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Abstract

Motivated by the potential for application of organic semiconductors in flexible

electronics, we present a theoretical study aiming at elucidating the interplay between

mechanical strain and electronic, vibrational and charge transport properties of the pro-

totypical high-mobility molecular semiconductor rubrene. Our study considers several

factors that can play a role in the electro-mechanical response of a soft, van-der-Waals

bonded, molecular crystal, such as intermolecular charge transfer integrals, lattice dy-

namics and electron phonon coupling. We find that compressive strain leads to an

increase in magnitude of charge transfer integrals but also of the energetic disorder

hampering the mobility. Charge transport simulations, based on the transient local-

ization framework and fed with first-principles inputs, reveal a remarkably different

response to strain applied along different crystal axes, in line with most recent ex-

periments. The critical interplay between energetic disorder of intrinsic and extrinsic

nature on the mobility-strain relationship is also discussed. The theoretical approach

proposed in this work paves the way for the systematic study of the electro-mechanical

response of different classes of high-mobility molecular semiconductors.

Introduction

Mechanical flexibility is one of the key assets of organic semiconductors that makes these

materials promising candidates for functional elements in the next generation of flexible, fold-

able, and wearable electronic devices. Indeed, applications of organic electronics in flexible

microelectronic circuits and display technologies have been demonstrated in recent years.1–5

For these applications a certain stability of electrical properties of the semiconductor un-

der mechanical deformation (strain) is required, while, for other uses, such as actuators

of pressure sensors, a pronounced electro-mechanical responsiveness is in demand. Thus,

it is critical to achieve a complete understanding of the interplay between mechanical and

electrical properties in order to effectively utilize these materials for advanced applications.
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Additionally, because these materials are inherently bound by weak intermolecular forces,

such an understanding can arguably contribute to shed light on the fundamentals of the

mechanism of charge transport in soft molecular semiconductors.

The focus of the present manuscript is on single crystals6–9 that, in principle, represent

ideal systems for the investigation of the intrinsic relationship between charge transport and

mechanical strain, i.e. the response in the absence of disorder or crystalline defects that

dominate the electrical and electro-mechanical properties of amorphous or polycrystalline

organic semiconductors. Recent studies on single crystals agree in reporting increases in the

charge mobility µ with compressive strain ε,6–9 the latter defined as ε = (l − l0)/l0, being

l and l0 the sample length in the presence and in the absence of a mechanical deformation

along a given direction. Substantial differences have been, however, reported on quantitative

aspects. By taking the dimensionless strain factor g = d(µ−µ0)/µ0

dε
(µ0 is the mobility in the

absence of strain) as a measure of the electro-mechanical response of a given system, the

values reported in the literature for the best characterized rubrene crystal range from g ∼ 69

(i.e. 6% mobility variation at 1% strain) to g ∼ 200.6 Most of the data are relative to

the longitudinal response, i.e. when mobility is measured along the direction of the applied

strain, usually the high-µ crystal axis b.6,8 The full tensor response, including transverse

components, has been recently measured by Matta et al.,9 who reported larger off-diagonal

responses of magnitude comparable to diagonal ones. Similar results have been also disclosed

in a preprint by Batlogg and collaborators.10

The large variability in the reported experimental estimates of g might be attributed

to extrinsic effects of different nature (e.g. chemical impurities, traps, gate dielectric, etc.)

specific to materials batches or to different measurement setups. Moreover, most of the

literature data were obtained from two-terminal measurements,6,8,9 which may be affected

by contact resistance artifacts related to strain-dependent injection barriers, as suggested

by scanning Kelvin probe microscopy measurements.11 Considering the above mentioned

factors hampering the measurements’ reproducibility, theoretical calculations represent a
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unique resource for the investigation of the intrinsic electro-mechanical response of molecular

semiconductors.

The present work builds on the nowadays well-acknowledged fact that charge transport

in soft molecular solids is strongly hampered by lattice vibrations.12–16 This has been suc-

cessfully described within the transient localization theory, which provided a comprehensive

account of a complex experimental scenario.17,18 Within this framework, mechanical strain

may affect the charge transport in several different ways. In first instance, (i) the lattice

compression may increase the overlap between adjacent molecules, resulting in an increment

of the magnitude of intermolecular charge transfer integrals. This intuitive scenario has been

confirmed by band structure calculations7,11 and transfer integrals statistics over molecular

dynamics trajectories.9 On the other hand, (ii) the change in transfer integrals may affect the

isotropy of the electronic band structure and with that its resilience to dynamic energetic

disorder.18 For instance, rubrene is a rather anisotropic, quasi one-dimensional material,

characterized by transfer integrals of much larger magnitude along the high-mobility crystal

axis b than along all other directions.19,20

Strain may also impact the overall magnitude of the energetic disorder due to thermal

lattice vibrations, firstly (iii) by affecting intermolecular non-covalent forces, for instance

leading to the stiffening of the lattice upon compression as suggested in Ref. 7. (iv) In

second instance, lattice deformations could influence the electron-phonon (e-ph) coupling,

i.e. the sensitivity of the electronic structure to lattice vibrations. Considering all the

above mentioned effects, which can in principle cooperate or counteract each other, a careful

comprehensive theoretical analysis is needed to determine how these factors will combine in

determining the ultimate dependence of mobility on strain, and to identify the leading ones,

if any.

In the present paper, we present a density functional theory (DFT) study on the effect

of mechanical strain on the electronic structure, lattice dynamics and e-ph coupling in the

paradigmatic and best-characterized molecular semiconductor rubrene.21 The results of our
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first-principles calculations are then used to assess the impact of strain on the hole mobility

within the framework of the transient localization framework.18 Compressive strain is found

to lead to a stiffening of the crystal lattice and to an increase of both the magnitude of

intermolecular charge transfer integrals and energetic disorder. Charge transport simulations

reveal a much stronger mobility response to strain applied along the crystal axis c with respect

to b, and suggest that extrinsic disorder, present in real devices, can significantly impact the

electro-mechanical response.
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Methods

The effects of mechanical strain on the structure, electronic properties and lattice dynamics

of the prototypical molecular semiconductor rubrene has been investigated by means of solid-

state first-principles calculations and rationalized within the framework of a tight-binding

model with coupling to lattice vibrations. We have considered the most common orthorombic

phase22 of the rubrene with four molecules in the conventional cell, which is characterized

by high-mobility bc planes sketched in Figure 1.

Figure 1: Illustration of (a) the rubrene molecular structure and of (b) the crystal packing in
the high-mobility bc planes. Transfer integrals between symmetry-nonequivalent molecular
pairs, JB and JC are shown in green and orange, respectively. The geometrical parameters
determining the molecular packing are shown in red.

The reference framework for the electronic structure of a molecular semiconductor is a

6



tight binding model with Hamiltonian

H =
∑
m

εm a
†
mam +

∑
mn

′
Jmn a

†
man, (1)

where εm is the energy of the molecular site m, Jmn is the charge transfer integral between

neighboring sites m and n, and a†m (am) is the creation (annihilation) operator of a charge

on site m. In the following, we will consider a two-dimensional system corresponding to the

rubrene bc planes (see Figure 1) where the relevant site orbitals are the highest occupied

molecular orbital (HOMO), as pertinent to hole transport.

The linear coupling to lattice vibrations is introduced within a real-space framework,

similar to previous studies.23–27 To such a purpose, we consider the set of normal-mode

Cartesian coordinates qi with frequencies ωi obtained from periodic DFT calculations (see

below), where i is a composite index labelling the wave vector and the branch of the phonon

mode. For local (Holstein) couplings we consider the modulation of site energies:

ε = ε0 +
∑
i

βHi qi, (2)

where ε0 is the energy of is the site energy at equilibrium and βHi is the Holstein coupling

constant. Nonlocal (Peierls) couplings is introduced through the modulation of transfer

integrals

Jx = J0
x +

∑
i

βxi qi, (3)

where J0
x the transfer integral at equilibrium and βxi is the Peierls coupling constant, relative

to the pair of molecules x =B,C, as sketched in Figure 1b. The strength of the e-ph coupling

is quantified by the mode-specific relaxation energies (also called polaron binding energy)

λxi =
(βxi )2

2miωi
, (4)

for local (x =H) and nonlocal (x =B,C) coupling, being mi the effective mass of mode i.
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The thermal population of the lattice modes results in dynamic energetic disorder, i.e.

a spread of site energies and transfer integrals due to thermal lattice fluctuations. For

linear coupling to quantum harmonic modes, the distribution of the parameters entering

Hamiltonian 1 is Gaussian with variance

σ2
x =

~
2N

∑
i

(βxi )2

miωi
coth

(
~ωi

2kBT

)
(5)

for local (spread in ε, x =H) and nonlocal (spread in Jx, x =B,C) coupling, where T is the

temperature, ~ the reduced Planck constant, kB the Boltzmann constant and N corresponds

to the number of points taken into account in the sampling of the phonon spectrum over the

Brillouin zone.

Crystal structure and lattice dynamics under strain

Our analysis relies on periodic DFT calculations based on the Perdew-Becke-Ernzerhof

(PBE) functional28 with Grimme’s D3-BJ pairwise van der Waals corrections.29,30 This ap-

proach has been recently shown to be among the most accurate methods to describe the sub-

tle interplay between covalent and weak interactions in molecular crystals.31,32 All-electron

fully-periodic DFT calculations have been performed with the CRYSTAL17 code.33

We have first optimized the cell parameters and atomic coordinates in the absence of

strain, checking the convergence of the results with respect to the computational parameters

such as the basis set, up to 6-311G(2d,2p), and the Brillouin zone sampling, up to 8×8×8).

The results reported in Table 1 demonstrate the good agreement between our calculations

and experimental structures, and show that a satisfactory description of forces is achieved

employing the 6-31G(d) basis set and a 2×2×2 sampling of the Brillouin zone, yielding an

average error in unit cell lengths of −1.45%. These settings were then used in the following

solid-state calculations.

Uniaxial strain along a given crystallographic direction has been induced by appropriately
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Table 1: Comparison of the rubrene orthorombic structures from X-ray diffrac-
tion and DFT calculations. A good agreement is obtained between DFT-
optimized and experimental cell parameters. The two optimizations, differing
for basis set and Brillouin zone sampling, yield very similar results for the cell
parameters and the atomic positions, with a root mean square deviation and
maximum absolute deviation of fractional coordinates of 4.7 10−3 and 8.9 10−3,
respectively.

structure a (Å) b (Å) c (Å)
exp. [293 K]22 26.860 7.193 14.433
exp. [100 K]22 26.789 7.170 14.211
calc. [6-311G(2d,2p), 8×8×8] 26.507 7.122 14.012
calc. [6-31G(d), 2×2×2] 26.295 7.131 13.933

scaling the corresponding crystal axis. The other cell parameters were left unchanged, while

the atomic coordinates were fully relaxed for each value of the strain. Harmonic lattice

dynamics calculations were then performed on the unstrained and strained structures to

determine the normal modes and the corresponding frequencies according to established

procedures based on the numerical evaluation of the Hessian matrix.34–36

Available inelastic neutron scattering data for deuterated naphthalene37 and theoreti-

cal calculations38–40 have shown that the low-frequency (below 200 cm−1) phonon modes

of molecular crystals feature a pronounced wave vector dependence. The effect of such

phonon dispersion on e-ph coupling and on energetic disorder has been addressed only very

recently.40–43 Brédas and coworkers reported the convergence of the cumulative nonlocal en-

ergetic disorder upon systematically increasing the Brillouin zone sampling, from considering

the zone center only (Γ point) to full phonon dispersion, for the prototypical herringbone

systems such as naphthalene and pentacene.41,42 These results showed that almost the total-

ity of the cumulative energetic disorder (84% for pentacene, 93% for naphthalene) could be

recovered by considering a sampling of the Brillouin zone that includes only two points, i.e.

Γ and the zone-boundary point corresponding to the real-space direction joining neighboring

molecules that are equivalent by translational symmetry. In the case of the rubrene crystal,

the real-space direction at stake is the crystal axis b (see Figure 1b) and the corresponding

zone-boundary point is Y = (0, 0.5, 0). The importance of accounting for the modes at
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this zone-boundary point lies in the fact that they modulate the out-of-phase vibration of

neighboring molecules that are missed at Γ, including acoustic branches. Considering the

high computational cost of all-electron DFT phonon calculations on supercells, which are

required to account for phonon dispersion, we opt for a minimal sampling of the Brillouin

zone that includes the points Γ and Y (1×2×1 supercell).

Electron-phonon model parameters

Local and nonlocal coupling constants, βHi = ∂ε
∂qi

and βxi = ∂Jx
∂qi

(x =B,C), have been evalu-

ated with two-point central finite differences. ε and Jx, were computed from gas-phase DFT

calculations on single molecules and molecular dimers at the crystal equilibrium geometry, de-

formed according to the atomic displacements of each normal mode. This procedure has been

iterated for the equilibrium structure and the normal modes previously computed for each

value of the applied strain. DFT calculations for molecules and dimers employed the hybrid

PBE0 functional44 as implemented in the ORCA v4.0 code.45 We employed the def2-TZVP

basis set for calculations of transfer integrals at equilibrium geometries J0
x . The smaller

def2-SVP basis, in conjunction with the RIJCOSX approximation,46 accurately describes

variations of HOMO energies and transfer integrals as a function of atomic displacements

and was hence used in the calculation of e-ph couplings. Charge transfer integrals Jx between

the relevant molecular orbitals were computed with the projection dimer approach.47

Transient localization mobility simulations

Charge transport calculations were performed within the transient localization framework

in the relaxation time approximation (RTA).13,48 The mobility can be obtained from the

calculation of the square transient localization length L2
τ on a time-scale τ dictated by the
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time scale associated to molecular motion as described in details in18

µ =
e

kBT

L2
τ

2τ
. (6)

The key quantity L2
τ is obtained using exact diagonalization method on finite-size clusters

as described in a recent publication.49 This approach is computationally cheaper and allows

for a better control over size effects with respect to time propagation techniques employed

in previous works.18 The code is freely available for download at GitHub.50

The square transient localization length is computed in terms of eigenstates |n〉 and

eigenvalues En of Hamiltonian Eq. (1) for a given realization of the disorder as

L2
τ =

2

Z

∑
n,m

|〈n|Ĵ |m〉|2 e−βEn

(Em − En)2 + 1/τ 2
. (7)

where Ĵ is the current operator, Z =
∑

n e
−βEn is the partition function and β = 1/kBT . The

actual L2
τ to be used in Equation 6 is obtained upon averaging over disorder realizations.51

Note that for hole carriers, the thermal weighting factor must be adapted by changing the

sign in the exponent.

We have performed exact diagonalizations on a system including up to 48×48 unit cells

(having 2 molecules per cell) with periodic boundary conditions as to ensure the convergence

of the calculated mobility values at 300 K. 50 different realizations of disorder have been

considered for the averaged mobility.

Results

Crystal structure and transfer integrals

We start our analysis from the effect of strain on the crystal structure. Since the four

molecules in the orthorombic cell of rubrene are equivalent by symmetry, the molecular
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packing can be characterized in terms of three geometrical parameters illustrated in Fig-

ure 1b. These parameters are the distance between the centers of mass of two slipped stacked

molecules along the crystal axis b, and precisely its components normal to the tetracene cores

(dπ) and along the core long axis dL, and the angle formed by the core long axis and the

crystal axis b (χ). The strain dependence of these structural parameters obtained from DFT

optimizations, shown in Figure 2, reflects a non trivial interplay of steric repulsion and cohe-

sive forces in a crystal of anisotropic molecules. Firstly, we notice that the three geometrical

parameters present a linear dependence on strain up to values of strain of ±3%. Such a large

strain values are unrealistic, since it has been reported that cracks develop in rubrene for

|ε > 0.4|%.8 The lattice compression has the effect of reducing the distance between the π

planes, dπ, with comparable magnitude for strain along the b and c axes (see Figure 2a,d).

Different trends are instead observed for the other two parameters depending on the direc-

tion of the applied strain. Compression along b leads to a decrease of the long-axis slip dL,

while the tilt angle χ is almost insensitive to the strain (see Figure 2b,c). For strain along

c, dL increases upon compression with a simultaneous decrease of χ (see Figure 2e,f).

The change in the equilibrium crystal structure with strain directly impacts the electronic

properties, such as the intermolecular charge transfer integrals. Due to the nodal structure of

molecular π-conjugated orbitals, transfer integrals are notably highly sensitive to the relative

molecular positions, as extensively studied for several molecular semiconductors, including

rubrene.20 The hole transfer integrals between slipped (JB) and herringbone (JC) rubrene

molecules (see Figure 1b), shown in Figure 3, both present a linear increase in magnitude

upon compression. The values we computed for the unstrained system, JB = 112.4 meV and

JC = −25.9 meV, are in line with previous calculations at a comparable level of theory.20,52,53

The trends in JB (see Figure 3a,c) seem to be governed by the decrease in the distance

between the π-conjugated molecular planes dπ (see Figure 2a,d) that enhances the overlap

between the rubrene HOMOs. This is supported by the fact that the variations in JB

are approximately 1.5 times larger for strain along c with respect to strain along b (see
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Figure 2: Strain dependence of the molecular organization in the rubrene crystal as defined
in Figure 1b and in the main text. The grey lines are linear regressions (slope m annotated
in each panel) computed with data points for |ε| < 0.6%.

Figure 3a,c), and the same ratio is observed for the variations of dπ for strain along the

same axes see Figure 2a,d). On the other hand, it has been reported that the hole transfer

integrals between slipped molecules in the rubrene crystal are weakly sensitive to the long-

axis displacements,20 making the variation of dL (see Figure 2b,e) less relevant for JB. The

relative variations of JC with strain along b and c, shown in Figure 3b,d, are comparable to

those obtained for JB, although their interpretation is less straightforward.

In general, we observe an increase in magnitude of transfer integral upon compression

that semi-quantitatively confirms very recent DFT results by Gali et al.,54 and that is in

line with the intuitive expectation based on the enhancement of intermolecular overlaps with

the shrinking of the lattice. We emphasize the fact that strain has a negligible effect on the

anisotropy in the charge transfer integrals as quantified by the ratio JB/JC = −4.33. In fact,

this ratio varies by less than 1% for realistic strain values of |ε| < 0.6% and by less than 5%

for ε = ±3%. We can therefore exclude that the lattice compression or expansion would lead

to a change in the isotropy of the electronic structure and hence its sensitivity to energetic
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disorder.18

Figure 3: Relative variations of intermolecular charge transfer integrals with strain along the
b (top panels) and c (bottom panels axis. An increase in magnitude of transfer integrals is
observed upon compression. The grey lines are linear regressions (slope m annotated in each
panel) computed with data points for |ε| < 0.6%. The values of JB and JC in the absence of
strain are also annotated.

Lattice dynamics under strain

Having established how the structure and the transfer integrals depend on the strain applied

along different crystallographic directions, we now turn our attention to the effect of strain

on the lattice dynamics. Figure 4 shows the ratio between the harmonic frequency of the

strained and unstrained crystal of each normal mode. The correspondence between the

normal modes of the strained and unstrained system has been established on the basis of the

scalar product between the vectors of the atomic displacements of each mode, i.e. picking

the eigenvectors of the dynamical matrix with the largest projection. Projection values

above 0.8 were found for all the modes, in most cases above 0.9, testifying a safe one-to-one
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correspondence of the modes upon application of a mechanical deformation. As can be seen in

Figure 4, lattice compression tends to increase the frequency in the low wavenumbers region,

while the opposite is observed upon expansion. Only a few modes seem not to follow the

general trend of a lattice stiffening upon compression. This behavior follows the intuitive

argument that, in a compressed lattice, molecules experience more the steeper repulsive

intermolecular potential. The effect of strain is instead minimal for modes above 200 cm−1.

This is somehow expected given that the higher frequency modes are predominantly intra-

molecular in nature, which is also confirmed by their dispersionless character.43 The effects

of strain on phonon frequencies are found to be qualitatively similar for strain applied along

b and c axis.

Figure 4: Plots of the ratio between the phonon modes frequencies of the strained (strain
values annotated in each panel) and unstrained rubrene crystal. Low-frequency modes show
a tendency for hardening upon compression, while the opposite occurs with lattice expansion.
Modes above 200 cm−1 are almost insensitive to strain.

The hardening of the low-frequency modes, i.e. those that are mostly responsible for

dynamic energetic disorder hampering charge transport in organic semiconductors, implies

a reduction in the amplitude of the corresponding atomic oscillations. A reduced amplitude
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upon compression suggests a possible reduction in the dynamic disorder and hence a possible

beneficial effect on the mobility. A similar argument has been proposed by Kubo et al., who

reported the stiffening of the intermolecular potentials upon compression in a 7-molecule

cluster of C10-DNBDT-NW.7 While emphasizing the greater rigour of our approach, which

relies on the lattice dynamics obtained from periodic solid-state calculations, we remark that

energetic disorder depends both on vibrational amplitudes and on the e-ph coupling. The

latter may also be affected by strain, as we investigate next.

Electron-phonon coupling

The modulation of molecular site energies and intermolecular transfer integrals due to low-

frequency lattice modes of the rubrene crystals has been calculated at the DFT level, within

the established framework for linear local and nonlocal e-ph coupling,23–25 as detailed in the

Methods section. Results in Figure 5a-c report the mode-specific relaxation energies (λx,

gray vertical bars) for local and nonlocal couplings in the unstrained system. In order to

better appreciate the frequency distribution of the coupling strength in the case of many

modes, possibly very close in frequency or even degenerate, we also consider the spectral

function

Λx(ω) =
∑
i

λxi δ(ω − ωi) (8)

where δ is the Dirac delta function (replaced by Gaussians of 5 cm−1 standard deviation for

visualization purpose) and x = H,B,C for local (Holstein) and nonlocal coupling relative

to transfer integrals JB and JC (see Figure 1), respectively. The black line in Figure 5a-c

reports Λx(ω) as obtained with our two-point sampling of the Brillouin (Γ+Y , see Methods

section), while the green line is for Γ-point phonons only. We remark that zone-boundary Y -

point modes lift the symmetry-equivalence between the molecules in the unit cell. Relaxation

energies have been computed by explicitly considering the symmetry-nonequivalent molecules

and dimers, and then averaged in the displayed results.
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Panels d-i of Figure 5 show the cumulant values of the relation energies,

Λx
Σ(ω) =

ωi<ω∑
i

λxi =

∫ ω

0

Λx(ω′) dω′, (9)

for strain applied along the crystal axis b (panels d-f) and c (panels g-i). Λx
Σ(ω) gives a

direct quantification of the overall strength of the coupling due to all modes below a given

frequency threshold ω. For low-frequency modes, the classical limit (~ω � kBT ) applies to

Equation 5 and Λx
Σ is proportional to the variance of site energies (x =H) or charge transfer

integrals (x =B,C).

We start the presentation of our results from local e-ph couplings of the unstrained

system in Figure 5a. Our results for the coupling to Γ-point modes are consistent with

literature data.25,53 Interestingly, the comparison of zone-center results with those obtained

upon including zone-boundary modes (c.f. black and green line in Figure 5a,d) reveals that

the neglect of phonon dispersion results in an order of magnitude underestimation of the

magnitude of the Holstein coupling. The cumulative relaxation energy at ω = 400 cm−1 is

3.2 and 39.3 meV upon neglecting and accounting for phonons dispersion, respectively.

To the best of our knowledge, the present work reports the first investigation of local

e-ph coupling in a molecular crystal beyond the Γ point, since all previous studies of e-ph

coupling accounting for phonon dispersion focused only on the nonlocal contribution.40–43

Literature results show that a few low-frequency modes of the isolated molecule characterized

by a remarkable coupling,20,25 and involving the bending of the phenyl groups, seem to be

silent in the crystal, according to Γ-point e-ph calculations.25,53 Our results hence suggest

that phonon dispersion is essential to reconcile the large discrepancy in the low-frequency

Holstein spectral weight between the isolated molecule and the crystal when only zone-center

modes are accounted for.25 An illustration of the zone-boundary modes with the strongest

coupling is provided in Figure 6a. We observe that the two modes at 58.6 and 266.0 cm−1

involve a substantial motion of the phenyl groups, similar to a low-frequency and strongly
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Figure 5: Local (left panels) and nonlocal (center and right panels) e-ph couplings for the
strained rubrene crystal. (a-c) Relaxation energies (gray bars) and the corresponding spectral
density (black line, arbitrary units) in the unstrained system. (d-f) Cumulative spectral
functions for different values of strain (see legend) applied along the b axis. (g-i) Same as
panels d-f for strain along c. Green lines shows Λx and Λx

Σ calculated with Γ-point modes
only. The delta function in Eq. 8 has been replaced by a Gaussian with 5 cm−1 standard
deviation.
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Figure 6: Illustration of the atomic displacements (arrows) for the vibrational modes with
strongest (a) local and nonlocal (b) e-ph coupling (see Figure 5). The wavevector (Brillouin
zone point Γ or Y = (0, 0.5, 0) and the frequency of each modes are annotated.
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coupled mode of the isolated molecule.20

Local e-ph coupling is rather insensitive to strain, as can be evinced from data in Fig-

ure 5d,g. The curves of ΛH
Σ (ω) for experimentally attainable strain values of ±0.4% are

practically superimposed to that of the unstrained system, and modest variations are ob-

tained also for the unrealistically high strain of ±3%.

Coming to nonlocal couplings, our results for the unstrained system in Figure 5b,c are

in line with those by Xie et al.,40 with a much stronger coupling for JB with respect to

JC , with most of the spectral weight ascribable to modes below 100 cm−1. The sketch of

the modes with the strongest nonlocal couplings in Figure 6b confirms a substantial mixing

between intra-molecular and intermolecular degrees of freedom.25,40 The Γ-point vibration

at 83.8 cm−1 closely resembles a mode reported in Ref. 25 at similar frequency (87 cm−1)

and corresponding to quasi-rigid molecule oscillations about the crystal axis a. We report,

also for nonlocal couplings, a substantial increase in the cumulative relaxation energy when

accounting for modes beyond the Brillouin zone center (see Figure 5b,c), similar to recent

literature results for rubrene40 and other systems.41–43

The effect of strain on nonlocal electron-phonon coupling can be appreciated from the

plots of the cumulative relaxation energies in Figure 5e-f,h-i. The most noticeable result is

the increase of ΛB
Σ in Figure 5e upon lattice compression and its decrease upon expansion,

signaling an enhancement in the sensitivity of the largest transfer integrals JB to the lattice

motion upon shrinking the crystal. Although the extent of this variation might seem small

on the figure scale, we remark that the relative variations of ΛB
Σ at 400 cm−1 (∼10% for

1% strain) are larger in magnitude than the relative variation in J0
B (c.f. Figure 3). The

variations of ΛB
Σ with strain are monotonic in εb up to ±3%, yet the trend is not linear.

The effect of transverse strain on ΛB
Σ (see Figure 5h) or of strain along both directions on

ΛC
Σ (Figure 5f,i) is much less pronounced, unless unrealistically large lattice deformations of

±3% are applied.
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Transient localization mobility calculations

On the basis of the present DFT analysis of the rubrene crystal, the effect of compressive

strain can be summarized as follows: (i) increase in the magnitude of hole transfer integrals

that, however, does not affect the anisotropy of the electronic structure, i.e. rubrene remains

a quasi-1D system with a JB/JC ratio essentially unchanged; (ii) stiffening of the crystal

lattice, which implies the shrinking of the thermal vibrational amplitude of low-frequency

modes; (iii) enhancement of the nonlocal e-ph coupling only for strain applied along crystal

axis b, as opposed to a strain-independent local coupling. The net effect of these three

factors on the hole transport properties is hardly predictable, since (i) is expected to barely

affect the intrinsic mobility,18 (ii) is expected to enhance it, while the opposite is expected

from (iii). We have hence performed mobility calculations as a function of strain within the

framework of the relaxation time approximation (RTA, see Methods for details).13,48,49

Charge transport calculations based on the tight binding model (Equation 1) take as input

parameters transfer integrals and dynamic energetic disorder from DFT calculations sum-

marized in Table 2. It is well acknowledged that charge transport is hampered dominantly

by low-frequency modes. We hence report in Table 2 the standard deviations computed,

according to Equation 5, including the effect of all modes with frequencies below 400 cm−1.

The actual choice of this threshold is irrelevant for the nonlocal coupling, since strongly

coupled modes are all well-below the cutoff frequency (see Figure 5b,c). The same plausible

threshold is somewhat arbitrary for the local e-ph, where coupled modes can be found at

higher frequencies. Local coupling is, however, insensitive to strain and a possible increase

in σH would sum up to the effect of extrinsic disorder discussed below.

Additional parameters in the simulations are the effective phonon frequency ω0, and

the amount of extrinsic disorder, if present. The effective phonon frequency ω0 sets the

timescale over which lattice vibrations reshuffle the energy landscape experienced by charge

carriers, conferring a diffusive character to transport.13 This parameter enters in Equation 7

through the timescale τ = 1/ω0. Since many modes contribute to the dynamic disorder,
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Table 2: Strain dependence of transfer integrals and local and nonlocal energetic
disorder at 300 K, i.e. the quantities entering RTA charge transport simulations
whose results are shown in Figure 7. The last column shows the ratio between
J =

√
J2
B + 2J2

C, setting the energy scale of the electronic bandwidth, and σ =√
σ2
B + 2σ2

C + σ2
H/4, i.e. the total intrinsic disorder (see text). Energies are in

meV.

strain % JB JC σH σB σC J/σ
ε = 0 112.4 -25.9 48.1 34.2 10.3 2.670
εb = -3.0 125.3 -29.2 48.9 43.4 11.1 2.526
εb = -0.4 114.4 -26.3 48.4 35.3 10.3 2.661
εb = 0.4 110.6 -25.5 48.1 33.2 10.3 2.674
εb = 3.0 97.5 -23.3 49.4 28.0 10.3 2.568
εc = -3.0 134.1 -30.9 47.2 35.0 10.9 3.138
εc = -0.4 115.2 -26.5 47.9 34.2 10.4 2.737
εc = 0.4 109.7 -25.3 48.3 34.3 10.2 2.601
εc = 3.0 91.8 -22.1 49.5 34.8 10.1 2.154

we take the harmonic mean of the vibrational frequencies weighted by the sum of local and

nonlocal relaxation energies, which yields ω0 = 67.5 cm−1. We further notice that this value

corresponds to the frequency of the most strongly Peierls-coupled modes (c.f. Figure 5b). We

have checked that the varying ω0 by up to a factor 2 has a negligible impact on the relative

mobility variations with strain and has a small effect on the absolute values of µ.18 Extrinsic

disorder cannot be quantified from our calculations for a defect-free crystal and is in general

hardly accessible in atomistic simulations. We hence adopt a phenomenological description

of extrinsic disorder, that we model with an additional Gaussian diagonal disorder term with

strain-independent standard deviation ∆, which is taken as an adjustable parameter.

We start by observing that the absolute value of the mobility we compute for the un-

strained rubrene crystal when accounting for intrinsic energetic disorder only (∆ = 0),

µ0
b = 24.4 cm2V−1s−1 (see also Table 3), nicely compares with the top-performing samples

measured by Ren in one of the most reliable set of experiments on single-crystal air-gap

transistors.55

The dependence of mobility on strain is shown in Figure 7 for different values of strain-

independent extrinsic disorder up to ∆/J(ε = 0) = 0.8 ≈ 95 meV, where J =
√
J2
B + 2J2

C ,
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sets the energy scale of the electronic bandwidth for a given strain value. The relative

variations of the isotropic mobility µ = (µb+µc)/2 for strain applied along the b and c axes are

shown in the top and bottom panels, respectively. Results implicitly account for the trivial

effect of the lattice deformation, which affects the unit of length and hence the calculated

mobility. We notice that in the absence of extrinsic disorder (∆ = 0), our simulations predict

opposite effects for strain applied along different directions, i.e. the mobility increases with

εb and decreases with εc. While the latter trend is in line with experimental observations,

showing an increase of µ upon compression,6,8,9 the effect of strain along the crystal axis b

is unexpected.

It is however well known that real organic crystals and field effect transistors (FETs) are

always affected by a certain amount of extrinsic disorder, due to crystallographic defects,

impurities, and gate dielectric. The introduction of extrinsic disorder degrades the calculated

mobility (see µ0 values in Table 3) and, most importantly, qualitatively alters the response to

strain applied along b. Indeed, compression along b leads to an increase in µ upon compression

for ∆/J(0) > 0.5, which reconciles present calculations with experiments regarding the

qualitative trend of mobility enhancement with compression. For strain along c, extrinsic

disorder further enhances the response of the system to strain.

Table 3: Mobility of the unstrained system (µ0 components in cm2V−1s−1) and

strain factor tensor (gij =
d(∆µi/µ

0
i )

dεj
) calculated as a function of the extrinsic dis-

order ∆. Extrinsic disorder reduces the absolute values of the mobility and
enhances the electro-mechanical response of the system, favoring mobility en-
hancements upon compression. The strain factor has been computed by finite
differences using data points for ε = ±0.4%.

∆/J(0) µ0
b µ0

c gbb gcb gcc gbc
0 24.4 9.5 4.1 3.8 -12.7 -12.1
0.5 13.0 5.1 -0.1 0.1 -14.8 -14.0
0.8 5.1 2.1 -5.8 -5.1 -17.8 -17.3

Table 3 shows the strain factor tensor gij = ∂(∆µi/µ0i)
∂εj

, quantifying the calculated anisotropic

electro-mechanical response of the rubrene crystal as a function of the amount of extrinsic

disorder. We observe that the magnitude of the mobility variations is larger for strain along
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Figure 7: Relative mobility variations as a function of strain applied along (a) b and (b)
c axis. Main panels refer to the mean mobility µ = (µb + µc)/2 , insets show the µb/µc
ratio quantifying the anisotropy in the bc plane. The curves for different values of the
extrinsic disorder ∆ (in units of J(ε = 0), see legend), show that this factor favors mobility
enhancements upon compression. The average bc-plane mobility (annotated in cm2V−1s−1

in the legend) degrades upon introducing extrinsic disorder.
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c than along b, while, for a given strain direction, similar mobility variations are observed

along the two axes. In fact, the ratio µb/µc is about 2.5 and weakly depends on strain and

on the extrinsic disorder ∆, as shown in the insets of Figure 7. Indeed, within transient

localization theory, the anisotropy in the mobility is approximately given by the anisotropy

in the effective masses,18 which is minimally altered by strain or disorder.

The effect of strain on the mobility can be understood in terms of the combined effect

of the variations in transfer integrals and in the energetic disorder. Within the transient

localization theory, µ varies proportionally to (J/σ)α, where α & 2 and σ quantifies the total

energetic disorder due to local and nonlocal coupling. For one-dimensional systems, it can

be shown that σ2 = σ2
B + 2σ2

C + (σ2
H + ∆2)/4. Numerical evidence suggests that the same

formula holds to a good approximation also for generic two-dimensional band structures.56

Compressive strain applied along c enhances the magnitude of transfer integrals without

significantly affecting the total energetic disorder, hence resulting in an increase in (J/σ),

and therefore in mobility. On the other hand, the lattice compression along b increases σB,

whose relative variations are larger in magnitude than those in J . This reduces the ratio

(J/σ), resulting in a positive sign of the strain factor components gib (i = b, c) for ∆ = 0.

Strain independent contributions to σ, such as the extrinsic disorder ∆, are therefore crucial

as they reduce the relative variations in σ, up to inverting the trend and reversing the sign

of gib. Eventually, when extrinsic disorder is dominant, the variations in the mobility are

solely governed by the changes in the magnitude of the transfer integrals.

Discussion and conclusions

In this paper, we have presented a theoretical analysis of the strain dependence of the

mobility of the rubrene crystal combining first principles calculations and charge carrier

mobility simulations. DFT calculations allowed for an accurate evaluation of intermolecular

transfer integrals and energetic disorder as a function of the applied strain. Charge transport
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simulations based on the DFT inputs showed that the mobility response is larger when the

strain is applied along the crystal axis c with respect to b. In the former case, compression

always results in an enhancement of µ, while when strain is along b it can, in principle, both

increase or reduce µ.

Our analysis highlights also the importance of the extrinsic energetic disorder, ∆, which

enhances the electro-mechanical response of the crystal. This result suggests that factors such

as the purity of crystalline samples or the choice of the gate dielectric might be crucial for the

electro-mechanical response of a given system, possibly rationalizing the large variability in

experimental data. Indeed, for large ∆ the trends of mobility with strain are mostly governed

by the increase in the transfer integrals upon compression, rather than by the variations of

intrinsic energetic disorder, which are found here to be modest in rubrene. This rationalizes

the satisfactory explanation of the trends of mobility with strain that has been advanced by

solely looking at the variations of transfer integrals.9,54

Although a precise quantification of the extrinsic disorder is difficult both in simulations

and in experiments, useful indications can be obtained from the measured mobility values.

The mobility of rubrene single crystals for which strain effects have been reported varies be-

tween 1 and 8 cm2V−1s−1.6,8,9 These values lag far behind the highest mobilities reported for

top-performing air-gap transistors, showing µ values up to 24 cm2V−1s−1, closely comparing

to our results for extrinsic disorder-free rubrene. This observation suggests that extrinsic

phenomena occur to substantially limit charge transport in the samples and devices for which

the electro-mechanical response has been measured.

The strain factor g we obtain for ∆/J0 = 0.8 corresponds to a ∼18% mobility increase for

1% compression along c and a three times weaker response for strain along b. These values

are in agreement with the g factors measured by Matta et al. under tensile strain,9 both in

terms of magnitude and anisotropy of the response. Our values are also comparable to those

by Wang et al. (g ∼ 20),8 while Reyes et al., using a peculiar experimental setup in which

strain is induced exploiting the wrinkling of an elastomeric substrate, reported responses one
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order of magnitude larger.6

In summary, we have developed a theoretical and computational approach for the investi-

gation of the mobility-strain relationship in crystalline molecular semiconductors that takes

into account several factors, including dynamic energetic disorder due to lattice vibrations.

We have rationalized the enhancement of the mobility with lattice compression in rubrene,

mostly due by the increase in magnitude of intermolecular charge transfer integrals, with

a possible contribution from extrinsic effects. In virtue of the specificity of the different

classes of molecular crystals, we cannot exclude that other systems would present qualita-

tively different behaviors. The protocol proposed herein provides a robust framework for the

investigation of the electro-mechanical response in different molecular crystals.
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