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Drastic effects of vacancies on phonon lifetime and thermal conductivity in graphene

G. Bouzerar1, S. Thébaud1, S. Pecorario1 and Ch. Adessi1
1 CNRS et Université Lyon 1, 6, rue Ada Byron, 69622 Villeurbanne Cedex, France

(Dated: February 26, 2020)

Understanding thermal transport in 2D materials and especially in graphene is a key challenge
for the design of heat management and energy conversion devices. The high sensitivity of measured
transport properties to structural defects, ripples and vacancies is of crucial importance in these
materials. Using a first principle based approach combined with an exact treatment of the disorder,
we address the impact of vacancies on phonon lifetimes and thermal transport in graphene. We find
that perturbation theory fails completely and overestimates phonon lifetimes by almost two orders
of magnitude. Whilst, in defected graphene, LA and TA modes remain well defined, the ZA modes
become marginal. In the long wavelength limit, the ZA dispersion changes from quadratic to linear
and the scattering rate is found proportional to the phonon energy, in contrast to the quadratic
scaling often assumed. The impact on thermal transport, calculated beyond the relaxation time
approximation and including first principle phonon-phonon scattering rates as reported recently for
pristine graphene, reveals spectacular effects even for extremely low vacancy concentrations.

PACS numbers:

I. INTRODUCTION

Over the past decade, and because of its unique me-
chanical, electronic, optical and thermal properties, the
2D material prototype, graphene, has been at the heart of
a plethora of publications.1–3 Among all these remarkable
properties, the particular topic of thermal transport has
attracted much attention over the past years. Graphene
exhibits an unusually high thermal conductivity,4–7 that
could, in the near future, make this two dimensional ma-
terial one of the best candidates for efficient thermal dissi-
pation in microelectronics. In addition, nanostructuring8
and disorder9 in graphene based compounds could be
promising pathways for high-efficiency thermoelectric de-
vices to transform waste heat into electrical energy. The
desired effects are a drastic suppression of the thermal
conductivity and significant improvement of the Seebeck
coefficient, both required to reach a large thermoelectric
efficiency.

Many efforts are still devoted to understanding the
lattice thermal conductivity in graphene, but no clear
consensus has been reached so far, the topic remains
controversial. Experimentally, the measured room tem-
perature thermal conductivity (κ) spans over a large
range of values, typically between 400 W.m.−1K−1

and 600 W.m.−1K−1 for supported samples6,10 and
1500 W.m.−1K−1 to 5400 W.m.−1K−1 for suspended
ones.4,6,11 The important fluctuations in the measured
values can be attributed to (i) large measurement uncer-
tainties, (ii) variations in the processing conditions and
(iii) graphene quality. This could indicate a high sen-
sitivity to intrinsic defects such as vacancies, lattice re-
construction, edge roughness or even ripples. From the
theoretical side,12–19 the scenario is even more open. The
estimates of κ at room temperature in graphene vary by
more than one order of magnitude, typically it ranges
from 500 W.m.−1K−1 to about 9000 W.m.−1K−1. Even,
the choice of exchange correlation functional has a sig-

nificant impact on the thermal conductivity in pristine
graphene19.

It is well-known that a plethora of intrinsic defects
are possible in graphene, such as isotopes, vacancies and
divacancies, Stone-Wales defects... Molecular dynamics
simulations have been the standard and most widely used
tool to address their effects on the thermal conductivity
of graphene, carbon nanotubes and other complex carbon
allotropes20–24. However, we choose here an alternative
approach (presented below) in order to focus on the in-
fluence of defects on the nature and lifetime of individual
phonon modes. Because we expect vacancies to have the
strongest effects on thermal transport, we focus our study
on this type of defect.

In this paper, using state of the art first principle based
approaches, we address the issue of vacancies’ effects on
lattice thermal transport in single mono-layer graphene.
For that purpose, we follow a two steps procedure. First,
we calculate the vacancy induced multiple scattering con-
tribution to the phonon lifetime by an exact real space
treatment of the disorder. Notice that, in most of the
existing theoretical studies, disorder is treated perturba-
tively. As will be seen, the second order perturbation
theory appears to severely overestimate the phonon life-
times. Note however, that the perturbation theory often
used in the case of isotopic disorder is reasonable, be-
cause of the weak effects of the substitution of 12C by
13C. In the second step, we calculate the thermal con-
ductivity as a function of the vacancy concentration by
including phonon-phonon scattering (Normal and Umk-
lapp processes) and going beyond the relaxation time ap-
proximation (RTA). It should be emphasized that all cal-
culations are parameter free, since the disordered phonon
dynamical matrix is obtained from first principle calcula-
tions. Note that, within a single site T-matrix approach,
the issue of phonon lifetime in graphene in the presence of
various dopant (B,N,P) and vacancies has been recently
adressed in Ref. 26. In contrast, here we treat the disor-
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der exactly (finite concentration of randomly distributed
vacancies) and thus properly include the multiple scatter-
ings of the phonon modes and the localization physics. In
addition, we focus our attention on the vacancy concen-
tration dependence of both phonon dispersion and life-
time in the long wave length limit and address quanti-
tatively the validity of the often used second order per-
turbation theory. The energy dependence of the phonon
lifetime is directly extracted from an accurate calculation
of the averaged (over disorder configurations) dynamical
spectral function. We should emphasize that our accu-
rate treatment of the disorder yields an unexpected power
law for the ZA scattering rate that had not been revealed
so far.

II. EXACT DISORDER CONTRIBUTION TO
THE PHONON LIFETIME

Fig. 1(left) shows the calculated dispersion in the pris-
tine graphene monolayer along the Γ-M-K-Γ path in the
Brillouin Zone (BZ). The inter-atomic force constants
(IFC) φαβij have been calculated from first principle sim-
ulations, i and j are the positions of the C atoms and
α, β = x, y and z. The ab initio calculations of the IFC
are performed with the DFT package SIESTA,25 more de-
tails are provided in the Appendix. Note that in the case
of graphene, in-plane (xy) and out of plane (z) modes
are decoupled. We observe an excellent agreement be-
tween our calculations and the experimental data, over
the whole BZ. We should emphasize that, we have re-
tained the first 6 nearest neighbour shells for the calcu-
lations, including further shells has negligible effects.

In Fig. 1(middle) are plotted the nearest-neighbour
inter-atomic force constants φzzn−n for the out of plane
modes (ZA and ZO) in the vicinity of a vacancy. The
rectangular supercell used for the calculations contains
199 C atoms. In a pure graphene mono-layer φzzn−n is -6.1
eV/Å2. When a vacancy is introduced, φzzn−n is strongly
affected. More precisely, for the 2-coordinated C atoms
the average value is only -3.03 eV/Å2. The origin of
the φzzn−n variations between the 2-coordinated atoms is
discussed in the Appendix. As shown in the appendix
the average value is robust and the fluctuations reduce
as the supercell size increases. As we move away from
the vacancy we rapidly recover the inter-atomic force
constant of the pristine compound. Note, that this is
also the case for the other couplings. A vacancy has
the strongest effect on the nearest-neighbour IFC of the
2-coordinated C atoms, for larger distances between C
atoms (beyond nearest-neighbours), the IFCs are much
less affected. Thus, for the calculation at finite concen-
tration of randomly distributed vacancies of the phonon
lifetimes and transport properties, a vacancy is treated
as follows: (i) a removal of a C atom and all correspond-
ing bonds and (ii) a reduction by a factor 2 of the nearest
neighbour IFC of the 2-coordinated C atoms for both in

and out of plane modes. Note that because of the random
positions of the vacancies, in large systems considered
here, there are many occurrences of double C-vacancies
and even triple C-vacancies. This would in principle re-
quire the calculations of the IFC for these configurations
but this goes beyond the scope of the present study. We
should also mention, in contrast to what has been re-
ported recently in a semi-empirical theoretical study,13

that the φαβn−n are not enhanced by a factor 2 but strongly
suppressed as revealed by our first principle calculations.

To obtain the vacancy induced multiple scattering con-
tribution to the phonon scattering rate, we evaluate nu-
merically on large systems (between 3.105 and 106 C
atoms) the phonon dynamical spectral function. For such
systems, finite size effects were found negligible. Note
that this function is directly accessible from inelastic neu-
tron scattering experiments. For a fixed concentration of
vacancies and given configuration of disorder (random
positions of the vacancies), the dynamical spectral func-
tion reads (further details are available in the Appendix),

As(q, ω) = − 2

π
ω=(Gs(q, ω)), (1)

where

Gs(q, ω) = lim
η→0

< q, s|
[
(ω2 + iη)1̂− D̂

]−1

|q, s >, (2)

where D̂ is the dynamical matrix and |q, s > is a Bloch
state with momentum q and polarisation vector es, and
η is a small imaginary part. The matrix element Dαβ

ij =
φαβij√
mimj

xixj, where xi = 0 if the site i is occupied by a
vacancy, otherwise xi = 1. In addition, for 2-coordinated
atoms φαβij is half of its value in the pristine compound for
nearest-neighbour IFC only. For a given q of the BZ, the
peaks in As(q, ω) provide both the energy of the phonon
modes and the lifetimes that correspond to the inverse of
the full width at half maximum (FWHM) of the peaks.
To extract reliably and accurately the phonon peak posi-
tions and more particularly the FWHM that are strongly
η dependent for low energy modes, the calculations are
performed using the powerful iterative Chebyshev Poly-
nomial Green’s Function approach (CPGF).27,28 A simi-
lar methodology involving Chebyshev Polynomials to ex-
pand the time evolution operator has been developed ear-
lier to address the dc conductivity in quasi crystals.29
Note that performing a direct exact diagonalization of
the disordered dynamical matrix, would require a large
amount of both memory and CPU time. In particular the
CPU time scales as N3, where N is the total number of
C atoms. In contrast, the calculation using CPGF scales
linearly with the system size and the memory required is
small, because there is no need to store large matrices.
We should emphasize that, within CPGF the treatment
of the disorder is exact. Thus, quantum interferences and
localization phenomena are fully included.

Fig. 1(right) represents the disorder averaged dynam-
ical spectral function for both in plane and out of plane



3

Γ

ω
(c
m
-1
)

LA

TA
ZA

ZO

TO

LO

q

−5.48

−5.35

−3.80

−3.05

−2.25

−5.70

0
5
0
0

1
0
0
0

1
5
0
0

ω
(c
m

-1
)

K

M

M K
0

500

1000

1500

2000

Figure 1: (left) Calculated phonon dispersions in pristine graphene along the Γ-M-K-Γ path (continuous lines) for LA, TA, LO,
TO, ZA and ZO branches. The dotted symbols are experimental data from Ref.30–32. (middle) ab initio calculated nearest-
neighbour inter-atomic force constants for the ZA and ZO modes in the vicinity of a vacancy (in eV/Å2). (right) 2D color
plot of the calculated averaged phonon dynamical spectral function As(q, ω) in the presence of 5% of vacancies. The chosen
polarisation for the in-plane modes is es = 1√

2
(ex + ey).

modes and a concentration of vacancies set to x = 5%.
Note that, because of the large system sizes considered
here, a few configurations of disorder are enough to get
reliable statistical average. At most 5 configurations of
disorder are enough to get reliable values for both the
phonon dispersion and the FWHM, with weak fluctua-
tions from one configuration to the other. In addition, in
this figure, a small finite η has been kept for the sake of
visibility. However, in what follows and in order to prop-
erly extract the exact disorder contribution to the phonon
lifetime the limit η → 0 will be properly carried out. In
the vicinity of the Γ point the phonon modes are well de-
fined, but the ZA modes appear to have a much broader
width than that of the in-plane acoustic modes. As we
move away, along the Γ-M or Γ-K path, first the phonon
width of the acoustic modes increases significantly (life-
time reduces) and then becomes almost constant. The
case of the optical modes is slightly different. In particu-
lar, for TO branch, the width first increases rapidly then
reaches a maximum and as we approach the zone bound-
ary it decreases again. Along the M-K path, ZA, ZO and
especially TO modes are very sharp in contrast to LA,
TA and LO modes. In this region, it is difficult to sepa-
rate LO and LA modes. It is worth mentioning two other
interesting features: a well defined vacancy induced flat
band located at about 500 cm−1 and the disappearance
(fuzzy region) of the phonon modes around 1200 cm−1

in the vicinity of the K point.

Let us now discuss the effects of the vacancy concen-
tration (x) on phonon dispersions, extracted from the
peak positions in the spectral function. We choose here
to focus our attention on the Γ-M direction. The results
for the acoustic modes LA, TA and ZA are depicted in
Fig. 2. We first observe that both dispersions and veloci-
ties of LA and TA modes are weakly affected, the effects
start to be visible for relatively large vacancy concentra-
tion of the order of 10%. In contrast, the situation is very
different for the ZA branch. For large values of the mo-
mentum |q|, the dispersion is insensitive to the vacancy

concentration. However, in the vicinity of the Γ point
the dispersion goes from quadratic to linear. The long
wavelength modes develop a finite velocity vZA that de-
pends on x. For instance, if we set x = 5%, we find that
vZA is as large as 0.15 vLA. As clearly shown in the inset,
the region of linear dispersion rapidly increases with the
concentration of defects.

We now propose to analyse the effects of vacancies on
the phonon modes FWHM denoted Γ(ω). As(q, ω) has
been calculated in the whole BZ. Typically 200 to 300 q-
points uniformly distributed over the BZ have been tar-
geted. Note that the number of Chebyshev polynomials
(CP) considered were typically of the order of 2.104 for
q-points far from the BZ center (see appendix B for the
details). However, for the acoustic modes in the vicin-
ity of the BZ center, because of the tiny values of the
FWHM, it was necessary to include up to 3.106 CP to
get converged results denoted "highly accurate calcula-
tions". Γ(ω) (rescaled by x(1 − x)) as a function of the
phonon mode energy is plotted in Fig. 3 for both LA and
TA branches. The highly accurate calculations for the
low energy modes in the ΓM direction are also shown.
First, we observe for both branches a non monotonic be-
haviour of Γ(ω). We also find for ω ≤ 400 cm−1 that the
data points obtained for various vacancy concentrations
lie on the same curve. Beyond 400 cm−1, we observe,
for a given energy, larger fluctuations around the average
value. They are relatively small for the LA branch, of the
order of 10 %. In contrast, they are much larger for the
TA modes. For instance, for ω = 600 cm−1 the fluctua-
tions are of the order of 30 %. However, beyond 700 cm−1

the fluctuations are strongly suppressed. In addition, for
ω ≤ 500 cm−1, the FWHM is found cubic in energy:
Γλ(ω) = x(1 − x) ω3

ω2
0,λ

where ω0,λ = 288 cm−1 and 236

cm−1 respectively for λ = LA and TA. The cubic power
law found here is in agreement with perturbation theory
(PT) that gives ΓPTλ (ω) = xπ2 (∆M

M )2ω2ρλ(ω), ∆M is the
mass variation of the substituted atom and ρλ(ω) denotes
the phonon density of states in the pristine compound.33
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Figure 2: (top) LA and TA phonon dispersions along the Γ-
M direction for various concentrations of vacancies ranging
from x = 0 to 0.1. (bottom) ZA phonon dispersion in the
ΓM direction for the same concentrations. The dashed lines
correspond to linear fits for the long wavelength phonons. The
inset shows a zoom of this region.

In the particular case of vacancies ∆M
M = −Ma

M −2 ≈ −3,
Ma being the mass of the missing atom and M the average
mass per atom, -2 accounts for the potential energy of the
missing linkage.34,35 For LA and TA modes the density
of states is ρλ(ω) = Ω

2πv2λ
ω where Ω is the primitive cell

area. The comparison between PT and our exact results
leads to ΓPTLA ≈ 0.018 ΓLA and ΓPTTA ≈ 0.03 ΓTA. Thus,
perturbation theory drastically underestimates the va-
cancy contribution to the scattering rate. This is not sur-
prising considering the non-perturbative nature of such
defects compared to isotopic disorder. Note that in a re-
cent study22 devoted to thermal transport in irradiated
graphene, a value of (∆M

M )2 of the order of 590 instead
of 9 was found necessary to reproduce the experimental
data. This is entirely consistent with our finding that
LA scattering rate is about 55 times larger than that
predicted by PT.

The case of the ZA branch is even more interesting.
Γ(ω) for the ZA branch is plotted in Fig. 4. First, after
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Figure 3: (top) LA phonon full width at half maximum
(rescaled by x(1−x)) at T = 0 K as a function of the phonon
energy ω for x = 0.025, 0.05 and 0.1. A grid of 200 to 300 q-
points uniformly distributed over the whole Brillouin zone has
been used. The filled symbols correspond to highly accurate
calculations in the Γ-M direction (see text). The continuous
line is a cubic fit of this set of data up to 500 cm−1. (bottom)
Same as in the top figure but for TA branch.

rescaling, the data points lie on a single curve as seen
previously for in plane modes. The behaviour is non
monotonic, Γ(ω) exhibits a maximum at about 200 cm−1

and a strong decrease as we approach the BZ boundary
(M and K points). The fluctuations for a given ω are
found relatively small, at most of the order of 10% to
15% around the average value. Unexpectedly, as we in-
troduce vacancies, we find a linear behaviour of ΓZA as
a function of the mode energy in the vicinity of the BZ
center. The fluctuations are very small in this region as
clearly seen in the inset. A linear fit for ω ≤ 100 cm−1

leads to ΓZA(ω) = 20x(1 − x)ω. This linear scaling of
the ZA width in the long wavelength regime means that
these modes are marginal since limω→0

ΓZA
ω = 20x(1−x).

For well defined excitations, one expects this ratio to be
zero. Furthermore, ΓZA(ω) ≥ ω for x ≥ 0.05, hence
the phonon quasi-particles are not well defined in this
range of vacancy concentrations. These findings are in
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Figure 4: ZA phonon full width at half maximum (rescaled
by x(1 − x)) at T = 0 K as a function of the phonon energy
ω for x = 0.01, 0.025, 0.05 and 0.1. A grid of 200 to 300 q-
points uniformly distributed over the whole Brillouin zone has
been used. The filled symbols correspond to highly accurate
calculations in the Γ-M direction (see text). The continuous
line is a linear fit for the low energy modes (see inset).

strong contrast with perturbation theory. Indeed, it is
expected that ΓPTZA(ω) = x(∆M

M )2 Ω
8Dω

2 where D is the
curvature of the ZA branch in the pristine compound,
i.e. ω(q) = D|q|2 in the long wavelength limit. There-
fore, the prediction of a quadratic power law from per-
turbation theory is inconsistent with the exact numerical
results. For example, for ω = 50 cm−1 and 100 cm−1

we find ΓPTZA
ΓZA

= 0.045 and 0.09 respectively. Once again,
perturbation theory severely overestimates the phonon
lifetime and hence the mean free path of the ZA phonon
modes in the presence of vacancies. Because the ther-
mal conductivity is dominated by the ZA modes in both
pristine graphene and in the presence of C isotopes,36 we
naturally expect in the calculation of κ a strong deviation
from PT as vacancies are introduced.

III. EFFECTS OF VACANCIES ON THE
THERMAL CONDUCTIVITY

Linearized Boltzmann Transport Equation (BTE)38,39
is a frequently used and efficient theoretical approach to
address the thermal conductivity in 2D and 3D materi-
als. In the great majority of studies, and because solv-
ing exactly the BTE is more cumbersome,40,41 the relax-
ation time approximation (RTA) is often assumed. How-
ever, comparative studies have revealed that RTA cal-
culated thermal conductivity is often much smaller than
the full BTE solution in 3D.42–45 The discrepancy is even
stronger in 2D compounds such as pristine or natural
graphene monolayer.14,36,46 The origin of the discrepancy
is the fact that within RTA, Umklapp (U) and Normal
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Figure 5: Thermal conductivity κ in W.m.−1K−1 as a func-
tion of temperature for various concentrations of vacancies
ranging from 0 to 0.01 (continuous lines). The symbols (cir-
cles, stars and diamonds) are experimental measurements ex-
tracted from Refs.4,7,37. The inset represents the variation of
the room temperature κ as a function of x, the blue continu-
ous line is a fit for x ≥ 10−5.

(N) phonon-phonon scattering processes are treated on
equal footings, as resistive. However, N processes are not
resistive, the thermal conductivity is expected to diverge
in the absence of U scattering. There is an alternative
to full BTE that can be implemented more easily and
corrects the shortcomings intrinsic to the RTA approach.
Several decades ago, Callaway proposed a theory that al-
lows U and N processes to be treated separately.47–49 It
has been found that the Callaway theory leads to thermal
conductivities that agree very well with the full BTE ap-
proach in 3D systems such as Si50 and even in graphene.51
Here, we propose to address the effects of the vacancies on
thermal conductivity using the Callaway approach (see
details in the Appendix. Within this approach the ther-
mal conductivity in the α-direction reads,

κα = καRTA + ∆κα, (3)

the first term is the RTA contribution and the second
one is the correction due to the appropriate separation
between resistive and non-resistive processes. καRTA is
given by,

καRTA =
1

kBT 2

1

NΩδ

∑
q,λ

(~ωλ)2(vαλ )2 ×

τ totλ f0
λ(f0

λ + 1), (4)

δ is the separation of carbon planes in graphite, f0
λ is the

Bose-Einstein distribution for the λ-branch and vαλ the
velocity in the α-direction. According to Mathiessen’s
rule the total phonon lifetime is 1/τ totλ = 1/τNλ + 1/τUλ +
1/τdisλ . We remind that the disorder contribution is
τdisλ = ~

Γλ
. The full expression of ∆κα is given in the

Appendix. For the thermal conductivity calculations, we
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use the ab initio results for τNλ and τUλ as found in ref.15.
For τdisλ , we use the analytical forms discussed previously
(see details in the Appendix). In Fig. 5, the average ther-
mal conductivity κ = (κx+κy)/2 (see eq.3) is plotted as a
function of temperature for various concentrations of va-
cancies. In the clean limit (x = 0), we find very high val-
ues of the thermal conductivity and because of the pres-
ence of the U-processes, we observe a 1/T suppression of
κ. As we introduce a very small amount of vacancies of
the order of x = 10−5 only, the effects are dramatic be-
low 200 K. At room temperature, κ is already reduced by
40 % and the suppression is even stronger for x = 10−4.
Indeed, for this concentration, κ = 1000 W.m.−1K−1 at
room temperature, five times smaller than that of pris-
tine graphene. As we increase the vacancy concentra-
tion to 0.1%, the thermal conductivity falls to κ = 200
W.m.−1K−1, 25 times smaller than that of pristine. The
variation of κ at 300 K is plotted in the inset as a function
of x and reveals a crossover around x = 10−5. Below this
concentration, κ is weakly sensitive to the defects concen-
tration, and above, κ decreases rapidly with a power law
decay κ ∝ 1/x0.623. There is no simple way to anticipate
such an exponent. Let us now compare our results to ex-
perimental measurements.4,7,37 At room temperature, in
the pristine limit, we obtain κ = 4800 W.m.−1K−1 which
is in very good agreement with the highest experimental
values of the thermal conductivity ever reported.4 The
agreement with the other data sets beyond room tem-
perature is also relatively good. The measured values are
consistent with an extremely low concentration of defects
of the order of x = 10−6 to 10−5 suggesting that the sam-
ples should be of good quality. Notice that, the agree-
ment between theory and experiments, in the pristine
case, has already been achieved in the full BTE calcula-
tions of Refs.14,36. Finally, it is interesting to comment
on the validity of the RTA approximation. The study of

∆κ
κRTA

as a function of T (see figure in the Appendix) has
revealed that the correction to RTA is extremely large
and even dominant for the lowest concentrations of va-
cancies, typically when x ≤ 10−4. However, when the
vacancy concentration is large enough beyond 0.1% of
the C atoms, the correction becomes very small.

IV. CONCLUSION

Combining state of the art ab initio approaches with
a full and exact treatment of the disorder, we have ad-
dressed the impact of vacancies on phonon thermal trans-
port in graphene. It has been found that the vacancy
induced multiple scattering contribution to phonon life-
times are much larger than predicted by second order
perturbation theory. Furthermore, vacancies have dras-
tic effects on both dispersion and lifetime of ZA modes.
The ZA dispersion becomes linear in the vicinity of the
Brillouin zone center and the vacancy induced scattering
rate is linear in energy instead of the quadratic behaviour
often assumed. We have also shown that the vacancies

have dramatic effects on the thermal conductivity calcu-
lated beyond the relaxation time approximation. A mere
0.1% of vacancies leads to a spectacular 95% suppression
of the thermal conductivity at room temperature. These
findings contribute to a better understanding of ther-
mal transport in 2D materials and could be promising
for high-efficiency thermoelectric power generation as the
high lattice conductivity in natural graphene is the major
obstacle. It is also worth noticing that our methodology
is very general, it could easily incorporate other features
such as extended defects, porosity and nanostructuring.

V. APPENDIX

A. ab initio calculations of the Interatomic Force
Constants

The ab initio calculations are performed with the
DFT package SIESTA based on atomic orbitals.25 The
exchange-correlation functional used here corresponds to
the generalized gradient approximation as proposed by
Perdew, Burke & Ernzerhof.52 However, the local density
approximation leads to similar results. Troullier-Martin
norm-conserving pseudopotentials53 are used. The ba-
sis corresponds to a double-ζ-polarized basis optimized
with the simplex tool of the SIESTA package. All the
atomic structures were optimized up to forces less than
10−4 eV/Å and to an hydrostatic pressure smaller than
10 bar. Finally, a Monkhorst-pack of 10×10×1 k-points
is used for the calculations along with a mesh cutoff used
to compute the Hartree potential of 600 Ry.

The IFC, φαβij , were calculated by the finite displace-
ment method. The displacement amplitude was 0.04
Bohr. Note that, we use the local constraint φαβii =

−
∑

j6=i φ
αβ
ij that ensures that no force results from a

global translation of the whole system.
In the presence of a C vacancy, two different super-

cells have been used to compute the inter atomic force
constants. First, we have considered a large rectangular
supercell with dimensions 21.3 Å ×24.6 Å (199 C atoms)
and second a smaller trigonal supercell that contains 97
atoms. In both cases, the nearest-neighbours IFC (φzzn−n)
exhibit the same axial symmetry (y-axis) as that of the
chosen supercell. The average value of the φzzn−n of the
2-coordinated atoms is -3.03 eV/Å2 for the smallest su-
percell and -2.82 eV/Å2 for the largest. The fluctuations
around the average, were about 0.4 eV/Å2 and 0.8 eV/Å2

respectively for the rectangular and trigonal supercells.
These fluctuations originate from the non-symmetric free
relaxation of the C atoms in the supercells. The value
of the fluctuations decreases strongly with the supercell
size typically as the inverse of the number of C atoms,
but the average value is only weakly affected. Hence, this
validates our procedure to consider the average value for
the IFC of the 2-coordinated C atoms in our calcula-
tions. The angles involving C2 and C3 of Fig. 1 in the
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manuscript are close to 121◦, in contrast, that of C1 is
around 126◦ for the largest supercell, and the distance
were slightly shorter for the bonds involving C1.

B. The Chebyshev Polynomials Green’s Function

In the presence of the C vacancies, the matrix elements
of the 3N × 3N (N total number of C atoms) disordered
dynamical matrix D̂ read,

Dαβ
ij =< i, α|D̂|j, β >=

φαβij√
mimj

xixj, (5)

where α = x, y and z, i and j are the site positions.
The random variable xi is zero if the site is occupied by
a vacancy, otherwise 1. In addition for 2-coordinated C
atoms and if i and j are nearest-neighbours φαβij is half of
its value in the pristine compound. We define the plane
wave state,

|q, α >=
1√
N

∑
i

eiq.ri |i, α >, (6)

where the sum runs over the sites occupied by C atoms.
For in plane modes, for a chosen polarisation vector es =
cos(θs).ex + sin(θs).ey, we define |q, s >= cos(θs)|q, x >
+ sin(θs)|q, y >. Hence, es = ( qx|q| ,

qy
|q| ), (

−qy
|q| ,

qx
|q| ) and

( 1√
2
, 1√

2
) for respectively longitudinal, transverse and

(1,1)-axis polarisation. For the out of plane modes (ZO,
ZA) es = ez.

To calculate the dynamical spectral function, we fix
the polarization and choose a vector q in the discretized
BZ. The procedure described in what follows is repeated
for a large number of q. The phonon dynamical spectral
function is given by,

As(q, ω) = − 2

π
ω.=(Gs(q, ω)), (7)

where the Green’s function reads,

Gs(q, ω) = lim
η→0

< q, s|
[
z1̂− D̂

]−1

|q, s >, (8)

where z = ω2+iη, Gs(q, ω) is calculated using the Cheby-
shev Polynomials Green’s Function method (CPGF) as
described in details in Refs27,28. The starting point is a
rescaling of the dynamical matrix such that the spectrum
is contained in the interval [-1, 1], in fact [0, 1] here. We
define the rescaled matrix Dr = D̂/a, ω2

r = ω2/a and
ηr = η/a, a denotes the rescaling factor. The crucial
step is the fact that the rescaled Green’s function can be
expanded exactly in terms of the Chebyshev polynomials
Tn,27 [

zr1̂− D̂r

]−1

=

∞∑
n=0

gn(zr)Tn(D̂r), (9)

where zr = ω2
r + iηr,

gn(z) =
2i−1

1 + δn,0

(z − i
√

1− z2)n√
1− z2

. (10)

Tn(D̂r) obeys the recursion relation,

Tn+1(D̂r) = 2 D̂r.Tn(D̂r)− Tn−1(D̂r), (11)

with T0(D̂r) = 1̂ and T1(D̂r) = D̂r. This implies that
eq.(8) becomes,

Gs(q, ω) = lim
η→0

1

a

∞∑
n=0

µn(q, s)gn(zr), (12)

where,

µn(q, s) =< q, s|Tn(D̂r)|q, s >, (13)

are called the moments.
In practice, the series of eq.(12) is truncated when the

convergence for a chosen value of η is reached within a
certain accuracy. The efficiency and power of the CPGF
method is that the moments µn(q, s) are obtained itera-
tively using the recursion relation of the Chebyshev poly-
nomials without any need to store large matrices. Note
that, to extract reliably the C vacancy contribution to
the phonon lifetime, √η has to be much smaller than the
full width at half maximum of the peaks in the spectral
function. As a consequence, a large number of moments
is required as we approach the Γ point in the BZ.

C. The Callaway theory

The full and detailed derivation of the Callaway
method can be found in Refs.47–49. Here, we just sum-
marize the main results. The total conductivity in the
α-direction can be written,

κα(T ) = καRTA(T ) + ∆κα(T ), (14)

where, the RTA contribution is,

καRTA =
1

kBT 2

1

NΩδ

∑
q,λ

(~ωλ)2(vαλ )2 ×

τ totλ f0
λ(f0

λ + 1), (15)

N is the total number of unit cells, λ the mode index
(LA, TA, ZA), Ω the primitive cell area, δ the distance
between graphene sheets in graphite, f0

λ is the Bose dis-
tribution, ~ωλ the mode energy, vαλ its velocity in the
α-direction and τ totλ the inverse of the total scattering
rate for the branch λ. According to Mathiessen’s rule
the total phonon lifetime is,

1/τ totλ = 1/τNλ + 1/τUλ + 1/τdisλ . (16)



8

The first step consists in replacing in the standard Boltz-
mann equation the collision rate by,(

∂fλ
∂t

)
c

=
fdλ − fλ
τN

+
f0
λ − fλ
τR

, (17)

fdλ is the drifted distribution function, and we have de-
fined the scattering rate for resistive processes, 1/τRλ =
1/τUλ + 1/τdisλ . Only the resistive processes tend to bring
fλ back to its equilibrium value. The drifted distribution
fdλ is defined by

fdλ =
1

eβ(ωλ(q)−vd.q) − 1
, (18)

where we have introduced as a Lagrange multiplier the
drift velocity vd. This quantity is determined by the
condition that the normal processes conserve the momen-
tum. By following step by step Callaway’s derivation we
find,

∆κα(T ) =
(Aα(T ))2

Bα(T )
, (19)

where the numerator Aα(T ) =
∑
λA

α
λ(T ) and,

Aαλ(T ) =
1

kBT 2

1

NΩδ

∑
q

τ totλ

τNλ
~ωλvαλqαλ ×

f0
λ(f0

λ + 1), (20)

and the denominator Bα(T ) =
∑
λB

α
λ (T ) and,

Bαλ (T ) =
1

kBT 2

1

NΩδ

∑
q

τ totλ

τNλ τ
R
λ

×

(qαλ )2f0
λ(f0

λ + 1). (21)

To facilitate the calculations we replace the discrete
sum over q by an integral over energy and thus we intro-
duce Debye frequencies for LA, TA and ZA modes. This
leads to,

Aαλ(T ) = cλ
1

Ωδ

∫ ωDλ

0

τ totλ

τNλ
ωρλ(ω)

∂f0

∂T
dω, (22)

where the coefficient cλ=1/2 for LA and TA branches
and 1 for ZA. Similarly Bαλ (T ) can be rewritten,

Bαλ (T ) =
1

2~Ωδ

∫ ωDλ

0

τ totλ

τNλ τ
R
λ

gλ(ω)×

ρλ(ω)
∂f0

∂T
dω. (23)

The density of states is ρλ(ω) = Ω
2πv2λ

ω for both LA and

TA, and Ω
4πD for ZA. vλ is the velocity at the Γ point for

LA and TA, and D is the curvature of the ZA branch: in
the long wavelength limit ω(q) = D|q|2 for the ZA mode.
gλ(ω) = ω

v2λ
for LA and TA, and 1/D for ZA. Note that,

Callaway
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Figure 6: Callaway’s correction to the total thermal conduc-
tivity over RTA contribution as a function of temperature, for
various concentrations of C vacancies. The green area corre-
sponds to negligible Callaway correction ("RTA regime") and
the purple one to dominant Callaway correction.

in eq.(22) and (23) we have used the linear dispersion for
LA and TA and the quadratic one for ZA.

To compute numerically the total conductivity as a
function of temperature, we need the temperature de-
pendence of τNλ and τUλ . We use the ab initio calculated
scattering rate at room temperature (T0) for both U and
N processes (τN0,λ, τ

U
0,λ) extracted from Ref.15. We make

the following ansatz to have the full T variation of the
scattering rates,

1/τNλ (T ) = (1/τN0,λ)
T

T0
(24)

and the Umklapp scattering rate is,

1/τUλ (T ) = (1/τU0,λ)
T

T0
e−

ωDλ
3 ( 1

T −
1
T0

). (25)

This ansatz is motivated by the fact that the form usually
assumed for the N and U process are, 1/τNλ = ωaT b and
1/τUλ ∝ (1/τNλ )e−

ωDλ
cT where a = 1 or 2, b = 1, 2 or 3 and

c is often set to 3.47,54–56 For the vacancy concentration
dependent scattering 1/τdisλ we use the results found in
the present study.

We now discuss the importance of Callaway’s correc-
tion to the thermal conductivity in graphene, in the
presence of C vacancies. The results are depicted in
Fig. 6. Let us first consider low vacancy concentrations
(x ≤ 10−4). For this range of concentration, the correc-
tion ∆κα(T ) is important and even dominates. For in-
stance the ratio ∆κ/κRTA is 1, 4.5 and 7.5 for x = 10−4,
10−5 and for the pristine case at room temperature. On
the other hand, when the vacancy concentration is large
enough beyond 0.1% of the C atoms, the correction be-
comes very small, it is less than 15% of the RTA value.
For x = 1% the correction to RTA represents only 5% of
the total conductivity.
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These results show that in the presence of a sufficient
amount of C vacancies, beyond 0.1%, the RTA approach
becomes appropriate for the evaluation of the thermal

conductivity, provided that the scattering rates are cal-
culated accurately.
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