing either the slip velocity or the profile bluntness results in flattening the
velocity profile near the vessel centreline, making it more uniform. Using such a
parametrization allows us to investigate in more detail the physical behaviour of the
apparent overspeed and of the critical Péclet number.

Figure 6 displays U+ as a function of the radial membrane Damköhler number
for different values of (k, n). Increasing the membrane Damköhler number for a
given (k, n) monotonically increases the apparent overspeed, from zero (impermeable
walls) to an upper-bound value which depends on both k and n (diffusion-limited
regime). Slower molecules close to the vessel walls indeed have a higher chance of
leaving the bloodstream and entering the surrounding tissue. On the contrary, for a
given Damköhler number, increasing the slip velocity or the velocity profile bluntness
results in the velocity being more uniform across the vessel cross-section, which
reduces the relative importance of low speed areas close to the walls and decreases
the apparent overspeed. Thus, the largest apparent overspeed is obtained for Poiseuille
flow in the limit of large Dam. In this case, U+→ 1, meaning that the contribution
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FIGURE 6. Overspeed as a function of the radial membrane Damkohler number for 
different (a) velocity profile bluntness and (b) slip velocities. 

of radial concentration gradients to the effective velocity is of the same magnitude 
as the average contribution of convection. 

The critical Péclet number, Pec, is displayed on figure 7 as a function of the radial 
Damkohler number for different values of (k, n). Because the critical Péclet number 
captures an interplay between two different contributions (see (4.6)), its variations 
are non-monotonie with a minimum that depends on the shape of the velocity 
profile and two asymptotes in the limits EDa111 --* 0 and EDa111 --* oo. In the Iimit 
EDa111 --* 0 (impermeable tube), Pec is constant and the effective diffusion is driven 

by Taylor's dispersion with Pec = .J4s for Poiseuille flow. In the diffusion-limited 
regime corresponding to EDa111 --* oo, the concentration vanishes at the vesse] wall 
(see § 4.2.1), so that the low velocities close to the vesse] walls do not contribute 
as much to shear-induced dispersion. In other words, the molecules that remain in 
the tube effectively explore a Jess heterogeneous velocity field and the critical Péclet 
number is increased. For a given Damkohler number, increasing the slip velocity or 
the velocity profile bluntness increases the critical Péclet number. 
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FIGURE 7. Critical Péclet number as a function of radial membrane Damkohler number 
for different (a) velocity profile bluntness and (b) slip velocities. 

Figures 6 and 7 show that the effective velocity and effective diffusion coefficient 
are smaller for (k > 1, n > 2) than for a Poiseuille profile. However, equations ( 4.2) 
and (4.4) imply that they are larger than the WM ones for any velocity profile. In the 
same way, equation (4.7) implies that the effective reaction rate is always smaller than 
the WM rate. Therefore, as soon as the radial membrane Damkohler number reaches 
1, radial gradients play a significant role on transport at the scale of a single vesse!, 
even when the overspeed and effective axial diffusion are relatively small due to the 
shape of the velocity profile. The impact on both transport and blood/tissue exchanges 
at the scale of a single vesse! will be studied in the next section. 

4.2. Comparison of the WCA model with well-mixed models at vessel scale 

Here, we investigate how these differences in the effective coefficients impact both 
transport and blood/tissue exchanges at the scale of a single vesse!. To this end, we 
compare the WM and WCA models for the case of Poiseuille flow in both steady and 
transient regimes. Corresponding solutions for the two models are derived analytically 
in appendix C. To further validate the WCA model, 2-D axisymmetric numerical 
solutions of the local transport problem ((2.71) and (2.72)) are obtained via finite 
volume (see appendix D for details). 

4.2.1. Stationary regime 
In this section, the inlet concentration is always set to one and the outlet effective 

diffusive flux set to zero. Figure 8 displays the average concentration along the 
vesse! axis for different radial Péclet and membrane Damkohler numbers, with insets 
showing the associated radial concentration profile. The first important result is that 
the WCA model (green continuous line) is in excellent agreement with the reference 
numerical solutions (blue dash-dotted line) for a wide range of Péclet and membrane 
Damkohler numbers. We see that the WM model is also in excellent agreement 
with this reference solution when the radial membrane Damkohler number is small 
(figure 8a,c). For Pe = 0 (figure 8a), this is because both shear-induced and exchange 
effects are negligible. For high Péclet numbers (figure 8c), this is because the average 
concentration along the vesse! axis is alrnost constant as a result of our choice 
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solutions of the WCA model. Red dashed lines are analytical solutions of the WM model.
Blue dash-dotted lines are full 2-D finite volume solutions of the local transport problem
lnsets show radial concentration profiles.

of inlet/outlet boundary conditions and the low exchanges with the tissues. In this 
specific case, the radial gradients of concentration are not significant 

The situation is fundamentally different for large Damkohler numbers. In this case, 
the well-mixed model underestimates the average concentration and overestimates the 
decrease along the vessel (figure 8b,d). Exchanges with the tissue are strong and radial 
concentration gradients are important (see figure 8b,d insets). These gradients are not 
accounted for in the well-mixed model, so that the flux from the blood to the tissue 
is overestimated. Increasing the Péclet number further amplifies this issue because of 
additional shear-induced gradients (figure 8d). 

We now study how these differences impact blood/tissue exchanges. To quantify 
these, we calculate the integral flux through the vessel wall normalized by the inlet 
mass flux 

E
= J J (Uapp(C) -DeffV (C)) • ndS;n1e1 - J J (Uapp(C) -DeffV (C)) · ndSoiùtet

!! 
, (4.9) 

(Uapp(C) -Deff V (C)) · ndSinlet
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which defines a stationary extraction coefficient. Figure 9 shows how this extraction 
coefficient varies as a function of the radial membrane Damkohler number for two 
different values of the Péclet number. W e  find that E increases with the membrane 
Damkohler number and decreases with the Péclet number (recall that increasing 
the Péclet number increases the inlet flux). Therefore, the case where all molecules 
cross the blood-brain barrier (E = 1) is obtained for rather small values of the radial 
membrane Damkohler number (�10-1) (figure 9a). This is because, despite the
low membrane permeability, all molecules have enough time to cross the blood-brain 
barrier before being convected out of the vesse!. Conversely, for large Péclet numbers, 
the WM mode! significantly overestimates the extraction coefficient for moderate to 
large Damkohler numbers (figure 9b). In these regimes, convection is so strong that 
a significant fraction of molecules reaches the vesse! outlet and exchanges become 
limited by radial diffusion. By contrast, the WM mode! assumes that molecular 
diffusion in the cross-section is instantaneous, which overestimates the effective 
reaction rate. The latter is even unbounded for large membrane Damkohler numbers, 
as shown by (3.33). As a consequence, for an arbitrarily large value of the inlet mass 
flux, the WM mode! always predicts a Damkohler number for which E = 1, which is 
physically inconsistent. 

4.2.2. Transient transpon of an initial square function 
We now focus on an idealized transient regime where the tracer initially fills 

up 20 % of the vesse! length (black dotted line in figure 10) to represent solute 
injection. The temporal evolution of this initial square function is also displayed 
in figure 10 for two values of the Damkohler number. Consistent with the above 
stationary results, we find that the WCA mode! is always in excellent agreement with 
the reference numerical solution. For an impermeable tube (figure 10a, EDa

m 
= 0), 

the differences between the WM and WCA predictions are only due to Taylor's 
dispersion. This explains the smaller spreading of the concentration pulse for the 
well-mixed case, which only considers molecular diffusion. For a permeable tube 
(figure 10b, EDam = 0.5), the WM mode! predicts a concentration maximum upstream 
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dash-dotted lines are full 2-D finite volume solutions of the local transport problem .

the reference solution. This is a direct consequence of the apparent overspeed, which 
is not captured by the WM model. 

4.3. Comparison of the WCA and well-mixed models in a large microvascular 
network 

In this section, our goal is to investigate the cumulative effects of radial concentration 
gradients at the scale of a large anatornical rnicrovascular network previously obtained 
from a mouse brain by Tsai et al. (2009) and Blinder et al. (2013). To this end, we 
solve equations (3.37)-(3.39) in the network shown in figure 2(a), with effective 
coefficients corresponding either to the WCA mode] (with k = 1, n = 2) or the WM 
mode], in transient and stationary regimes (§§ 4.3.1 and 4.3.2, respectively). The 
flow rate distribution in this network is computed using the approach described in 
§ 3.2.1, enabling us to deterrnine the velocity distribution (figure 2b) needed to solve
the transport problem. This transport problem is further closed using the following
boundary conditions: transient or stationary Dirichlet conditions at all arteriolar
inlets; natural Neumann conditions at all venular outlets; pseudo-periodic boundary
conditions on the lateral faces (see details in Cruz-Hernandez et al. (2019)); natural
Neumann conditions on capillary vessels crossing the bottom face. Such conditions
ensure that, for impermeable walls, ail molecules entering through the arteriolar
inlets exit through the venular outlets. The whole transport problem is solved
analytically (see appendix C) for steady regimes and numerically using finite volume
(see appendix D) for transient regimes. ln large networks, such solutions are too
complex to be interpreted by focusing on the behaviour of the average concentration
along the vesse] axes, as illustrated by figure 11 and supplementary movie 1 (found
at https://doi.org/10.1017/jfm.2019.866) in a transient regime. To overcome this
issue, we thus only consider integral quantities at the scale of the network. Results
are presented below for two classes of molecules: (i) small molecules with high
diffusivity (Dv = 10-9 m2 s- 1), such as water, free oxygen or glucose; and (ii) larger
molecules with lower diffusivity (Dv = 10-w m2 s-1 ), such as gadolinium, which is
frequently used in clinical applications.

mverza
Zone de texte 
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FIGURE 11. Numerical solutions of average concentration of an intravascular tracer
(Dam = 0) with a high diffusion coefficient (DV = 10−9 m2 s−1) resulting from a square
input of 0.1 s duration at different times: (a) T = 0.1 s; (b) T = 0.2 s; (c) T = 0.3 s;
(d) T = 0.5 s; (e) T = 0.6 s; ( f ) T = 0.7 s. This solution has been obtained using the
WCA model on the network shown in figure 2(a) and using the velocity field computed
in Cruz-Hernández et al. (2019). The case presented here corresponds to the plain green
curves presented in figure 12(d). For full transient dynamics (T = 0 s to T = 1 s), see
supplementary movie 1.

4.3.1. Transient regimes
We first study the transient injection of a tracer that does not cross the blood–brain

barrier (intravascular tracer, Dam=0) by considering square input functions of variable
durations. We quantify the model response by calculating the transient integral output
flux

I(t)=
∑

all outlets

∫∫
(Uapp〈C〉 −Deff∇〈C〉) · n dS. (4.10)

Figure 12 displays this flux as a function of time for the two classes of molecules
and for different input durations, represented by bold lines on the top x-axis (0.01 s
in figure 12a,b and 0.1 in figure 12c,d).

Regardless of the effective transport model, the molecular diffusion coefficient or the
duration of the injection, we find that the integral output flux increases sharply after a
delay corresponding to the smallest transit time between inlets and outlets throughout
the network. After this delay, which is always longer for the well-mixed case, the
behaviour of the output flux is strongly influenced by the effective transport model,
except for long injection durations and the largest diffusivity (figure 12d). The WM
model exhibits multiple peaks with fast temporal dynamics (red dotted lines), while
the WCA model exhibits a much smoother behaviour (plain green lines) with a single
local maximum.

When Taylor’s dispersion is neglected (WM model, red dotted lines), the multiple
peaks are a signature of the multiple convective pathways connecting each arteriolar
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FIGURE 12. Integral output mass flux as a function of time: (a) 0.01 second input 
Dv = 10- 10 m2 s- 1

; (b) 0.01 second input Dv = 10-9 m2 s- 1
; (c) 0.1 second input Dv =

10- 10 m2 S- 1
; {a) 0.1 second input Dv = 10-9 m2 S- 1

• Green lines are analytical solutions 
of the WCA model. Red dashed lines are analytical solutions of the WM model. Thick 
black lines represent the input duration. 

inlet to several venular outlets (Lorthois et al. 2011; Guibert et al. 2012). Sorne 
of these pathways have short transit times (of order 0.1 s), either because they are 
short and/or are associated with high velocities (preferential pathways), while others 
have much longer transit times (of order 1 s). When the duration of the injection 
is smaller than the transit time difference between two pathways, these appear as 
two separate peaks, unless molecular diffusion is sufficiently strong to merge the two 
peaks. Thus, either increasing the injection duration (figure 12c) or increasing the 
diffusivity (figure 12b) results in decreasing the number of peaks. In the same way, 
accounting for Taylor's dispersion increases the effective diffusion coefficient and 
always significantly smooths out the signal (red dotted versus plain green lines in all 
panels). However, when Taylor's dispersion is accounted for, increasing the diffusion 
coefficient results in steeper variations, regardless of the injection duration. This 

counter-intuitive result is due to Taylor's dispersion depending on the square of the 
Péclet number. By increasing the diffusion coefficient, the Péclet number is decreased 
and so is the effective diffusion coefficient, therefore causing steeper variations in the 
integral output flux. 
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FIGURE 13. Integral output mass flux for a 5 s input square function Dv = 10-9 m2 s- 1
. 

Sirnilar results have been obtained for Dv = 10-10 m2 s- 1
• The green line corresponds to 

the WCA model, the red dashed line to the WM model. The thick black line represents 
the input duration. 

Finally, we observe that the long-term relaxation of the output flux is not affected 
by Taylor's dispersion and that the tails of both the W M  and WCA model are 
almost identical for times greater than approximately 0.5 s. This is because the tail 
corresponds to pathways associated with smaller Péclet numbers, where Taylor's 
dispersion becomes negligible. In these pathways, the concentration signal bas more 
time to spread due to molecular diffusion, which explains the gentle tailing behaviour. 
Similarly, for very long injection durations (5 s), the two models yield almost 
identical results, as shown in figure 13. To summarize, figure 12 shows that, for
a purely intravascular tracer (Dam = 0), the influence of Taylor's dispersion is the
strongest when molecular diffusion is small and injection duration is short. 

4.3.2. Stationary regimes
We now focus on blood/tissue exchanges in a stationary regime with permeable 

vessel walls, similar to the regime studied for single vessels in § 4.2.1. To reduce 
the number of parameters, we fix the membrane permeability so that the radial 
Damkohler number is the same for all vessels, for any value of the aspect ratio. This 
might slightly affect the details of the results, as aspects ratio are known to depend 
on vessel type (e.g. venules slightly larger than arterioles, see Lorthois, Lauwers & 
Cassot 2014b). However, we have checked that this does not change the general 
conclusions presented below. The extraction coefficient is defined for arterioles, 
venules and capillaries as 

� (! J (Uapp(C} - DeffV (C}) • ndS;n1e1 -J J (Uapp(C} - DeffV (C}) • ndSaw1e)

�=-------------------------------

1:: J J (Uapp(C} -DeffV (C}) • ndS
allinlets 

/ E {Arterioles, Venules, Capillaries}. (4.11) 



10310210110010-110-210-4 10-3

´Dam

E

1.0(c)

0.8

0.6

0.4

0.2

0

Art.
Cap.
Ven.
Tot.

10310210110010-110-210-4 10-3

´Dam

1.0(d)

0.8

0.6

0.4

0.2

0

Tot.
Art.
Cap.
Ven.

10310210110010-110-210-4 10-3

E

1.0(a)

0.8

0.6

0.4

0.2

0

Tot.
Art.
Cap.
Ven.

10310210110010-110-210-4 10-3

1.0(b)

0.8

0.6

0.4

0.2

0

Tot.
Art.
Cap.
Ven.

FIGURE 14. Stationary network extraction coefficient as a function of radial membrane
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10−9 m2 s−1. Tot., total extraction coefficient; Art., arteriolar extraction coefficient; Ven.,
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This allows us to distinguish the respective contribution of arterioles, venules and
capillary vessels to blood/tissue exchange at network scale. The total network
extraction is obtained by summing up these separate contributions.

Figure 14 shows that the total extraction coefficient increases with the radial
membrane Damköhler number (black lines). In the asymptotic regime of large
Damköhler numbers, the total extraction coefficient reaches a plateau slightly
smaller than one for low diffusivity molecules and equal to one for highly diffusive
molecules. In the latter case, all molecules cross the blood–brain barrier before
reaching any network outlet. For both classes of molecules, the stationary extraction
coefficient associated with the arterioles (red lines) monotonically increases with the
Damköhler number. Arterioles are indeed the most upstream vessels of the network
and are perfused with a constant input of solute concentration. Thus, increasing the
membrane Damköhler number always increases the arterioles capacity to exchange
molecules with the surrounding tissue. By contrast, capillary extraction behaves
non-monotonically with the Damköhler number. For small Damköhler numbers,
the capillary domain is the main contributor to the total extraction coefficient.
In this regime, vessel walls are nearly impermeable and only a few molecules
leave the vessels to enter the tissue (Etot � 1). The whole network is perfused



with a concentration that is almost constant and the total extraction coefficient is
mainly controlled by the largest exchange surface, i.e. the capillary bed. For large
Damköhler numbers, however, upstream vessels (arterioles) exchange more with
the tissue and only transmit a fraction of the input mass to downstream vessels
(capillaries and venules). As a consequence, the capillary bed is not perfused as well
as in the small Damköhler number regime and the capillary extraction coefficient
is smaller. This transition between good and partial perfusion explains the existence
of a maximum for Ecap in all cases. A similar analysis holds for the venules, the
most downstream vessels, so that their associated extraction coefficient increases
only for small Damköhler numbers where the network is well perfused. For large
Damköhler numbers, the venule extraction coefficient either reaches a small value
plateau because venules are perfused with a residual concentration, as shown by
figure 14(a), top left, or goes to zero because arterioles and capillaries have already
exchanged all molecules, as shown in figure 14(b).

Consistent with results presented in § 4.2.1, this global blood/tissue exchange
behaviour is well captured by the WM model for small radial Damköhler numbers,
regardless of the vessel territory or the molecular diffusion coefficient (figure 14c,d).
In this regime, the exchanges are weak and the concentration is globally homogeneous
throughout the network. For large Damköhler numbers, however, the WM model
overestimates the intensity of exchanges (with Etot = 1 regardless of the molecular
diffusion coefficient). As a result, the contribution of upstream vessels is strongly
overestimated and arterioles are the sole contributor to the exchanges at the largest
Damköhler numbers. In this model, as previously discussed, radial diffusion is
instantaneous and the exchanges are never limited by molecular diffusion, ultimately
causing all molecules to cross the blood–brain barrier before even exiting the arteriolar
domain.

5. Discussion

Since the influential papers on solute dispersion in impermeable tubes by Taylor
(1953) and Aris (1956), the huge impact of vanishingly small radial concentration
gradients generated by non-uniform velocity fields, and the associated physics, has
been well understood. In these geometries, the resulting shear-induced dispersion
usually scales with the square of the Péclet number, so that the effective diffusion
term in the corresponding 1-D averaged equation is, in principle, neither negligible
at small Péclet numbers (where molecular diffusion dominates) nor at large Péclet
numbers (where dispersion becomes large compared to advection). However, due
to the mathematical and computational difficulties in accounting for all transport
phenomena at the scale of large microvascular networks, many of the recent papers
modelling oxygen supply to the brain assume purely axial convection within the
vessels (Safaeian & David 2013; Gagnon et al. 2015; Gould et al. 2016; Sweeney
et al. 2018) and use a well-mixed hypothesis for radial diffusion. This hypothesis
neglects radial gradients of concentration altogether, whether they originate from
heterogeneities in the velocity fields or other mechanisms. This has broad implications,
as it eliminates the impact of gradients on all the effective parameters such as
dispersion or vessel/tissue exchange coefficients. This idea of perfect mixing has
been recently contradicted by experimental measurements that show significant radial
oxygen gradients in the penetrating arterioles of living anesthetized mice (Sakadžić
et al. 2014). This suggests the existence of couplings between the vessels and tissue,
which are not captured in Taylor’s problem due to the impermeable walls, but are



likely to have a significant impact on solute transport within the brain vasculature.
Such couplings are difficult to study in the general case of complex interconnected
microvascular networks. In such networks, it is indeed challenging to define a
geometry representative of the tissue in which it would be possible to derive effective
equations describing transport in the tissue.

Here, our strategy was to take a step back in modelling this complex problem and
to focus on asymptotic regimes where vessels and tissue are only weakly coupled.
Using multiscale asymptotics, we demonstrated that these regimes of weak couplings,
while involving various effective transport equations, are all associated with situations
where the solute concentration is negligible at all times and at all locations within
the tissue. This occurs either because the consumption rate is sufficiently strong
and/or the exchange rate is sufficiently small. In these cases, we demonstrated that
the boundary condition at the vessel walls degenerates into a classic Robin boundary
condition. Of course, this situation is encountered only for a very limited subset
of solutes with direct interest either in physiology or in medical imaging, including
purely intravascular tracers (tracers that do not cross the blood–brain barrier). This
restricts the direct applicability of the present model to specific problems encountered
in real life. However, the mechanisms at play, in particular radial gradients generated
by the velocity field and by outward fluxes, are also present when stronger couplings
are at play. Thus, this model approach allows us to answer the fundamental question
of whether radial gradients can be generally ignored or should be treated carefully in
transport models of the brain microcirculation. To address this question and identify
the corresponding regimes, we compared the results of a new effective model,
obtained using volume averaging, and the model based on the well-mixed hypothesis.
To further assess the accuracy of our model, we also systematically compared these
results against fully resolved numerical solutions of the microscopic transport problem.
The main results obtained by this strategy can be summarized and put in context as
follows.

For transient regimes, we primarily focused on the case where the blood–brain
barrier is impermeable to solutes and tracers are purely intravascular. We demonstrated
that Taylor’s dispersion has a strong impact on tracer dynamics at network scale for
injections durations typically smaller than the longer transit time of blood from
arterioles to venules, approximately 1 s for the network considered in this study. This
may be important to improve the interpretation of perfusion imaging techniques that
aim at quantifying blood flow in various organs, including the brain. The general
idea of such techniques is to transiently perfuse a tracer, whether a radio-labelled
inert gas, radio-labelled water or magnetized water, through the vasculature. In
arterial-spin labelling magnetic resonance angiography (ASL-MRA), for example,
the labelling duration used to magnetize water protons is typically approximately
1.8 s (Alsop et al. 2015). The dynamics of the transport is subsequently measured.
An image of the distribution of blood flow is then reconstructed by solving an
inverse problem based on a simplified direct model of transport within the brain.
When the characteristic times are approximately 1 s or smaller, Taylor’s dispersion
will significantly affect the direct model, the resolution of the inverse problem, and
therefore the image of blood flow.

Of course, this is just an order of magnitude as our model is limited and other
important effects will need to be evaluated in the future. For instance, the blood–brain
barrier is not impermeable to water protons. Therefore, could the apparent overspeed
affect the distribution of transit times throughout the network? Also, we considered
volumes of approximately 1 cubic millimetre, which is small in comparison with



the total volume of the cortex (∼1000 cubic millimetres in rodents, Kovačević et al.
2005). Then, does the size of the volume modify the dynamics sufficiently so that
dispersive effects needs to be accounted for in ASL-MRA? Finally, how do strong
vessel/tissue couplings, for which Robin boundary conditions cannot be used, affect
the characteristic times, especially for the longer injection durations used in other
perfusion imaging techniques, where vessel/tissue equilibrium is expected (Lorthois
et al. 2014a)?

For steady regimes, we considered a case with blood/tissue exchanges. This situation
is important to address fundamental questions in physiology such as oxygen delivery
and its interactions with brain function or with mechanisms of vascular development
in health and disease, e.g. the hypoxia-driven development of vessels in tumours
(Leonard & Jørgensen 1974). At network scale, we showed that radial concentration
gradients strongly impact the magnitude of the exchanges when the radial Damköhler
number is above one. This regime is the only one where significant concentration
gradients are expected to build up within the vessels. Therefore, the fact that radial
oxygen gradients measured experimentally are very strong suggests that the radial
Damköhler number for oxygen must be above one, consistent with the rough estimates
presented in § 4. This likely to be also the case for other small vital molecules such
as water and glucose.

For both transient and steady regimes, we found that at the scale of single vessels,
the well-mixed hypothesis should not be used when both the Péclet and the Damköhler
numbers are above one. In cerebral microvascular networks, we already know that
radial Péclet numbers are above one in many vessels for a wide range of solutes in
physiological conditions. Therefore, the well-mixed hypothesis is not valid at network
scale as soon as the radial Damköhler number is larger than one in a significant
number of vessels.

Based on these results, we believe that it is important to explore in more detail the
role of spatio-temporal heterogeneities on transport through vascular systems. Indeed,
many other types of heterogeneities have been neglected. For instance, the above
results have been obtained for a homogeneous fluid but blood is not homogeneous.
It is a dense suspension of red blood cells with a complex microvascular flow
structuration (e.g. single line red blood cell flow in capillary vessels, cell free layer).
One of the most widely characterized consequence of such a structuration is a
deviation from the Poiseuille flow profile in small micro-vessels with diameters
below ∼100 µm. In this paper, we described such effects using a time-averaged
velocity profile that includes bluntness and slip (Damiano et al. 2004; Roman et al.
2012; Lei et al. 2013; Roman et al. 2016). We demonstrated that both phenomena
contribute to decreasing the impact of radial concentration gradients on microvascular
solute transport. However, we know very little about the large-scale implications of
temporal heterogeneities and of considering a time-average velocity profile. Further,
the influence of other gradient-generating mechanisms should also be considered. For
example, restricted diffusion of specific tracers through red blood cell membranes
could decrease the effective radial diffusion coefficient in blood and therefore increase
the gradient magnitude. On the other hand, shear-induced radial dispersion of red
blood cells (Bishop et al. 2002; Kabacaoglu, Quaife & Biros 2017; Tang et al. 2018)
may have the opposite effect. How, then, does that affect transport at the scale of the
brain?

6. Conclusion
In this work, we have presented a new effective model of solute transport in large

microvascular networks. The novelty of this model is that it does not neglect radial



gradients of concentration, but rather is valid for all regimes where the boundary
condition at vessel walls can be assimilated to a Robin condition (regimes of weak
vessel/tissue couplings). Our simulations show that models based upon the well-mixed
hypothesis fail to accurately capture the spreading of solute concentration in transient
problems for processes faster than approximately 1 Hertz. In stationary regimes,
these models also wrongly evaluate the amount and distribution of solute mass
exchanged between vessels and tissue for molecules that easily cross the blood–brain
barrier. This demonstrates that radial gradients are a fundamental component of
transport in such systems and opens the way towards a more global characterization
of the impact of spatio-temporal heterogeneities on transport in the microcirculation.
This may ultimately lead the way towards a better understanding of transport in
physiological and pathological conditions, or even developing more accurate models
for the interpretation of perfusion imaging techniques.
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Appendix A. Effective transport coefficients
In § 2.3.2, we introduced the different classes of transport equations obtained using

multiscale asymptotics in the regime of weak couplings. Each class of equation
corresponds to a roman numeral in figure 4, and has a different structure. The
transport equations associated with domains II, IV, V, VI, VII involve effective
transport coefficients and we give their expression below.

A.1. Domains II and IV
Equations (2.67) and (2.68) introduce an effective reaction rate, Keff which expression
depends on the scaling of the membrane Damköhler number as follows:

Keff = 2ε−1Dam Dam =O(ε), (A 1a,b)

Keff = 2ε−1Dam(1+ εDama(1)) Dam =O(1), (A 2a,b)

where a is the closure variable defined by CV,1 =Dama(ρ)CV,0. This closure variable
is the solution of the following equation ∇2

ρa = −2, which verifies the boundary
condition at the vessel wall n · ∇ρa(1)=−1.



A.2. Domain V
Equation (2.59) introduces an effective diffusion coefficient, Deff . This domain
corresponds to Taylor’s dispersion regime and is treated in detail in § 2.3.1. Here,
we have Deff = 1 − ε2Pe2

〈U∗ · b〉 where b is the closure variable defined by
CV,1 = b(ρ) · ∇zCV,0 and is the solution of the following equation Ũ = ∇2

ρb, which
verifies the boundary condition at the vessel wall n · ∇ρb(1)= 0.

A.3. Domain VI
Equation (2.69) introduces an effective reaction rate, Keff , and an effective diffusion
coefficient, Deff . For this domain we have

Keff = 2ε−1Dam, (A 3)

Deff = 1− ε2Pe2
〈U∗ · b〉, (A 4)

where b is the exact same closure variable as in domain V.

A.4. Domain VII
Equation (2.70) introduces an effective reaction rate, Keff , an effective diffusion
coefficient, Deff , and an effective velocity, Ueff . For this domain we have

Keff = 2ε−1Dam(1+ εDama(1)), (A 5)

Deff = 1− ε2Pe2
〈U∗ · b〉, (A 6)

Ueff = Pe(1+ εDam〈U∗a〉 − 2εDamb(1)), (A 7)

where a and b are the closure variables defined by CV,1 = a(ρ)CV,0 + b(ρ) · ∇zCV,0.
Here, a is the solution of ∇2

ρa = −2, which verifies the boundary condition
n · ∇ρa(1) = −1 at the vessel wall. Similarly, b is solution of Ũ = ∇2

ρb, which
verifies n · ∇ρb(1)= 0 at the vessel wall.

Appendix B. Expression of the closure variables
Analytical solutions of (3.16)–(3.21) yielding α and β, the closure variables

introduced in (3.11), are given here for the case of the generic velocity profile
defined in (4.1):

α(r)=
εDam

4+ εDam
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, (B 1)
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Appendix C. Analytical solutions of the effective transport equations

Both stationary and transient analytical solutions of the effective transport equation
in a single vessel (3.22) are first given for classical inlet and outlet boundary
conditions. Similarly, stationary solutions of the associated system of equations
at the scale of the network (3.37)–(3.39) are then derived.

C.1. Single vessel

Altogether, equations (3.22) and (3.30) are simple 1-D time-dependent equations,
which can be solved analytically in a single vessel, provided that the effective
coefficients are known and that the vessel inlet/outlet boundary conditions are simple
enough. Starting with the stationary regime and assuming that Deff > 0 and Keff > 0 ,
the general solution of (3.22) can be written as

〈CV〉(z)= Aeω1z
+ Beω2z, (C 1)

with ω1 and ω2 defined as follows:

ω1 =

Ueff −

√
U2

eff + 4Deff Keff

2Deff
ω2 =

Ueff +

√
U2

eff + 4Deff Keff

2Deff
, (C 2a,b)

and A and B coefficients to be determined from inlet and outlet boundary conditions.
For example, for an inlet concentration equal to one (Dirichlet condition) and an
effective diffusive flux at the outlet equal to zero (homogeneous Neumann condition)

〈CV〉stat(z)=
ω1ω2eω1+ω2

ω2eω2 −ω1eω1

(
eω1(z−1)

ω1
−

eω2(z−1)

ω2

)
. (C 3)

Similarily, for homogeneous inlet Dirichlet and outlet Neumann conditions it is
possible to derive variants of these classical analytical solutions in transient regimes
which yield

〈CV〉(z, t)=
∞∑

n=0

An sin(bnz)e(Ueff /2Deff )z−(U2
eff /4Deff+Keff+Deff b2

n)t, (C 4)

with An given by the initial axial concentration and bn solutions of the ancillary
problem

Ueff

2Deff
+ bn cot(bn)= 0. (C 5)
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C.2. Microvascular network

The system defined by (3.37)-(3.39) bas to be solved numerically in transient regimes 
but can be solved analytically in the stationary regime. Here, following § 3.2, we 
illustrate the case of the single bifurcation represented in figure 2(a). The approach 
can be straightforwardly generalized to any network topology. 

According to (C 1), the average concentration along each vesse] axis involved in the 
bifurcation is 

( C) ;(z) =A;e"'•.;z + B;ewz.;z i E {O, 1, 2}, (C 6) 

where w1 and u>i are defined in (C 2) and the coefficients A; and B; are to be 
determined using the boundary conditions at the inlet and outlet of each vessel. To 
do so, the above expression is substituted into (3.38) and (3.39), which gives 

(Ae"'•ZB + BewzZB); = (C)8, i E {O, 1, 2}, (C 7) 

(C 8) 

This constitutes a new closed linear problem for A; and B;, provided that boundary 
conditions at the inlets and outlet of the bifurcation are known. Once A; and B; 

are determined for each vesse], the concentration throughout the bifurcation can be 
deduced using expression (C 6). 

Appendix D. Numerical methods for solving the effective transport equation 

ln transient regimes, equations (3.37}-(3.39) are solved numerically using fülite 
volume. Briefly, given the simple expression of the effective transport equation and 
the range of dimensionless parameter involved in microcirculation, a simple classic 
QUICK (order-3 upwind) scheme for the convective flux and a order-2 centred scheme 



for the diffusive flux have been chosen. To validate this numerical framework, the
stationary analytical solution introduced in appendix A (C 6)–(C 8) is obtained in the
network presented in figure 2(a), for different molecule diffusivities DV and membrane
permeabilities Km. As an example, figure 15 displays the errors between the finite
volume resolution and this analytical solution as a function of the spatial discretization
(degrees of freedom), for DV = 1e−9 m2 s−1 and Km determined in each vessel so
that εDam = 0.1. Among the three error estimators considered, the L2 error is the
slowest to converge with roughly a slope of −1, since the advection transport scheme
(QUICK), initially of order 3, degenerates towards a classic order-one upwind scheme
for degrees of freedom neighbouring bifurcation vertices. Such a result validates the
numerical framework described above.
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GAGNON, L., SAKADŽIĆ, S., LESAGE, F., MUSACCHIA, J. J., LEFEBVRE, J., FANG, Q., YUCEL,
M. A., EVANS, K. C., MANDEVILLE, E. T. et al. 2015 Quantifying the microvascular origin
of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive
nanoprobe. J. Neurosci. 35 (8), 3663–3675.

GENTILE, F., FERRARI, M. & DECUZZI, P. 2008 The transport of nanoparticles in blood vessels:
the effect of vessel permeability and blood rheology. Ann. Biomed. Engng 36 (2), 254–261.

GOLDMAN, D. M. & POPEL, A. S. 1999 Computational modeling of oxygen transport from complex
capillary networks. Relation to the microcirculation physiome. Adv. Exp. Med. Biol. 471,
555–563.

GOLFIER, F., QUINTARD, M. & WHITAKER, S. 2002 Heat and mass transfer in tubes: an analysis
using the method of volume averaging. J. Porous Media 5 (04), 169–185.

GORELICK, P. B., SCUTERI, A., BLACK, S. E., DECARLI, C., GREENBERG, S. M., IADECOLA, C.,
LAUNER, L. J., LAURENT, S., LOPEZ, O. L., NYENHUIS, D. et al. 2011 Vascular contributions
to cognitive impairment and dementia. Stroke 42 (9), 2672–2713.

GOULD, I. G., TSAI, P., KLEINFELD, D. & LINNINGER, A. 2016 The capillary bed offers the largest
hemodynamic resistance to the cortical blood supply. J. Cerebral Blood Flow Metabolism 33
(1), 52–68.

GRINBERG, O., NOVOZHILOV, B., GRINBERG, S., FRIEDMAN, B. & SWARTZ, H. M. 2005 Axial
oxygen diffusion in the Krogh model. In Oxygen Transport to Tissue XXVI, pp. 127–134.
Springer.



GUIBERT, R., FONTA, C., RISSER, L. & PLOURABOUÉ, F. 2012 Coupling and robustness of intra-
cortical vascular territories. NeuroImage 62 (1), 408–417.

HELLUMS, J. D. 1977 The resistance to oxygen transport in the capillaries relative to that in the
surrounding tissue. Microvasc. Res. 13 (1), 131–136.

HELLUMS, J. D., NAIR, P. K., HUANG, N. S. & OHSHIMA, N. 1995 Simulation of intraluminal
gas transport processes in the microcirculation. Ann. Biomed. Engng 24 (1), 1–24.

HOLDSWORTH, S. J. & BAMMER, R. 2008 Magnetic resonance imaging techniques: fMRI, DWI,
and PWI. Seminars in Neurology 395–406.

HOLTER, K. E., KEHLET, B., DEVOR, A., SEJNOWSKI, T. J., DALE, A. M., OMHOLT, S. W.,
OTTERSEN, O. P., NAGELHUS, E. A., MARDAL, K. A. & PETTERSEN, K. H. 2017 Interstitial
solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc.
Natl Acad. Sci. USA 114 (37), 9894–9899.

HSU, R. & SECOMB, T. W. 1989 A Green’s function method for analysis of oxygen delivery to
tissue by microvascular networks. Math. Biosci. 96 (1), 61–78.

KABACAOGLU, G., QUAIFE, B. & BIROS, G. 2017 Quantification of mixing in vesicle suspensions
using numerical simulations in two dimensions. Phys. Fluids 29 (2), 021901.

KOCH, D. L. & BRADY, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399–427.
KOJIC, M., MILOSEVIC, M., SIMIC, V., KOAY, E. J., FLEMING, J. B., NIZZERO, S., KOJIC, N.,

ZIEMYS, A. & FERRARI, M. 2017 A composite smeared finite element for mass transport in
capillary systems and biological tissue. Comput. Meth. Appl. Mech. Engng 324, 413–437.
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