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Fractals, a fascinating mathematical concept made popular in the eighties, remained for decades
a beautiful scientific curiosity mainly. With the tremendous advances in nanofabrication techniques,
such as nanolithography, it has become possible to design self-similar materials with fine structures
down to nanometer scale. Here, we investigate the effects of self similarity on quantum electronic
transport in graphene Sierpinski carpets. We find that a gap opens up in the electron spectrum
in the middle of which lies a flat band of zeros energy modes. Although these states have a zero
velocity, a supermetallic phase is found at the neutrality point. For Fermi energy located in the
valence/conduction band and in the presence of a small inelastic scattering the system stays metallic
and the transport is found strongly anisotropic.

PACS numbers: 75.50.Pp, 75.10.-b, 75.30.-m

The rapid progress in nanofrabrication techniques such
as nanolithography, molecular engineering and 3D print-
ing have made it possible to design complex two and
three dimensional multi-scale and self-similar materials
with fine structures down to nanometer scale [1–4]. Self-
similar materials have already been in use in several areas
such as fractal antenna [5], photonic crystal waveguides
[6], or even heat transfer devices [7]. Possibilities to de-
sign and grow at will this new class of materials open
pathways toward the exploration of new exotic physi-
cal phenomena that may have remarkable technological
spinoffs. The rapidly growing field of cold atoms on opti-
cal/artificial lattices also offers a plateform to address
these fundamental issues by directly tuning the phys-
ical parameters of model Hamiltonians [8–11]. Recent
theoretical studies on quantum effects in fractal lattices
have been for instance focusing on the Hall effect [12–14],
plasmon confinement [15] and topological phases[16]. In
these studies the host material of the fractal structure is
a simple square lattice. In this work, we investigate how
transport is affected by the self-similarity of the underly-
ing lattice in one of the most remarkable two dimensional
material of the 21st century, Graphene [17–20].

This one atom thick material holds a large potential in
various technological fields. It is a zero gap semiconduc-
tors with high mobility at room temperature [21, 22], it
displays a huge thermal conductivity, it is extremely flex-
ible, while being stronger than steel and impermeable to
gas and liquids. Among its plethora of astonishing phys-
ical properties, the quantum electronic transport is cer-
tainly one of the most intriguing and intensely debated
[23–34]. Chirality, that results from the bipartite nature
of graphene lattice plays a key role in its unconventional
electronic transport properties, such as Klein tunnelling
[35, 36] or the minimum conductivity at the neutrality

point. Effects of disorder such as C vacancies, short and
long range on-site potentials, adsorbates or resonant im-
purities on the one particle spectrum and transport of
the massless Dirac fermions has been the main focus of
several numerical studies [27, 30–32]. However, no clear
consensus on the nature of the transport properties at
the neutrality point could emerge. Recently, within large
scale numerical calculations, it has been shown unam-
biguously that in the presence of vacancies (up to 1%)
σ(0) remains identical to that of the pristine graphene,

e.g. σ0 = 4e2

πh
[34].

In this study, the issue of quantum transport in self-
similar Graphene Serpinski Carpets (GSC) is addressed.
We investigate the interplay between the chirality of the
massless Dirac fermions, leading to the unconventional
quantum transport in the host compound and the frac-
tal nature of the spectrum resulting from self-similarity.
Electrons on GSC’s are modelled by a nearest neighbour
tight binding Hamiltonian that reads,

Ĥ = −t
∑

〈ij〉,s
c†iscjs + h.c., (1)

t = 2.7 eV is the hopping integral, 〈ij〉 denotes near-

est neighbour pairs of C atoms, c†iσ creates an electron
with spin s in the π orbital at site Ri. Here, we ig-
nore the next nearest neighbour hopping of the order of
10% that breaks particle-hole symmetry. The GSC as
illustrated in Fig. 1 are obtained from a square piece
of Graphene of size 3ic+1a (a is the nearest neighbour
C-C distance), on which Sierpinski masks are applied it-
eratively. In what follows, we make use of the notation
(ic,f) where Lx=Ly=3ic+1a is the system size and f the
degree of "fractalization", that varies from 0 (pristine)
to its maximum value fmax=ic. For f = 0 the system
embodies NS = 4

3
√
3a2

Lx.Ly C atoms. Periodic bound-
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Figure 1. (Color online) Illustration of the GSC, from fractal
level 2 to 4. The removed squares produce armchair edges in
the x-direction and zig-zag in y-direction.

ary along both x and y directions (see Fig. 1) are used.
The smallest system considered corresponds to ic=3 and
the largest to ic=7, they contain respectively about 5000
and 33.106 atoms. The conductivity along x-direction is
given by the Kubo formula,

σ(E) =
e2~

πΩ
Tr

[
Im Ĝη(E)v̂x Im Ĝη(E)v̂x

]
. (2)

The current operator defined by v̂x = − i
~

[
x̂, Ĥ

]
is,

v̂x = −i
at

~

∑

i∈A,l,s

αlc
†
Ris

cRi+δls
+ h.c. (3)

The sum runs over atoms of A sublattice only, δl are
the vectors connecting a given atom to its three nearest
neighbours on B sublattice, and αl=1, - 12 , - 12 for l=1,

2 and 3 respectively. The Green’s function Ĝη(E) =

(E + iη − Ĥ)−1, Ω is the Sierpinski carpet area. η mim-
ics an energy independent inelastic scattering rate with
a characteristic timescale τin = ~

η
. The calculations are

done using the Chebyshev Polynomial Green’s function
method (CPGF) [34, 37] that (i) allows large scale cal-
culations as it requires a modest amount of memory and
(ii) a CPU cost that increases linearly with the system
size NS . This is in contrast to the exact diagonaliza-
tion method (ED) that needs a memory scaling as N2

S

and CPU time as N3
S . CPGF has proven to be a power-

ful tool to address the nature of the magnetic couplings
in disordered materials [38, 39]. In the same spirit as
CPGF, the conductivity could be calculated by quantum
wave packet dynamics as well [31, 32, 40].

In Fig. 2 is depicted the electronic density of states
(DOS) ρ(E) = − 1

πNS
Tr(Im Ĝη(E)) as a function of en-

ergy for the (7,7) GSC. First, we observe a complex fluc-
tuating sub-structures that result from the fractal nature
of the eigenspectrum. Sharp peaks are visible at E = ±t,
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Figure 2. (Color online) Density of states of the 7th level
Graphene Sierpinski Carpet compared to that of the pristine
case or 0th order fractal level (red dashed).

corresponding to the Van Hove singularities in pristine
graphene and a third one at E = 0 that results from the
removal of C atoms. This peak corresponds to a flat band
of zero energy modes (ZEM). We have indeed checked by
ED calculations of smaller systems (see supplementary
material) that the eigenvalues are, within numerical ac-
curacy, exactly zero. In the CPGF calculations, from
the E = 0 peak weight, we have extracted the number of
ZEM, Nzem. It coincides with |NA−NB|, NA (resp. NB)
being the number of atoms on A (resp. B) sublattice, as
expected for bipartite lattices [28, 41]. The density of
ZEM modes (xzem) found is approximately 0.052. Inter-
estingly, we find a gap, ∆, between the conduction (resp.
valence band) and the flat band as seen more clearly in
the inset: ∆ ≈ 0.135 t, (6,6) and (5,5) carpets give the
same value. Thus in GSC’s, the ZEM band is an impu-
rity band. This contrasts with the gapless spectrum of
randomly distributed vacancies in graphene, unless va-
cancies are created on the same sublattice [28]. Here,
Sierpinski masks produce an unbalance between NA and
NB, but 2-coordinated C atoms exist on both sublattices.
Thus, the gap results only from the self similar structure
of the GSC.

We now discuss how Sierpinski carpet masks alter the
transport. For that purpose, we calculate the dc con-
ductivity σ(E) in both x and y directions. Results, for a
fixed η are depicted in Fig. 3. The number of random vec-
tors NR used for the trace calculation is 500, 100 and 10
as the system size increases. The number of Chebyshev
polynomials kept is M=2000, leading to a M ×M matrix
for the moments. It has been checked that both NR and
M were sufficient to reach convergence. First, we observe
a unexpected anisotropic conductivity in the GSC. Be-



3

Figure 3. (Color online) Conductivity (x and y directions) at
T=0 K as a function of the energy. Calculations for (7,7) GSC
are done in a restricted region around E=0. The inelastic
scattering rate is η =0.01625t. Along x-axis, σ(0) =1.39,

1.37 and 1.355 e2

h
for respectively (5,5), (6,6) and (7,7), and

for y-direction σ(0) = 1.165 e2

h
for the (6,6) GSC. The inset

magnifies the data around E=0.

sides restricted regions where they almost coincide, σyy is
smaller than σxx. σxx is even 10 times larger than σyy for
E in the vicinity of ±0.2 t. At first glance, it is astonish-
ing that σxx ≥ σyy since the edges of the removed square
are zig-zag in y-direction and armchair in x-direction.
As it is well known, the nature of the edge in graphene
nanoribbons (GNR) has drastic impacts on transport and
magnetism [42–44]. Zigzag edges induce flat band, mag-
netic moment formation and favour a metallic behaviour
whilst armchair GNR are often semiconductors or insu-
lators. Moreover, very small size effects are found, the
conductivity for (6,6) and (7,7) GSC’s coincide almost
with each other. Notice that the carpet size (in units of
a) varies from 729 for the (5,5), 2187 for (6,6) and 6561
for the (7,7) GSC. For Fermi energy in the conduction
(resp.) valence band and in the presence of a small η,
the GSC remains metallic for the whole energy range. In
addition, due to the fractal nature of the eigenspectrum
rich structures and multiple peaks are visible. In the
vicinity of E = 0, σ(E) drops rapidly due to the gap and
has a Lorentzian shape. Along the x-axis σ(0) are 1.39,

1.37 and 1.35 e2

h
for respectively the (5,5), (6,6) and (7,7)

GSC. In y-direction, σ(0) =1.165 e2

h
for the (6,6) GSC

whilst for (5,5) we have found 1.15 e2

h
(not shown).These

results indicate a slow convergence towards the universal
value σ0. Thus, despite the gap between the ZEM flat
impurity band and the valence and conduction bands,
the conductivity remains unaltered at E=0. It is worth
noticing that for randomly distributed vacancies on the
same sublattice (gapped spectrum), σ(E) has been found

Figure 4. (Color online) Conductivity in the x-direction at
T=0 K as a function of E for three different values of η: η =

0.004t, 0.008t and 0.016t. σ(0) = 1.37 ± 0.02 e2

h
, thus it is

almost insensitive to η.

to vanish at this point [31]. As discussed in Ref. [34], this
may result from the difficulty to get converged results due
to the singular density of sates. It would be interesting to
perform the calculations for this particular gapped case
with CPGF [45]. In Fig. 4, for the (5,5) GSC, the effects
of varying η is illustrated. As η reduces, we observe (i)
more and more fine structures in σ(E), resulting from the
fractal nature of the spectrum, and (ii) regions where it
increases alternating with narrow energy interval where
it remains insensitive. Thus, in the GSC, the conductiv-
ity is never Drude like since one would expect an increase
proportional to 1/η. This is in contrast with the pristine
case (the analytical calculations are straightforward) for
which σ(E) ∝ 1/η for |E| ≫ η. In this case, exactly at
the Dirac point, half of σ(0) originates from inter-band
and the other half from the intra-band transitions. In
Fig. 4, σ(0) is shown to be insensitive to η in the GSC.
Around E=0, σ(E) gets narrower and narrower as η re-
duces and can be nicely fitted by a Lorentzian of width
η. For η ≪ ∆, in the x-direction σ(0) reduces to,

σ(0) =
32

3
√
3

e2

h

1

NS

∑

β

Cx,β , (4)

where the dimensionless Cx,β is defined by,

Cx,β =
~
2

a2

∑

α,λ=±

|〈Ψβ|v̂x|Φλ
α〉|2

E2
α

, (5)

|Ψβ〉 are the ZEM eigenstates (Eβ=0) and |Φλ
α〉 those of

the valence (λ = −) and conduction (λ = +) bands re-
spectively with energy ±Eα (| Eα| > ∆). In the limit
of vanishing η (η ≪ ∆) both inter-band and intra-band
transitions with matrix elements 〈Φλ

α|v̂x|Φλ′

α′〉 cannot con-
tribute to σ(0) because of the gap. On the other hand,
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Figure 5. (Color online) (left) Local charge density of a typical
ZEM state |Ψβ〉 and (right) of v̂x|Ψβ〉 obtained from exact
diagonalization of a (4,4) GSC that contains 26833 C atoms.

the intra-flat band at E=0 can not contribute either be-
cause 〈Ψβ|v̂x|Ψβ′〉 are all zeros. Indeed, |Ψβ〉 and v̂x|Ψβ′〉
are orthogonal to each other, they belong to the two dif-
ferent sublattices. Thus, σ(0) consists only of inter-band
transitions between the ZEM impurity band and the va-
lence and conduction bands, a finite conductivity arises
despite the presence of the gap. This feature is rather
unusual. In standard systems and EF in the impurity
band (localized states), the conductivity is controlled by
intra-band transitions only and decays as η decreases.
However, in quasicrystals and approximants the scenario
is different. In icosaedral quasicrystals, the diffusion co-
efficient is essentially controlled by interband processes
which explains the non standard transport properties ob-
served [46–48].

Lastly, a close look at the local charge distribution
of one typical ZEM state |Ψβ〉 and of its correspond-
ing v̂x|Ψβ〉 reveals that both are in fact rather extended.
This feature is illustrated in Fig. 5 and sheds light on
why the overlaps between v̂x|Ψβ〉 and the extended va-
lence/conduction band states |Φλ

α〉 lead to a finite σ(0)
notwithstanding the existing gap. More quantitatively,
the probability distribution of Cx,β’s obtained from ex-
act diagonalization of the (4,4) GSC is plotted in Fig. 6.
This plot displays a relatively narrow distribution with
a mean value of 〈Cx,β〉 = 4.1 and width of approx-
imately 0.5. From Eq. (4), we immediately obtain

σ(0) = 1.315 e2

h
that coincides with σ0 within less than

3%. Notice that, from the Einstein formula, the diffu-
sivity D(E) can be straightforwardly obtained as well:

D(E) = e2ρ(E)
σ(E) . Here, because of the gap, in the vicinity

of E=0, ρ(E) = Nzem

πΩ
η

E2+η2 . From Eq. (2) and (5) and

for |E| ≪ ∆, the diffusivity in the x-direction is,

Dx(E) =
4a2

~
〈Cx,β〉 η. (6)

Thus, the diffusivity is proportional to η at the neutral-
ity point. This is contrast with the standard 1/η depen-
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Figure 6. (Color online)Probability distribution of Cx,β , as
defined in the manuscript, from ED of (4,4) GSC. 〈Cx,β〉
stands for the average value.

dence: D =
~v2

F

2η . Because, the diffusivity can be written

D = L(t)2

t
, this allows to extract a typical length-scale

Ld = 2
√
〈Cx,β〉a ≈ 4 a where πL2

d could be interpreted
as the averaged surface occupied by a ZEM eigenstate on
the GSC.

In summary, by means of the Chebyshev Polynomial
Green’s function and exact diagonalization methods, we
have investigated the effects of self-similarity on quantum
electronic transport in Graphene Sierpinski Carpets. We
have found that a finite gap opens up in the electron
spectrum in the middle of which lies a flat band of zero
energy mode. Although ZEM states have a vanishing
velocity, a super-metallic phase is found at EF = 0, the
corresponding conductivity is independent of the inelastic
scattering rate and coincides within few percent with the

universal 4e2

πh
. Despite the gap, σ(0) originates only from

inter-band transitions between the ZEM impurity band
and the valence/conduction bands. When EF lies in the
valence (resp. conduction) band, and for a small but
finite inelastic scattering rate the Sierpinski carpets are
found metallic. Lastly, besides the universal character at
E = 0, away the transport is strongly anisotropic.

We would like to thank S. Thébaud for his relevant
comments and remarks and P. Mélinon for interesting
discussions.
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