Asymptotic analysis of the transient response of a thermoelastic assembly involving a thin layer
 Christian Licht, Somsak Orankitjaroen, Thibaut Weller

To cite this version:

Christian Licht, Somsak Orankitjaroen, Thibaut Weller. Asymptotic analysis of the transient response of a thermoelastic assembly involving a thin layer. 2020. hal-03011360v1

HAL Id: hal-03011360

https://hal.science/hal-03011360v1

Preprint submitted on 18 Nov 2020 (v1), last revised 31 Mar 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Asymptotic analysis of the transient response of a thermoelastic assembly involving a thin layer

Christian Licht ${ }^{\text {a,b }}$, Somsak Orankitjaroen ${ }^{\text {b }}$, Thibaut Weller ${ }^{\text {a }}$
${ }^{a}$ LMGC, Université de Montpellier, CNRS, Montpellier, France
${ }^{b}$ Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Centre of Excellence in Mathematics, CHE, Bangkok 10400, Thailand

Abstract

We study the transient response of a thermoelastic structure made of two tridimensional bodies connected by a thin adhesive layer. Once more we highlight the powerful flexibility of Trotter's theory of approximation of semi-groups of operators acting on variable spaces: considering the geometrical and physical characteristics of the thin layer as parameters, we are able to show in a unitary way that this situation leads to a huge variety of limit models the properties of which are detailed. In particular, according to the relative behaviors of the different parameters involved, new features are evidenced such as the apparition of an added specific heat coefficient for the interface or of additional thermomechanical state variables defined not only on the limit geometric interface but on its cartesian product by any interval of real numbers.

Résumé

On étudie la réponse transitoire d'une structure thermoélastique composée de deux corps tridimensionnels reliés par une fine couche adhésive. À nouveau, la théorie de Trotter d'approximation de semi-groupes d'opérateurs agissant sur des espaces variables montre sa grande flexibilité : en considérant les caractéristiques géométriques et physiques de la couche mince comme des paramètres, on établit de manière unitaire que cette situation conduit à une étonnante variété de modèles limites dont les propriétés sont détaillées. En particulier, en fonction des comportements relatifs des différents paramètres impliqués, des caractéristiques singulières sont mises en évidence, comme l'apparition d'un coefficient de chaleur spécifique ajouté pour l'interface ou de variables d'état thermomécaniques supplémentaires définies non seulement sur l'interface géométrique limite mais aussi sur son produit cartésien par tout intervalle de nombres réels.

Keywords: Bonding problems, linearized thermoelasticity, transient problems, m-dissipative operators, asymptotic mathematical modeling, approximation of semi-groups in the sense of Trotter.

1. Setting the problem

We pursue our investigations on thin junctions initiated in [1, 2], then further developped in [3-11], and hereafter consider the situation of a transient multi-physical coupling within the scope of linear thermoelasticity.

Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis of \mathbb{R}^{3} assimilated to the physical Euclidean space. For all $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ in $\mathbb{R}^{3}, \widehat{\xi}$ stands for $\left(\xi_{1}, \xi_{2}\right)$. The space of all $(n \times n)$ symmetric matrices is denoted by \mathbb{S}^{n} and equipped with the usual inner product and norm denoted by \cdot and $\left|\mid\right.$ (as in \mathbb{R}^{3}). The space of linear symmetric mappings from \mathbb{S}^{n} into \mathbb{S}^{n} is denoted by $\operatorname{Lin}\left(\mathbb{S}^{n}\right)$. For all η in $\mathbb{S}^{3}, \widehat{\eta}$ stands for the matrix $\left(\eta_{\alpha \beta}\right)_{1 \leq \alpha, \beta \leq 2}$ in \mathbb{S}^{2}. We study the dynamic

[^0]response of a linearly thermoelastic structure consisting of two adhering bodies connected by a thin adhesive layer and subjected to a given loading. Let Ω be a domain of \mathbb{R}^{3} with Lipschitz-continuous boundary $\partial \Omega$. The intersection of Ω with $\left\{x_{3}=0\right\}$ is a domain S of \mathbb{R}^{2} with positive two-dimensional Hausdorff measure $\mathcal{H}_{2}(S)$. Let ε be a positive number and $\Omega^{ \pm}:=\Omega \cap\left\{ \pm x_{3}>0\right\}$, then the adhesive and the adhering bodies occupy $B_{\varepsilon}:=S \times(-\varepsilon,+\varepsilon)$ and $\Omega_{\varepsilon}^{ \pm}:=\Omega^{ \pm} \pm \varepsilon e_{3}$, respectively; we define $\Omega_{\varepsilon}:=\Omega_{\varepsilon}^{+} \cup \Omega_{\varepsilon}^{-}, S_{\varepsilon}^{ \pm}:=S \pm \varepsilon e_{3}$ and $O_{\varepsilon}:=\Omega_{\varepsilon} \cup B_{\varepsilon} \cup S_{\varepsilon}^{+} \cup S_{\varepsilon}^{-}$. We consider two partitions $\left(\Gamma^{\mathcal{M D}}, \Gamma^{\mathcal{M N}}\right)$, $\left(\Gamma^{\mathcal{T} \mathrm{D}}, \Gamma^{\mathcal{T} \mathrm{N}}\right)$ of $\partial \Omega$, and for all elements Γ of these two partitions, the sets $\Gamma^{ \pm}, \Gamma_{\varepsilon}^{ \pm}$and Γ_{ε} respectively denote $\Gamma \cap\left\{ \pm x_{3}>0\right\}, \Gamma^{ \pm} \pm \varepsilon e_{3}$ and $\Gamma_{\varepsilon}^{+} \cup \Gamma_{\varepsilon}^{-}$. Moreover, we assume that $\mathcal{H}_{2}\left(\Gamma^{\mathcal{M D}+}\right)$ and $\mathcal{H}_{2}\left(\Gamma^{\mathcal{T}} \mathrm{D}+\right)$ are positive. The contact between the adhesive and the two adhering bodies is assumed to be perfect from both thermal and mechanical points of view. The structure is clamped on $\Gamma_{\varepsilon}^{\mathcal{M D}}$, subjected to body forces of density f_{ε} and surface forces of density $g_{\varepsilon}^{\mathcal{M}}$ on $\Gamma_{\varepsilon}^{\mathcal{M}}$, it is maintained at a uniform temperature T_{0} on $\Gamma_{\varepsilon}^{\mathcal{T}} \cup \gamma^{\mathcal{D} D} \times(-\varepsilon, \varepsilon)$ and subjected to a thermal flux $g_{\varepsilon}^{\mathcal{T}}$ on $\Gamma_{\varepsilon}^{\mathcal{T} \mathrm{N}} \cup \gamma^{\mathcal{T} \mathrm{N}} \times(-\varepsilon, \varepsilon)$, where $\left(\gamma^{\mathcal{T} \mathrm{D}}, \gamma^{\mathcal{T} \mathrm{N}}\right)$ is a partition of ∂S. The whole structure is modeled as linearly thermoelastic in the following way. Let $\left(\rho_{L}, \mu_{L}, \beta_{L}, \kappa_{L}, \alpha_{L}\right)$ in $(0,+\infty)^{5}, a_{L}$ in $\operatorname{Lin}\left(\mathbb{S}^{3}\right), d:=(\rho, \beta, \alpha, \kappa, a)$ in $L^{\infty}\left(\Omega ; \mathbb{R} \times \mathbb{R} \times \mathbb{S}^{3} \times \mathbb{S}^{3} \times \operatorname{Lin}\left(\mathbb{S}^{3}\right)\right)$ satisfying
\[

\left\{$$
\begin{array}{l}
\alpha(x) \geq 0 \text { a.e. } x \in \Omega \tag{1.1}\\
\exists c>0 \text { s.t. } \rho(x), \beta(x) \geq c, \quad \kappa(x) \xi \cdot \xi \geq c|\xi|^{2} \forall \xi \in \mathbb{R}^{3}, \quad a_{L} e \cdot e, a(x) e \cdot e \geq c|e|^{2} \forall e \in \mathbb{S}^{3}, \text { a.e } x \in \Omega .
\end{array}
$$\right.
\]

The symbols $\rho_{L}, \beta_{L}, \alpha_{L}, \kappa_{L}, \mu_{L} a_{L}$ respectively represent the mass density, the specific heat coefficient, the thermal dilatation, the thermal conductivity, and the elasticity tensor of the adhesive, while $d_{\varepsilon}=\left(\rho_{\varepsilon}, \beta_{\varepsilon}, \alpha_{\varepsilon}, \kappa_{\varepsilon}, a_{\varepsilon}\right)$ denotes the analogous quantities for the adhering bodies with

$$
\begin{equation*}
d_{\varepsilon}(x):=d\left(x \mp \varepsilon e_{3}\right) \quad \text { a.e. } x \in \Omega_{\varepsilon}^{ \pm} \tag{1.2}
\end{equation*}
$$

Similarly

$$
\left\{\begin{array}{l}
\exists\left(f, g^{\mathcal{M}}, g^{\mathcal{T}}\right) \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}\left(\Gamma^{\mathcal{M}} ; \mathbb{R}^{3}\right) \times L^{2}\left(\Gamma^{\mathcal{T}}\right) \text { s.t. } \tag{1.3}\\
f_{\varepsilon}(x)=f\left(x \mp \varepsilon e_{3}\right) \quad \text { a.e. } x \in \Omega_{\varepsilon}^{ \pm}, \quad f_{\varepsilon}(x)=0 \quad \text { a.e. } x \in B_{\varepsilon}, \\
g_{\mathcal{\mathcal { M }}}^{\mathcal{M}}(x)=g^{\mathcal{M}}\left(x \mp \varepsilon e_{3}\right) \quad \text { a.e. } x \in \Gamma_{\varepsilon}^{\mathcal{M} N}, \quad g_{\varepsilon}^{\mathcal{M}}(x)=0 \quad \text { a.e. } x \in \partial S \times(-\varepsilon, \varepsilon), \\
g_{\varepsilon}^{\mathcal{T}}(x)=g^{\mathcal{T}}\left(x \mp \varepsilon e_{3}\right) \\
\text { a.e. } x \in \Gamma_{\varepsilon}^{\mathcal{T}}, \quad g_{\varepsilon}^{\mathcal{T}}(x)=0 \quad \text { a.e. } x \in \gamma^{\mathcal{T} \mathrm{N}} \times(-\varepsilon, \varepsilon) .
\end{array}\right.
$$

Thus the problem $\left(\mathcal{P}_{s}\right)$ of determining the evolution in the framework of small perturbations of the assembly, whose state is denoted by $U_{s}=\left(u_{s}, v_{s}, \theta_{s}\right), u_{s}, v_{s}, \theta_{s}$ being the fields of displacement, velocity and temperature increment with respect to T_{0}, involves a sextuplet $s:=\left(\varepsilon, \rho_{L}, \mu_{L}, \beta_{L}, \kappa_{L}, \alpha_{L}\right)$ of data so that all the fields will be thereafter indexed by s. If $U_{s}^{0}=\left(u_{s}^{0}, v_{s}^{0}, \theta_{s}^{0}\right)$ is the given initial state, a formulation of $\left(\mathcal{P}_{s}\right)$ could be:

$$
\left(_{P_{s}}\right)\left\{\begin{array}{l}
\text { Find } U_{s} \text { sufficiently smooth in } O_{\varepsilon} \times[0, T] \text { such that } u_{s}=0 \text { on } \Gamma_{\varepsilon}^{\mathcal{M D}}, \theta_{s}=0 \text { on } \Gamma_{\varepsilon}^{\mathcal{T} \mathrm{D}} \cup \gamma^{\mathcal{T} \mathrm{D}} \times(-\varepsilon, \varepsilon) \\
U_{s}(0)=U_{s}^{0} \text { satisfying: } \\
\int_{\Omega_{\varepsilon}} \rho_{\varepsilon} \frac{\partial v_{s}}{\partial t} \cdot v^{\prime}+a_{\varepsilon}\left(e\left(u_{s}\right)-\theta_{s} \alpha_{\varepsilon}\right) \cdot e\left(v^{\prime}\right) d x+\int_{B_{\varepsilon}} \rho_{L} \frac{\partial v_{s}}{\partial t} \cdot v^{\prime}+\mu_{L} a_{L}\left(e\left(u_{s}\right)-\alpha_{L} \theta_{s} I\right) \cdot e\left(v^{\prime}\right) d x \\
\quad \int_{\Omega_{\varepsilon}} f_{\varepsilon} \cdot v^{\prime} d x+\int_{\Gamma_{\varepsilon}^{\mathcal{M}}} g_{\varepsilon}^{\mathcal{M}} \cdot v^{\prime} d \mathcal{H}_{2}, \\
\int_{\Omega_{\varepsilon}} \beta_{\varepsilon} \frac{\partial \theta_{s}}{\partial t} \theta^{\prime}+\kappa_{\varepsilon} \nabla \theta_{s} \cdot \nabla \theta^{\prime}+\left(a_{\varepsilon} \alpha_{\varepsilon} \cdot e\left(v_{s}\right)\right) \theta^{\prime} d x+\int_{B_{\varepsilon}} \beta_{L} \frac{\partial \theta_{s}}{\partial t} \theta^{\prime}+\kappa_{L} \nabla \theta_{s} \cdot \nabla \theta^{\prime}+\mu_{L} \alpha_{L}\left(a_{L} I \cdot e\left(v_{s}\right)\right) \theta^{\prime} d x \\
=\int_{\Gamma_{\varepsilon}^{\mathcal{T}}} g_{\varepsilon}^{\mathcal{T}} \theta^{\prime} d \mathcal{H}_{2} \\
\text { for all }\left(v^{\prime}, \theta^{\prime}\right) \text { sufficiently smooth in } O_{\varepsilon} \text { and vanishing on } \Gamma_{\varepsilon}^{\mathcal{M D}} \times\left(\Gamma_{\varepsilon}^{\mathcal{T D}} \cup \gamma^{\mathcal{T D}} \times(-\varepsilon, \varepsilon)\right),
\end{array}\right.
$$

where t denotes the time, $e(u)$ is the linearized strain associated with the field of displacement u, and I is the identity matrix of \mathbb{S}^{3}.

2. Existence and uniqueness of a solution to $\left(\mathcal{P}_{s}\right)$

Assuming

$$
\begin{equation*}
\left(f, g^{\mathcal{M}}, g^{\mathcal{T}}\right) \in C^{0,1}\left([0, T] ; L^{2}\left(\Omega ; \mathbb{R}^{3}\right)\right) \times C^{1,1}\left([0, T] ; L^{2}\left(\Gamma^{\mathcal{M} N} ; \mathbb{R}^{3}\right)\right) \times C^{1,1}\left([0, T] ; L^{2}\left(\Gamma^{\mathcal{T} N}\right)\right) \tag{H1}
\end{equation*}
$$

we seek $z_{s}=\left(u_{s}, \theta_{s}\right)$ in the form

$$
\begin{equation*}
z_{s}=z_{s}^{e}+z_{s}^{r}, \tag{2.1}
\end{equation*}
$$

where z_{s}^{e} is the unique solution to

$$
\begin{equation*}
z_{s}^{e}(t) \in Z_{s} ; \quad \Phi_{s}\left(z_{s}^{e}(t), z^{\prime}\right)=L_{\varepsilon}(t)\left(z^{\prime}\right) \quad \forall z^{\prime} \in Z_{s}, \forall t \in[0, T], \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
Z_{s}:=H_{\Gamma_{\varepsilon}^{\mathcal{M}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right) \times H_{\Gamma_{\varepsilon}^{\tau \mathrm{D}}}^{1}\left(O_{\varepsilon}\right), \tag{2.3}
\end{equation*}
$$

where for all open set G of $\mathbb{R}^{N}, N=1$ or $3, H_{\gamma}^{1}\left(G ; \mathbb{R}^{N}\right)$ denotes the subset of the Sobolev space $H^{1}\left(G ; \mathbb{R}^{N}\right)$ of elements with vanishing trace on γ included in ∂G,

$$
\begin{align*}
& \Phi_{s}\left(z, z^{\prime}\right):=\left(u, u^{\prime}\right)_{1, s}+\left(\theta, \theta^{\prime}\right)_{4, s}-\left(u^{\prime}, \theta\right)_{5, s}+\left(u, \theta^{\prime}\right)_{5, s} \tag{2.4}\\
& \begin{cases}\left(u, u^{\prime}\right)_{1, s}:=\int_{\Omega_{\varepsilon}} a_{\varepsilon} e(u) \cdot e\left(u^{\prime}\right) d x+\int_{B_{\varepsilon}} \mu_{L} a_{L} e(u) \cdot e\left(u^{\prime}\right) d x & \forall u, u^{\prime} \in H_{\Gamma_{\varepsilon}^{\mathcal{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right), \\
\left(\theta, \theta^{\prime}\right)_{4, s}:=\int_{\Omega_{\varepsilon}} \kappa_{\varepsilon} \nabla \theta \cdot \nabla \theta^{\prime} d x+\int_{B_{\varepsilon}} \kappa_{L} \nabla \theta \cdot \nabla \theta^{\prime} d x & \forall \theta, \theta^{\prime} \in H_{\Gamma_{\varepsilon}^{\prime D}}^{1}\left(O_{\varepsilon}\right), \\
(u, \theta)_{5, s}:=\int_{\Omega_{\varepsilon}}\left(a_{\varepsilon} \alpha_{\varepsilon} \cdot e(u)\right) \theta d x+\int_{B_{\varepsilon}} \mu_{L} \alpha_{L}\left(a_{L} I \cdot e(u)\right) \theta d x & \forall(u, \theta) \in H_{\Gamma_{\varepsilon}^{\mathcal{M}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right) \times H_{\Gamma_{\varepsilon}^{\tau \mathrm{D}}}^{1}\left(O_{\varepsilon}\right),\end{cases} \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
L_{\varepsilon}(t)\left(z^{\prime}\right):=\int_{\Gamma_{\varepsilon}^{\mathcal{N}}} g_{\varepsilon}^{\mathcal{M}} \cdot u^{\prime} d \mathcal{H}_{2}+\int_{\Gamma_{\varepsilon}^{\mathcal{T}}} g_{\varepsilon}^{\mathcal{T}} \theta^{\prime} d x \quad \forall z^{\prime} \in Z_{s}, \forall t \in[0, T], \tag{2.6}
\end{equation*}
$$

As $\left(g^{\mathcal{M}}, g^{\mathcal{T}}\right) \mapsto z_{s}^{e}$ is linear continuous from $L^{2}\left(\Gamma^{\mathcal{M N}} ; \mathbb{R}^{3}\right) \times L^{2}\left(\Gamma^{\mathcal{T} N}\right)$ into Z_{s}, we have

$$
\begin{equation*}
z_{s}^{e} \in C^{1,1}\left([0, T] ; Z_{s}\right) . \tag{2.7}
\end{equation*}
$$

The remaining part z_{s}^{r} of z_{s} will be involved in an evolution equation governed by an m-dissipative operator A_{s} in a Hilbert space \mathfrak{G}_{s} of possible states with finite thermomechanical (strain, kinetic, thermal) energy defined by

$$
\begin{equation*}
\mathfrak{G}_{s}:=H_{\Gamma_{\varepsilon}^{\mu \mathbb{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right) \times L^{2}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right) \times L^{2}\left(O_{\varepsilon}\right), \tag{2.8}
\end{equation*}
$$

and endowed with the following inner product and norm:

$$
\begin{align*}
&\left(U, U^{\prime}\right)_{s}:=\left(u, u^{\prime}\right)_{1, s}+K_{s}\left((v, \theta),\left(v^{\prime}, \theta^{\prime}\right)\right), \quad|U|_{s}^{2}:=(U, U)_{s}, \tag{2.9}\\
& K_{s}\left((v, \theta),\left(v^{\prime}, \theta^{\prime}\right)\right)=\left(v, v^{\prime}\right)_{2, s}+\left(\theta, \theta^{\prime}\right)_{3, s} \quad \forall U=(u, v, \theta), \quad \forall U^{\prime}=\left(u^{\prime}, v^{\prime}, \theta^{\prime}\right) \in \mathfrak{H}_{s}, \quad \text { with } \tag{2.10}\\
&\left\{\begin{array}{l}
\left(v, v^{\prime}\right)_{2, s} \\
:=\int_{\Omega_{\varepsilon}} \rho_{\varepsilon} v \cdot v^{\prime} d x+\int_{B_{\varepsilon}} \rho_{L} v \cdot v^{\prime} d x, \\
\left(\theta, \theta^{\prime}\right)_{3, s}
\end{array}:=\int_{\Omega_{\varepsilon}} \beta_{\varepsilon} \theta \theta^{\prime} d x+\int_{B_{\varepsilon}} \beta_{L} \theta \theta^{\prime} d x .\right. \tag{2.11}
\end{align*}
$$

Operator A_{s} is defined by

$$
\left\{\begin{array}{l}
D\left(A_{s}\right):=\left\{U=(u, v, \theta) \in \mathfrak{H}_{s} ;\left\{\begin{array}{ll}
\text { i) } & (v, \theta) \in Z_{s} \text { and } \\
\text { ii) } & \exists!(w, \tau) \in L^{2}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right) \times L^{2}\left(O_{\varepsilon}\right) \text { s.t. } \\
& \left(w, v^{\prime}\right)_{2, s}+\left(u, v^{\prime}\right)_{1, s}-\left(v^{\prime}, \theta\right)_{5, s}=0 \quad \forall v^{\prime} \in H_{\Gamma_{\varepsilon}^{\mu \mathbb{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right), \\
& \left(\tau, \theta^{\prime}\right)_{3, s}+\left(\theta, \theta^{\prime}\right)_{4, s}+\left(v, \theta^{\prime}\right)_{5, s}=0 \quad \forall \theta^{\prime} \in H_{\Gamma_{\varepsilon}^{\tau \mathrm{D}}}^{1}\left(O_{\varepsilon}\right),
\end{array}\right\}\right. \tag{2.12}\\
A_{s} U=(v, w, \tau) .
\end{array}\right.
$$

It is straightforward to check the following.
Proposition 2.1. Operator A_{s} is m-dissipative, and for all $\phi_{s}=\left(\phi_{s}^{1}, \phi_{s}^{2}, \phi_{s}^{3}\right)$ in \mathfrak{H}_{s},

$$
\left\{\begin{array} { l }
{ \overline { U } _ { s } = (\overline { u } _ { s } , \overline { v } _ { s } , \overline { \theta } _ { s }) \text { s.t. } } \tag{2.13}\\
{ \overline { U } _ { s } - A _ { s } \overline { U } _ { s } = \phi _ { s } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\bar{u}_{s}=\bar{v}_{s}+\phi_{s}^{1} \\
\bar{z}_{s}=\left(\bar{v}_{s}, \bar{\theta}_{s}\right) \in Z_{s} ; \quad \Psi_{s}\left(\bar{z}_{s}, z\right)=\mathcal{L}_{s}(z) \quad \forall z=(v, \theta) \in Z_{s} \\
\text { with } \\
\Psi_{s}=\Phi_{s}+K_{s} \\
\mathcal{L}_{s}(z)=-\left(\phi_{s}^{1}, u\right)_{1, s}+K_{s}\left(\left(\phi_{s}^{2}, \phi_{s}^{3}\right), z\right) \quad \forall z=(v, \theta) \in Z_{s}
\end{array}\right.\right.
$$

Then, taking into account $(\mathrm{H} 1),(2.1),(2.2), 2.7$, , 2.12), it is clear that $\left(\mathcal{P}_{s}\right)$ is "formally equivalent" to

$$
\left\{\begin{array}{l}
\frac{d U_{s}^{r}}{d t}-A_{s} U_{s}^{r}=F_{s}:=\left(u_{s}^{e}-\frac{d u_{s}^{e}}{d t},-\frac{d u_{s}^{e}}{d t}+f_{s},-\frac{d \theta_{s}^{e}}{d t}\right) \tag{2.14}\\
U_{s}^{r}(0)=U_{s}^{0}-\left(u_{s}^{e}(0), 0, \theta_{s}^{e}(0)\right)
\end{array}\right.
$$

with f_{s} equal to $f_{\varepsilon} / \rho_{\varepsilon}$ in Ω_{ε} and 0 in B_{ε}. Consequently ([12]) the following holds:
Theorem 2.1. If $\left(f, g^{\mathcal{M}}, g^{\mathcal{T}}\right)$ satisfies (H1) and U_{s}^{0} belongs to $\left(u_{s}^{e}(0), 0, \theta_{s}^{e}(0)\right)+D\left(A_{s}\right)$, then 2.14) has a unique solution such that U_{s}^{r} belongs to $C^{1}\left([0, T] ; \mathfrak{H}_{s}\right)$. Hence there exists a unique $\left(u_{s}, \theta_{s}\right)$ in

$$
\left(C^{1}\left([0, T] ; H_{\Gamma_{\varepsilon}^{\mu \mathrm{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right)\right) \cap C^{2}\left([0, T] ; L^{2}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right)\right)\right) \times\left(C^{1}\left([0, T] ; L^{2}\left(O_{\varepsilon}\right)\right) \cap C^{0}\left([0, T] ; H_{\Gamma_{\varepsilon}^{\tau \mathrm{D}}}^{1}\left(O_{\varepsilon}\right)\right)\right)
$$

which does satisfy

$$
\begin{align*}
& \left(\frac{d^{2} u_{s}}{d t^{2}}, u\right)_{2, s}+\left(u_{s}, u\right)_{1, s}-\left(u, \theta_{s}\right)_{5, s}=\int_{\Omega_{\varepsilon}} f_{\varepsilon} \cdot u d x+\int_{\Gamma_{\varepsilon}^{\mathcal{M}}} g_{\varepsilon}^{\mathcal{M}} \cdot u d \mathcal{H}_{2} \quad \forall u \in H_{\Gamma_{\varepsilon}^{\mathcal{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right), \\
& \left(\frac{d \theta_{s}}{d t}, \theta\right)_{3, s}+\left(\theta_{s}, \theta\right)_{4, s}+\left(\frac{d u_{s}}{d t}, \theta\right)_{5, s}=\int_{\Gamma_{\varepsilon}^{\tau \mathrm{N}}} g_{\varepsilon}^{\mathcal{T}} \theta d \mathcal{H}_{2} \quad \forall \theta \in H_{\Gamma_{\varepsilon}^{\tau \mathrm{D}}}^{1}\left(O_{\varepsilon}\right) . \tag{2.15}
\end{align*}
$$

We set

$$
\begin{equation*}
U_{s}^{e}=\left(u_{s}^{e}, z_{s}^{e}\right) \tag{2.16}
\end{equation*}
$$

3. A mathematical analysis of the asymptotic behavior

Now we regard the sextuplet s of geometrical and thermomechanical data as a sextuplet of parameters taking values in a countable subset of $(0,+\infty)^{6}$ with a single cluster point \bar{s} in $\{0\} \times[0,+\infty]^{5}$ and study the asymptotic behavior of U_{s} in order to suggest a simplified but accurate enough model for the genuine physical situation. We will show that, depending on the relative behavior of ($\rho_{L}, \mu_{L}, \beta_{L}, \kappa_{L}, \alpha_{L}$) with respect to ε, numerous (100!) limit models appear. They are indexed by $\mathrm{I}=\left(\mathrm{I}_{\mathrm{M}}, \mathrm{I}_{\mathrm{T}}\right) \in(\{0,1\} \times\{0,1,2,3,4\})^{2}, \mathrm{I}_{\mathrm{M}}=\left(\mathrm{I}_{\mathrm{M} 1}, \mathrm{I}_{\mathrm{M} 2}\right), \mathrm{I}_{\mathrm{T}}=\left(\mathrm{I}_{\mathrm{T} 1}, \mathrm{I}_{\mathrm{T} 2}\right)$ defined as follows.

Let $r_{0}^{\mathrm{M}}=r_{1}^{\mathrm{M}}=r_{2}^{\mathrm{M}}=1, r_{3}^{\mathrm{M}}=-1, r_{4}^{\mathrm{M}}=-3, r_{0}^{\mathrm{T}}=r_{1}^{\mathrm{T}}=r_{2}^{\mathrm{T}}=1, r_{3}^{\mathrm{T}}=r_{4}^{\mathrm{T}}=-1$, we assume:

$$
\left\{\begin{array}{l}
\text { There exists }\left(\bar{\rho}_{L}, \bar{\beta}_{L}, \bar{\mu}_{L}^{\mathrm{I}}, \bar{\kappa}_{L}^{\mathrm{I}}\right) \text { in }[0,+\infty)^{2} \times[0,+\infty]^{2} \text { such that: } \\
\left(\bar{\rho}_{L}, \bar{\beta}_{L}\right):=\lim _{s \rightarrow \bar{s}} \varepsilon\left(\rho_{L}, \beta_{L}\right), \\
\left(\bar{\mu}_{L}^{\mathrm{I}},,_{L}^{\mathrm{I}}\right):=\lim _{s \rightarrow \bar{s}}\left(\mu_{L} / \varepsilon^{r_{\mathrm{M} 2}^{\mathrm{I}}}, \kappa_{L} / \varepsilon^{r_{\mathrm{T} 2}^{\mathrm{T}}}\right) \text { with } \overline{\lim _{s \rightarrow \bar{s}}} \varepsilon^{2}\left(\mu_{L}^{-1}, \kappa_{L}^{-1}\right) \in[0,+\infty)^{2}, \\
\text { and } \\
\mathrm{I}_{\mathrm{M} 1}, \mathrm{I}_{\mathrm{T} 1}=0 \text { if } \bar{\rho}_{L}, \bar{\beta}_{L}=0, \quad \mathrm{I}_{\mathrm{M} 1}, \mathrm{I}_{\mathrm{T} 1}=1 \text { if } \bar{\rho}_{L}>0, \bar{\beta}_{L}>0, \tag{H2}\\
\bar{\mu}_{L}^{\mathrm{I}}=0 \text { and } \mathcal{H}_{2}\left(\Gamma^{\mathcal{M D}-}\right)>0 \text { when } \mathrm{I}_{\mathrm{M} 2}=0, \quad \bar{\mu}_{L}^{\mathrm{I}} \in(0,+\infty) \text { when } \mathrm{I}_{\mathrm{M} 2}=1, \\
\bar{\mu}_{L}^{\mathrm{I}}=+\infty \text { and } \lim _{s \rightarrow \bar{s}} \varepsilon \mu_{L}=0 \text { when } \mathrm{I}_{\mathrm{M} 2}=2, \quad \bar{\mu}_{L}^{\mathrm{I}} \in(0,+\infty) \text { when } \mathrm{I}_{\mathrm{M} 2}=3,4, \\
\bar{\kappa}_{L}^{\mathrm{I}}=0 \text { and } \mathcal{H}_{2}\left(\Gamma^{\mathcal{T} \mathrm{D}-}\right)>0 \text { when } \mathrm{I}_{\mathrm{T} 2}=0, \quad \bar{\kappa}_{L}^{\mathrm{I}} \in(0,+\infty) \text { when } \mathrm{I}_{\mathrm{T} 2}=1, \\
\bar{\kappa}_{L}^{\mathrm{I}}=+\infty \text { and } \lim _{s \rightarrow \bar{s}} \varepsilon \kappa_{L}=0 \text { when } \mathrm{I}_{\mathrm{T} 2}=2, \quad \bar{\kappa}_{L}^{\mathrm{I}} \in(0,+\infty) \text { when } \mathrm{I}_{\mathrm{T} 2}=3, \\
\bar{\kappa}_{L}^{\mathrm{I}}=+\infty \text { when } \mathrm{I}_{\mathrm{T} 2}=4 .
\end{array}\right.
$$

3.1. A candidate for the limit behavior

From now on, C denotes various constants which may vary from line to line and we use the convention $0 \times \infty=$ $\infty \times 0=0$.

3.1.1. The limit space \mathfrak{G}^{1}

This candidate could be determined by studying the asymptotic behavior of sequences with bounded total thermomechanical energy. It will appear that in some cases the thermomechanical state of the "limit structure", where the three-dimensional adhesive layer is geometrically replaced by the surface S, it shrinks to, does not involve the sole state variables of the adhering bodies but additional thermomechanical state variables not necessarily defined on S but in $B:=S \times(-1,1)$ which accounts for the limit behavior of the adhesive layer.

It is convenient to introduce the following "scaling operators" which transform a field y_{s} defined on B_{ε} into a field $y_{s B}$ defined on B in such a way that a bounded energy for y_{s} is equivalent to a bounded "scaled" energy for $y_{s B}$:

$$
\begin{aligned}
& \text { Operators } \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{M 2}} \text { : } \\
& u \in H^{1}\left(B_{\varepsilon} ; \mathbb{R}^{3}\right) \mapsto u_{B}=\mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u \in H^{1}\left(B ; \mathbb{R}^{3}\right) \text { defined by }
\end{aligned}
$$

Clearly:

$$
\begin{equation*}
\mu_{L} \int_{B_{\varepsilon}}|e(u)|^{2} d x=\left(\mu_{L} / r_{\mathrm{I}_{\mathrm{M} 2}}^{\mathrm{M}}\right) \int_{B}\left|e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u\right)\right|^{2} d x . \tag{3.2}
\end{equation*}
$$

Operators $\mathcal{S}_{\varepsilon}^{v}, \mathcal{S}_{\varepsilon}^{\theta}$:

$$
\begin{align*}
&(v, \theta) \in L^{2}\left(B_{\varepsilon} ; \mathbb{R}^{3} \times \mathbb{R}\right) \mapsto\left(v_{B}, \theta_{B}\right)=\left(\mathcal{S}_{\varepsilon}^{v} v, \mathcal{S}_{\varepsilon}^{\theta} \theta\right) \in L^{2}\left(B ; \mathbb{R}^{3} \times \mathbb{R}\right) \text { defined by } \\
&\left(v_{B}(x), \theta_{B}(x)\right)=\left(v\left(\widehat{x}, \varepsilon x_{3}\right), \theta\left(\widehat{x}, \varepsilon x_{3}\right)\right) \quad \text { a.e. } x \in B \tag{3.3}
\end{align*}
$$

which satisfy

$$
\begin{equation*}
\left(\rho_{L} \int_{B_{\varepsilon}}|v(x)|^{2} d x, \beta_{L} \int_{B_{\varepsilon}}|\theta(x)|^{2} d x\right)=\left(\rho_{L} \varepsilon \int_{B}\left|\mathcal{S}_{\varepsilon}^{v} v\right|^{2} d x, \beta_{L} \varepsilon \int_{B}\left|\mathcal{S}_{\varepsilon}^{\theta} \theta\right|^{2} d x\right) . \tag{3.4}
\end{equation*}
$$

In view of following Proposition 3.1, it is natural to recall some classical notions. Let

$$
\begin{equation*}
\Omega^{i}:=\Omega \backslash S \quad \text { if } i=0,1, \quad \Omega^{i}:=\Omega \quad \text { if } i=2,3,4 \tag{3.5}
\end{equation*}
$$

For an element u of $H^{1}\left(\Omega \backslash S ; \mathbb{R}^{N}\right), N=1$ or 3 , we will denote its restrictions to the open sets $\Omega^{ \pm}$by $u^{ \pm}$which is an element of $H^{1}\left(\Omega^{ \pm} ; \mathbb{R}^{N}\right)$. The symbols $\gamma_{S}\left(u^{+}\right)$and $\gamma_{S}\left(u^{-}\right)$will denote the trace of u^{+}and u^{-}, respectively, on the set S. Of course, for u in $H^{1}\left(\Omega ; \mathbb{R}^{N}\right), \gamma_{S}(u)$ will denote the trace of u on S. We also use

$$
\begin{gather*}
\llbracket u \rrbracket=\gamma_{S}\left(u^{+}\right)-\gamma_{S}\left(u^{-}\right), \tag{3.6}\\
H_{\partial_{3}}\left(B ; \mathbb{R}^{N}\right):=\left\{u \in L^{2}\left(B ; \mathbb{R}^{N}\right) \text { s.t. } \partial_{3} u \in L^{2}\left(B ; \mathbb{R}^{N}\right)\right\} \quad N=1 \text { or } 3, \tag{3.7}
\end{gather*}
$$

it is well-known that a continuous mapping $\gamma_{S^{ \pm}}$is defined on $H_{\partial_{3}}\left(B ; \mathbb{R}^{N}\right)$ for the traces on $S^{ \pm}:=S \pm e_{3}$ with values in $L^{2}\left(S^{ \pm} ; \mathbb{R}^{N}\right)$, and, from now on, $\gamma_{S^{ \pm}}(u)$ is treated as an element of $L^{2}\left(S ; \mathbb{R}^{N}\right)$,

$$
\begin{align*}
& V_{\mathrm{KL}}(B):=\left\{u \in H^{1}\left(B ; \mathbb{R}^{3}\right) ; \exists\left(u^{M}, u^{F}\right) \in H^{1}\left(S ; \mathbb{R}^{2}\right) \times H^{2}(S)\right. \text { s.t. } \\
&\left.\widehat{u}(x)=u^{M}(\widehat{x})-x_{3} \widehat{\nabla} u^{F}(\widehat{x}), \quad u_{3}(x)=u^{F}(\widehat{x}) \text { a.e. } x \in B\right\} \tag{3.8}\\
&=\left\{u \in H^{1}\left(B ; \mathbb{R}^{3}\right) ; e_{i 3}=0 \text { a.e. in } B, 1 \leq i \leq 3\right\} .
\end{align*}
$$

We will use the following Hilbert spaces and norms:
space of displacement fields $\mathfrak{H}_{u}^{\mathrm{I}}$:

- $\mathrm{I}_{\mathrm{M} 2}=0 \quad \mathfrak{G}_{u}^{\mathrm{I}}:=\left\{u^{\mathrm{I}}=\left(u_{\Omega}, e_{B}^{u}\right) \in H_{\Gamma \mathrm{MD}}^{1}\left(\Omega^{0} ; \mathbb{R}^{3}\right) \times\{0\}\right\}$,
- $\mathrm{I}_{\mathrm{M} 2}=1 \quad \mathfrak{G}_{u}^{\mathrm{I}}:=\left\{u^{\mathrm{I}}=\left(u_{\Omega}, e_{B}^{u}\right) \in H_{\Gamma \mathcal{M 1}}^{1}\left(\Omega^{1} ; \mathbb{R}^{3}\right) \times L^{2}\left(B ; \mathbb{S}^{3}\right)\right.$ s.t.

$$
\left.\exists u_{B} \in H_{\partial_{3}}\left(B ; \mathbb{R}^{3}\right) ; e_{B}^{u}=\partial_{3} u_{B} \otimes_{S} e_{3}, \gamma_{S^{ \pm}}\left(u_{B}\right)=\gamma_{S}\left(u_{\Omega}^{ \pm}\right)\right\},
$$

- $\mathrm{I}_{\mathrm{M} 2}=2 \quad \mathfrak{Y}_{u}^{\mathrm{I}}:=\left\{u^{\mathrm{I}}=\left(u_{\Omega}, e_{B}^{u}\right) \in H_{\Gamma_{\mathcal{M}}}^{1}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}\left(B ; \mathbb{S}^{3}\right)\right.$ s.t.

$$
\left.\exists u_{B} \in H^{1}\left(B ; \mathbb{R}^{3}\right) ; 0=e_{B}^{u}=\partial_{3} u_{B} \otimes_{S} e_{3}, \gamma_{S}^{ \pm}\left(u_{B}\right)=\gamma_{S}\left(u_{\Omega}\right)\right\},
$$

- $\mathrm{I}_{\mathrm{M} 2}=3 \quad \mathfrak{G}_{u}^{\mathrm{I}}:=\left\{u^{\mathrm{I}}=\left(u_{\Omega}, e_{B}^{u}\right) \in H_{\Gamma_{\mathcal{M D}}}^{1}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}\left(B ; \mathbb{S}^{3}\right)\right.$ s.t.

$$
\left.\gamma_{S}\left(u_{\Omega 3}\right)=C, \exists u_{B} \in V_{\mathrm{KL}}(B) ; u_{B}^{M}=\gamma_{S}\left(\widehat{u}_{\Omega}\right), \widehat{\nabla} u_{B}^{F}=0, \widehat{e_{B}^{u}}:=\widehat{e\left(u_{B}\right)}\right\},
$$

- $\mathrm{I}_{\mathrm{M} 2}=4 \quad \mathfrak{G}_{u}^{\mathrm{I}}:=\left\{u^{\mathrm{I}}=\left(u_{\Omega}, e_{B}^{u}\right) \in H_{\Gamma_{\mathcal{M D}}}^{1}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}\left(B ; \mathbb{S}^{3}\right)\right.$ s.t.

$$
\left.\widehat{e}\left(\gamma_{S}\left(\widehat{u}_{\Omega}\right)\right)=0, \exists u_{B} \in V_{\mathrm{KL}}(B) ; u_{B}^{F}=\gamma_{S}\left(u_{\Omega 3}\right), \widehat{e_{B}^{u}}:=\widehat{e\left(u_{B}\right)}\right\},
$$

and they clearly are complete for the norms

$$
\begin{equation*}
\left(u^{\mathrm{I}}, u^{\mathrm{I}}\right)_{1}^{\mathrm{I}}:=\int_{\Omega_{\mathrm{I} 2}^{\mathrm{I} 2}} a e\left(u_{\Omega}\right) \cdot e\left(u_{\Omega}\right) d x+\bar{\mu}_{L}^{\mathrm{I}} \int_{B} a_{L} e_{B}^{u} \cdot e_{B}^{u} d x \quad \forall \mathrm{I}_{\mathrm{M} 2}=0,1, \ldots, 4 \tag{3.9}
\end{equation*}
$$

Note that for a field w in $H^{1}\left(S ; \mathbb{R}^{2}\right)$ we also denote the symmetrized gradient of w by $\widehat{e}(w)$.
space of velocity fields \mathfrak{Y}_{v}^{I} :

- $\mathrm{I}_{\mathrm{M} 1}=0 \quad \mathfrak{G}_{v}^{\mathrm{I}}:=\left\{v^{\mathrm{I}}=v_{\Omega} \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right)\right\}, \quad\left(v^{\mathrm{I}}, v^{\mathrm{I}}\right)_{2}^{\mathrm{I}}:=\int_{\Omega} \rho v_{\Omega} \cdot v_{\Omega} d x$,
- $\mathrm{I}_{\mathrm{M} 1}=1 \quad \mathfrak{H}_{v}^{\mathrm{I}}:=\left\{v^{\mathrm{I}}=\left(v_{\Omega}, v_{B}\right) \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}\left(B ; \mathbb{R}^{3}\right)\right\}, \quad\left(v^{\mathrm{I}}, v^{\mathrm{I}}\right)_{2}^{\mathrm{I}}:=\int_{\Omega} \rho v_{\Omega} \cdot v_{\Omega} d x+\bar{\rho}_{L} \int_{B}\left|v_{B}\right|^{2} d x$, space of temperature fields $\mathfrak{G}_{\theta}^{\mathrm{I}}$:
- $\mathrm{I}_{\mathrm{T} 1}=0 \quad \mathfrak{H}_{\theta}^{\mathrm{I}}:=\left\{\theta^{\mathrm{I}}=\theta_{\Omega} \in L^{2}(\Omega)\right\}, \quad\left(\theta^{\mathrm{I}}, \theta^{\mathrm{I}}\right)_{3}^{\mathrm{I}}:=\int_{\Omega} \beta \theta_{\Omega}^{2} d x$,
- $\mathrm{I}_{\mathrm{T} 1}=1 \quad \mathfrak{H}_{\theta}^{\mathrm{I}}:=\left\{\theta^{\mathrm{I}}=\left(\theta_{\Omega}, \theta_{B}\right) \in L^{2}(\Omega) \times L^{2}(B)\right\}, \quad\left(\theta^{\mathrm{I}}, \theta^{\mathrm{I}}\right)_{3}^{\mathrm{I}}:=\int_{\Omega} \beta \theta_{\Omega}^{2} d x+\bar{\beta}_{L} \int_{B} \theta_{B}^{2} d x$.

So, if T_{ε} is the operator from $L^{2}\left(\Omega ; \mathbb{R}^{N}\right)$ into $L^{2}\left(\Omega ; \mathbb{R}^{N}\right), N=1$ or 3 , defined by

$$
\begin{equation*}
\left(T_{\varepsilon} w\right)(x):=w\left(x \pm \varepsilon e_{3}\right), \quad \forall x \in \Omega^{ \pm} \tag{3.10}
\end{equation*}
$$

we have
Proposition 3.1. For all sequences $U_{s}=\left(u_{s}, v_{s}, \theta_{s}\right)$ in \mathfrak{H}_{s} such that $\left|U_{s}\right|_{s}$ is bounded, there exists $U^{\mathrm{I}}=\left(u^{\mathrm{I}}, \theta^{\mathrm{I}}, \theta^{\mathrm{I}}\right)$ in $\mathfrak{G}^{\mathrm{I}}$ and a not relabeled subsequence such that
i) $\left(T_{\varepsilon} u_{s}, T_{\varepsilon} v_{s}, T_{\varepsilon} \theta_{s}\right)$ weakly converges in $H_{\Gamma М \mathbb{D}}^{1}\left(\Omega \backslash S ; \mathbb{R}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}(\Omega)$ toward (u, v, θ);
ii) $\mathcal{S}_{\varepsilon}^{v} v_{s}$ weakly converges in $L^{2}\left(B ; \mathbb{R}^{3}\right)$ toward v_{B} if $\mathrm{I}_{\mathrm{M} 1}=1, \mathcal{S}_{\varepsilon}^{\theta} \theta_{s}$ weakly converges in $L^{2}(B)$ toward θ_{B} if $\mathrm{I}_{\mathrm{T} 1}=1$;
iii) $e^{I_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u \mathrm{I}_{\mathrm{M} 2}} u_{s}\right)$ weakly converges in $L^{2}\left(B ; \mathbb{R}^{3}\right)$ toward e_{B}^{u} when $\mathrm{I}_{\mathrm{M} 2}$ is positive;
iv) $\left|U^{\mathrm{I}}\right|^{\mathrm{I}}:=\left\{\left(u^{\mathrm{I}}, u^{\mathrm{I}}\right)_{1}^{\mathrm{I}}+\left(v^{\mathrm{I}}, v^{\mathrm{I}}\right)_{2}^{\mathrm{I}}+\left(\theta^{\mathrm{I}}, \theta^{\mathrm{I}}\right)_{3}^{\mathrm{I}}\right\}^{1 / 2} \leq \lim _{s \rightarrow \bar{s}}\left|U_{s}\right| s$.

Proof. As

$$
\begin{align*}
&\left|U_{s}\right|_{s}^{2}=\int_{\Omega} a e\left(T_{\varepsilon} u_{s}\right) \cdot e\left(T_{\varepsilon} u_{s}\right)+\beta\left|v_{s}\right|^{2}+\rho \theta_{s}^{2} d x \\
&+\int_{B}\left(\mu_{L} / r_{\mathrm{I}_{\mathrm{M} 2}}^{\mathrm{M}}\right) a_{L} e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}\right) \cdot e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}\right)+\varepsilon \rho_{L}\left|\mathcal{S}_{\varepsilon}^{v} v_{s}\right|^{2}+\varepsilon \beta_{L}\left|\mathcal{S}_{\varepsilon}^{\theta} \theta_{s}\right|^{2} d x, \tag{3.11}
\end{align*}
$$

point ii), and point i) when $\mathcal{H}_{2}\left(\Gamma^{\mathcal{M D}-}\right)>0$ are obvious.
Anyway the boundedness of $\left(u_{s}, u_{s}\right)_{1, s}$ implies that there exists u_{Ω}^{+}in $H_{\Gamma \mathcal{M D}+}^{1}\left(\Omega^{+} ; \mathbb{R}^{3}\right)$ and a not relabeled subsequence such that $\left(\left(T_{\varepsilon} u_{s}\right)^{+}, \gamma_{S}\left(\left(T_{\varepsilon} u_{s}\right)^{+}\right)\right)$converges weakly in $H^{1}\left(\Omega^{+} ; \mathbb{R}^{3}\right)$ and strongly in $L^{2}\left(S ; \mathbb{R}^{3}\right)$ toward $\left(u_{\Omega}^{+}, \gamma_{S}\left(u_{\Omega}^{+}\right)\right)$, respectively. By using Korn inequality and a cut-off function η such that $\eta\left(x_{3}\right)=1$ if $0 \leq x_{3} \leq L / 3, \eta\left(x_{3}\right)=0$ if $x_{3} \geq 2 L / 3$, with $L=\max \left\{x_{3} ;\left(\widehat{x}, x_{3}\right) \in \partial \Omega^{+}\right\}$, one has:

$$
\begin{align*}
\left|\llbracket T_{\varepsilon} u_{s} \rrbracket\right|_{L^{2}\left(S ; \mathbb{R}^{3}\right)}^{2} & \leq C\left(\frac{2 \varepsilon}{\mu_{L}} \mu_{L} \int_{B_{\varepsilon}}\left|e\left(u_{s}\right)\right|^{2} d x+\varepsilon\right), \tag{3.12}\\
\int_{B_{\varepsilon}}\left|u_{s}\right|^{2} d x & \leq C\left(\varepsilon\left|\gamma_{S}\left(\left(T^{\varepsilon} u_{s}\right)^{+}\right)\right|_{L^{2}\left(S ; \mathbb{R}^{3}\right)}^{2}+\frac{\varepsilon^{2}}{\mu_{L}} \mu_{L} \int_{B_{\varepsilon}}\left|e\left(u_{s}\right)\right|^{2} d x+\varepsilon^{2}\right) . \tag{3.13}
\end{align*}
$$

Hence assumption (H2) implies that there exist u_{Ω}^{-}in $H_{\Gamma \mathcal{M D}-}^{1}\left(\Omega^{-} ; \mathbb{R}^{3}\right)$ and a not relabeled subsequence such that $\left(T_{\varepsilon} u_{s}\right)^{-}$ converges weakly in $H^{1}\left(\Omega^{-} ; \mathbb{R}^{3}\right)$ toward u_{Ω}^{-}and

$$
\begin{equation*}
\int_{B_{\varepsilon}}\left|u_{s}\right|^{2} d x \leq C\left(\varepsilon+\frac{\varepsilon^{2}}{\mu_{L}}\right) . \tag{3.14}
\end{equation*}
$$

So, if $\mathrm{I}_{\mathrm{M} 2}=1,2,\left(\mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s},\left(\mu_{L} / \varepsilon^{r_{\mathrm{I} \mathrm{I}_{2}}^{\mathrm{M}}}\right) e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}\right)\right)$ is bounded in $L^{2}\left(B ; \mathbb{R}^{3} \times \mathbb{S}^{3}\right)$ so that the convergence up to a not relabeled subsequence of $\mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}$ in the sense of distributions on B yields that there exists a unique u_{B} in
$H_{\partial_{3}}\left(B ; \mathbb{R}^{3}\right)$ such that $\left(\widehat{\mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}}} u_{s},\left(\mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}\right)_{3}, e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}\right)\right)$ weakly converges to $\left(\widehat{u}_{B}, u_{B 3}, \partial_{3} u_{B} \otimes_{S} e_{3}\right)$ in $L^{2}\left(B ; \mathbb{R}^{2}\right) \times$ $H_{\partial_{3}}(B) \times L^{2}\left(B ; \mathbb{S}^{3}\right)$ with $\gamma_{S^{ \pm}}\left(u_{B}\right)=\gamma_{S}\left(u_{\Omega}^{ \pm}\right)$because $\gamma_{S^{ \pm}}\left(\mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}\right)=\gamma_{S}\left(\left(T_{\varepsilon} u_{s}\right)^{ \pm}\right)$. Moreover when $\mathrm{I}_{\mathrm{M} 2}=2$, one has $e_{B}^{u}=0$ and u_{Ω} in $H^{1}\left(\Omega ; \mathbb{R}^{3}\right)$.

When $\mathrm{I}_{\mathrm{M} 2}=3$, one only has $\left(\widehat{\mathcal{S}_{\varepsilon}^{u, 3}} u_{s}, e^{3}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, 3} u_{s}\right)\right)$ bounded in $L^{2}\left(B ; \mathbb{R}^{2} \times \mathbb{S}^{3}\right)$, so that by using the space of infinitesimal rigid displacements it is routine to establish that there exists some u_{B} in $V_{\mathrm{KL}}(B)$ and e_{B}^{u} in $L^{2}\left(B ; \mathbb{S}^{3}\right)$ such that $\left(\mathcal{S}_{\varepsilon}^{u, 3} u_{\Omega}, e^{3}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, 3} u_{\Omega}\right)\right)$ weakly converges toward $\left(u_{B}, e_{B}^{u}\right)$ in $\left(H^{1}\left(B ; \mathbb{R}^{2}\right) \times H^{1}(B) / \mathbb{R}\right) \times L^{2}\left(B ; \mathbb{S}^{3}\right)$ with $\widehat{e_{B}^{u}}=\widehat{e\left(u_{B}\right)}$. Then the perfect contact condition on B_{ε}, of which one can exploit $\gamma_{S^{ \pm}}\left(\widehat{\mathcal{S}_{\varepsilon}^{u, 3} u_{S}}\right)=\gamma_{S}\left(\widehat{\left.\left(T^{\varepsilon} u_{S}\right)^{ \pm}\right)}\right.$only, and (3.12) yield $\llbracket u_{\Omega} \rrbracket=0, \gamma_{S^{ \pm}}\left(\widehat{u}_{B}\right)=\gamma_{S}\left(\widehat{u_{\Omega}^{ \pm}}\right)=\gamma_{S}\left(\widehat{u_{\Omega}}\right)$, which imply $u_{\Omega} \in H^{1}\left(\Omega ; \mathbb{R}^{3}\right), u_{B}^{M}=\gamma_{S}\left(\widehat{u_{\Omega}}\right), \widehat{\nabla} u_{B}^{F}=0, \gamma_{S}\left(\widehat{u}_{\Omega}\right) \in H^{1}\left(S ; \mathbb{R}^{2}\right)$. Moreover as there exists a constant C_{ε} such that $\gamma_{S}\left(\left(T_{\varepsilon} u_{s}\right)_{3}^{+} / \varepsilon\right)+C_{\varepsilon}$ strongly converges in $L^{2}(S)$ toward $\gamma_{S^{+}}\left(u_{B}^{F}\right)$, one deduces that $\gamma_{S}\left(u_{\Omega 3}\right)$ is constant.

Proceeding as in the previous case, we deduce, when $\mathrm{I}_{\mathrm{M} 2}=4$, that there exists u_{B} in $V_{\mathrm{KL}}(B)$ with $u_{B}^{F}=\gamma_{S}\left(u_{\Omega 3}\right)$ such that $\left(\mathcal{S}_{\varepsilon}^{u, 4} u_{s}, e^{4}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, 4} u_{s}\right)\right)$ weakly converges in $H^{1}\left(B ; \mathbb{R}^{3}\right) \times L^{2}\left(B ; \mathbb{S}^{3}\right)$ toward $\left(u_{B}, e_{B}^{u}\right)$ with $\widehat{e_{B}^{u}}=\widehat{e\left(u_{B}\right)}$.

3.1.2. The limit operator A^{I}

According to Trotter's theory of approximation of semi-groups of linear operators acting on sequences of variable Hilbert spaces ([13, 14]), we examine the asymptotic behavior of the resolvent $\left(I-A_{s}\right)^{-1}$ in order to guess the limit operator A^{I}. Proposition 2.1 implies that a sequence $U_{s}=\left(u_{s}, v_{s}, \theta_{s}\right)$ such that $\left|U_{s}\right|_{s}+\left|A_{s} U_{s}\right|_{s} \leq C$ involves $\left(v_{s}, v_{s}\right)_{1, s}+$ $\left(\theta_{s}, \theta_{s}\right)_{4, s} \leq C$ in addition to $\left|U_{s}\right|_{s} \leq C$ that we already considered. For this purpose we introduce the following spaces $G_{\theta}^{\mathrm{IT2}}$ of temperatures and operators g_{B}^{θ} :

$$
\left\{\begin{align*}
& G_{\theta}^{0}:=\left\{\theta^{\mathrm{I}}=\left(\theta_{\Omega}, \theta_{B}\right) \in H^{1}\left(\Omega^{0}\right) \times L^{2}(B)\right\}, \quad g_{B}^{\theta}:=0 ; \tag{3.15}\\
& G_{\theta}^{1}:=\left\{\theta^{\mathrm{I}}=\left(\theta_{\Omega}, \theta_{B}\right) \in H^{1}\left(\Omega^{1}\right) \times H_{\partial_{3}}(B) ; \gamma_{S^{ \pm}}\left(\theta_{B}\right)=\gamma_{S}\left(\theta_{\Omega}^{ \pm}\right)\right\}, \quad g_{B}^{\theta}:=\left(0, \partial_{3} \theta_{B}\right) ; \\
& G_{\theta}^{2}:=\left\{\theta^{\left.\mathrm{I}=\left(\theta_{\Omega}, \theta_{B}\right) \in H^{1}(\Omega) \times H_{\partial_{3}}(B) ; \partial_{3} \theta_{B}=0, \gamma_{S^{ \pm}}\left(\theta_{B}\right)=\gamma_{S}\left(\theta_{\Omega}\right)\right\}, \quad g_{B}^{\theta}:=0 ;}\right. \\
& G_{\theta}^{3}:=\left\{\theta^{\mathrm{I}=}\left(\theta_{\Omega}, \theta_{B}\right) \in H^{1}(\Omega) \times H^{1}(B) ; \gamma_{S}\left(\theta_{\Omega}\right) \in H^{1}(S), \partial_{3} \theta_{B}=0, \gamma_{S^{ \pm}}\left(\theta_{B}\right)=\gamma_{S}\left(\theta_{\Omega}\right)\right\}, \\
& \quad g_{B}^{\theta}:=\left(\widehat{\nabla} \gamma_{S} \theta_{\Omega}, 0\right) ; \\
& G_{\theta}^{4}:=\left\{\theta^{\mathrm{I}=}\left(\theta_{\Omega}, \theta_{B}\right) \in H^{1}(\Omega) \times H^{1}(B) ; \gamma_{S}\left(\theta_{\Omega}\right)=C\left(=0 \text { if } \mathcal{H}_{1}\left(\gamma^{\mathcal{T} \mathrm{D}}\right)>0\right),\right. \\
&\left.\partial_{3} \theta_{B}=0, \gamma_{S^{ \pm}}\left(\theta_{B}\right)=\gamma_{S}\left(\theta_{\Omega}\right)\right\}, \quad g_{B}^{\theta}:=0 .
\end{align*}\right.
$$

Thus, if for all θ_{B} in $H^{1}(B)$

$$
g^{\mathrm{I}_{\mathrm{T} 2}}\left(\varepsilon, \theta_{B}\right)= \begin{cases}\left(\varepsilon \widehat{\nabla} \theta_{B}, \partial_{3} \theta_{B}\right) & \text { when } \mathrm{I}_{\mathrm{M} 2} \leq 2 \tag{3.16}\\ \left(\widehat{\nabla} \theta_{B}, \partial_{3} \theta_{B} / \varepsilon\right) & \text { when } \mathrm{I}_{\mathrm{M} 2}>2\end{cases}
$$

we have the obvious scalar variant of Proposition 3.1
Proposition 3.2. For all sequences such that $\left(\theta_{s}, \theta_{s}\right)_{3, s} \leq C$, there exist θ^{I} in $G_{\theta}^{\mathrm{IT} 2}$ such that
i) $T_{\varepsilon} \theta_{s}$ weakly converges in $H_{\Gamma^{7 \mathrm{D}}}^{1}\left(\Omega^{\mathrm{I}_{\mathrm{T} 2}}\right)$ toward θ_{Ω};
ii) $g^{\mathrm{I}_{\mathrm{T} 2}}\left(\varepsilon, S_{\varepsilon}^{\theta} \theta_{s}\right)$ converges weakly in $L^{2}\left(B ; \mathbb{R}^{3}\right)$ toward g_{B}^{θ}, when $\mathrm{I}_{\mathrm{M} 2} \geq 1$.

Note that it is only when $\mathrm{I}_{\mathrm{T} 2} \leq 1$, that the "additional" temperature θ_{B} depends on x_{3}. We therefore make a
supplementary assumption. Let $\bar{\alpha}_{L}^{I}$ in $[0,+\infty)$ satisfying:

$$
\begin{cases}\mathrm{I}_{\mathrm{M} 2}=0 & \text { no condition, } \tag{H3}\\ \mathrm{I}_{\mathrm{M} 2}=1 & \bar{\alpha}_{L}^{\mathrm{I}}:=\lim _{s \rightarrow \bar{s}} \varepsilon \alpha_{L}, \\ \mathrm{I}_{\mathrm{M} 2}=2 & \text { no condition, } \\ \mathrm{I}_{\mathrm{M} 2}=3 & \bar{\alpha}_{L}^{\mathrm{I}}:=\lim _{s \rightarrow \bar{s}} \alpha_{L}, \\ \mathrm{I}_{\mathrm{M} 2}=4 & \bar{\alpha}_{L}^{I}:=\lim _{s \rightarrow \bar{s}} \alpha_{L} / \varepsilon,\end{cases}
$$

it is reasonable to suggest the following forms $(\cdot, \cdot)_{4}^{\mathrm{I}}$ and $(\cdot, \cdot)_{5}^{\frac{1}{1}}$ as "potential limits" of $(\cdot, \cdot)_{4, s}$ and $(\cdot, \cdot)_{5, s}$:

$$
\begin{align*}
& \left(\theta^{\mathrm{I}}, \theta^{\mathrm{I}}\right)_{4}^{\mathrm{I}}:=\int_{\Omega} \kappa \nabla \theta_{\Omega} \cdot \nabla \theta_{\Omega}^{\prime} d x+\bar{\kappa}_{L}^{\mathrm{I}} \int_{B} g_{B}^{\theta} \cdot g_{B}^{\theta^{\prime}} d x \quad \forall \theta^{\mathrm{I}}, \theta^{\mathrm{I}} \in G_{\theta}^{\mathrm{I}}, \tag{3.17}\\
& \left(u^{\mathrm{I}}, \theta^{\mathrm{I}}\right)_{5}^{\mathrm{I}}:=\int_{\Omega}(a e(u) \cdot \alpha) \theta_{\Omega} d x+\left(\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}}\right) \int_{B}\left(a_{L} e_{B}^{u} \cdot I\right) \theta_{B} d x \quad \forall u^{\mathrm{I}} \in \mathfrak{S}_{u}^{\mathrm{I}}, \forall \theta^{\mathrm{I}} \in G_{\theta}^{\mathrm{I}} .
\end{align*}
$$

It will be convenient to introduce for all θ^{I} in G_{θ}^{I}

$$
\check{\theta}^{\mathrm{I}}:= \begin{cases}\theta_{\Omega} & \text { if } \mathrm{I}_{\mathrm{T} 1}=0, \tag{3.1}\\ \left(\theta_{\Omega}, \theta_{B}\right) & \text { if } \mathrm{I}_{\mathrm{T} 1}=1 .\end{cases}
$$

The boundedness of both $\rho_{L} \int_{B_{s}}\left|v_{s}\right|^{2} d x$ and $\mu_{L} \int_{B_{s}} a e\left(v_{s}\right) \cdot e\left(v_{s}\right) d x$ leads us, when $\mathrm{I}_{\mathrm{M} 1}=1$ and $\mathrm{I}_{\mathrm{M} 2}=3,4$, to introduce a special space $\mathcal{S} \mathfrak{F}_{v}^{I}$ for velocities and consequently a special space of limit possible states with finite energy \mathfrak{G}^{1}. Let

$$
\begin{align*}
& L_{\mathrm{LL}}^{M}(B):=\left\{v \in L^{2}\left(B ; \mathbb{R}^{3}\right) \text { s.t. } v(x)=(\hat{v}(\widehat{x}), 0), \widehat{v} \in L^{2}\left(S ; \mathbb{R}^{2}\right)\right\}, \\
& L_{\mathrm{KL}}^{F}(B):=\left\{v \in H^{-1}\left(B ; \mathbb{R}^{3}\right) \text { s.t. } v(x)=\left(-x_{3} \widehat{\nabla}_{v_{3}}, v_{3}\right), v_{3} \in L^{2}(S)\right\}, \tag{3.19}
\end{align*}
$$

then

$$
\begin{align*}
\mathcal{S} \mathfrak{F}_{v}^{\mathrm{I}}:= \begin{cases}\mathfrak{H}_{v}^{\mathrm{I}} & \text { if } \mathrm{I}_{\mathrm{M} 1}=0 \text { or } \mathrm{I}_{\mathrm{M} 2} \leq 2 ; \\
\left\{\left(v_{\Omega}, v_{B}\right) \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \times L_{\mathrm{KL}}^{M}(B)\right\} & \text { if } \mathrm{I}_{\mathrm{M} 1}=1 \text { and } \mathrm{I}_{\mathrm{M} 2}=3 ; \\
\left\{\left(v_{\Omega}, v_{B}\right) \in L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \times L_{\mathrm{KL}}^{F}(B)\right\} & \text { if } \mathrm{I}_{\mathrm{M} 1}=1 \text { and } \mathrm{I}_{\mathrm{M} 2}=4,\end{cases} \tag{3.20}\\
\left(v^{\left.\mathrm{I}, v^{\mathrm{I}}\right)_{2}^{\mathrm{I}}:=\left(\stackrel{v}{ }^{\mathrm{I}}, \hat{v}^{\mathrm{I}}\right)_{2}^{\mathrm{I}} \quad \forall v^{\mathrm{I}}, v^{\prime \mathrm{I}} \in \subseteq \mathfrak{S}_{v}^{\mathrm{I}},}\right. \tag{3.21}
\end{align*}
$$

where

$$
\stackrel{\text { ol }}{ }^{\mathrm{I}}= \begin{cases}v_{\Omega} & \text { if } \mathrm{I}_{\mathrm{M} 1}=0 ; \tag{3.22}\\ \left(v_{\Omega}, v_{B}\right) & \text { if } \mathrm{I}_{\mathrm{M} 1}=1 \text { and } \mathrm{I}_{\mathrm{M} 2} \leq 3 ; \\ \left(v_{\Omega},\left(0, v_{B 3}\right)\right) & \text { if } \mathrm{I}_{\mathrm{M} 1}=1 \text { and } \mathrm{I}_{\mathrm{M} 2}=4,\end{cases}
$$

and

$$
\begin{equation*}
\mathcal{S} \mathfrak{F}^{1}:=\mathfrak{F}_{u}^{1} \times \mathcal{S} \mathfrak{F}_{v}^{1} \times \mathfrak{F}_{\theta}^{1} \tag{3.23}
\end{equation*}
$$

equipped with the norm $|\cdot|^{\mathrm{I}}$. Thus, in order to proceed in a unitary manner, we denote the space of admissible virtual
generalized velocities and temperatures by Z^{I} :

$$
\begin{align*}
& Z^{\mathrm{I}}:=\left\{\left(v^{\mathrm{I}}, \theta^{\mathrm{I}}\right) \in \mathfrak{S} \mathfrak{S}_{u}^{\mathrm{I}} \times G_{\theta}^{\mathrm{I} 2}\right\}, \tag{3.24}\\
& \mathfrak{S}_{\mathfrak{H}_{u}^{\mathrm{I}}}^{\mathrm{I}}:= \begin{cases}\left.\left\{u^{\mathrm{I}} \in \mathfrak{S}_{u}^{\mathrm{I}} \text { with } u_{B} \text { any element of } L^{2}\left(B ; \mathbb{R}^{3}\right)\right)\right\} & \text { when } \mathrm{I}_{\mathrm{M} 2}=0, \\
\mathfrak{S}_{u}^{\mathrm{I}} & \text { when } \mathrm{I}_{\mathrm{M} 2}>0,\end{cases} \tag{3.25}
\end{align*}
$$

where, for all elements of $\mathfrak{S} \mathfrak{H}_{u}^{I}, \check{u}^{I}$ is defined by:

$$
\check{u}^{\mathrm{I}}:= \begin{cases}u_{\Omega} & \text { if } \mathrm{I}_{\mathrm{M} 1}=0 \tag{3.26}\\ \left(u_{\Omega}, u_{B}\right) & \text { if } \mathrm{I}_{\mathrm{M} 1}=1,\end{cases}
$$

we are in a position to define operator A^{I} in $\mathfrak{S} \mathfrak{H}^{\mathrm{I}}$ by:

Similar to the case of A_{s}, it can be checked easily that A^{1} is m-dissipative and, more specifically, that for all $\phi=$ $\left(\phi^{1}, \phi^{2}, \phi^{3}\right)$ in $\mathcal{G}_{\mathfrak{H}}{ }^{\mathrm{I}}$:

$$
\left\{\begin{array} { l }
{ \overline { U } ^ { \mathrm { I } } = (\overline { u } ^ { \mathrm { I } } , \overline { v } ^ { \mathrm { I } } , \overline { \theta } ^ { \mathrm { I } }) \text { s.t. } } \tag{3.28}\\
{ \overline { U } ^ { \mathrm { I } } - A ^ { \mathrm { I } } \overline { U } ^ { \mathrm { I } } = \phi }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\bar{u}^{\mathrm{I}}=\widetilde{v}^{\mathrm{I}}+\phi^{1}, \\
\bar{v}^{\mathrm{I}}=\widetilde{v}_{\Omega} \quad \text { if } \mathrm{I}_{\mathrm{M} 1}=0, \quad \bar{v}^{\mathrm{I}}=\left(\widetilde{v}_{\Omega}, \widetilde{v}_{B}\right) \quad \text { if } \mathrm{I}_{\mathrm{M} 1}=1, \\
\bar{\theta}^{\mathrm{I}}=\widetilde{\theta}_{\Omega} \quad \text { if } \mathrm{I}_{\mathrm{T} 1}=0, \quad \bar{\theta}^{\mathrm{I}}=\left(\widetilde{\theta}_{\Omega}, \widetilde{\theta}_{B}\right) \quad \text { if } \mathrm{I}_{\mathrm{T} 1}=1, \\
\bar{z}^{\mathrm{I}}=\left(\widetilde{v}^{\mathrm{I}}, \widetilde{\theta}^{\mathrm{I}}\right) \in Z^{\mathrm{I}} ; \quad \Psi^{\mathrm{I}}\left(\bar{z}^{\mathrm{I}}, z\right)=\mathcal{L}^{\mathrm{I}}(z) \quad \forall z \in Z^{\mathrm{I}} \text { with } \\
\Psi^{\mathrm{I}}:=\Phi^{\mathrm{I}}+K^{\mathrm{I}}, \\
\Phi^{\mathrm{I}}\left(z, z^{\prime}\right):=\left(v, v^{\prime}\right)_{1}^{\mathrm{I}}+\left(\theta, \theta^{\prime}\right)_{4}^{\mathrm{I}}-\left(v^{\prime}, \theta\right)_{5}^{\mathrm{I}}+\left(v, \theta^{\prime}\right)_{5}^{\mathrm{I}} \\
K^{\mathrm{I}}\left(\check{z}, z^{\prime}\right):=\left(\check{v}, \check{v}^{\prime}\right)_{2}^{\mathrm{I}}+\left(\check{\theta}, \check{\theta}^{\prime}\right)_{3}^{\mathrm{I}}, \quad \forall z=(v, \theta), \forall z^{\prime}=\left(v^{\prime}, \theta^{\prime}\right) \in Z^{\mathrm{I}}, \\
\mathcal{L}^{\mathrm{I}}(z):=-\left(\phi^{1}, v\right)_{1}^{\mathrm{I}}+K^{\mathrm{I}}\left(\left(\phi^{2}, \phi^{3}\right), z\right) .
\end{array}\right.\right.
$$

Consequently, the same statement as that of Theorem 2.1 is valid for the following equation, which will be shown to describe the asymptotic behavior of the solution to $\left(\mathcal{P}_{s}\right)$:

$$
\left(\mathcal{P}^{\mathrm{I}}\right) \quad\left\{\begin{array}{l}
\frac{d U^{\mathrm{I} r}}{d t}-A^{\mathrm{I}} U^{\mathrm{I} r}=F^{\mathrm{I}}:=\left(u^{\mathrm{I} e}-\frac{d u^{\mathrm{I} e}}{d t},-\frac{d u^{e}}{d t}+\frac{f^{\mathrm{I}}}{\rho},-\frac{d \theta^{\mathrm{I} e}}{d t}\right) \tag{3.29}\\
U^{\mathrm{I} r}(0)=U^{\mathrm{I}, 0}
\end{array}\right.
$$

where $f^{\mathrm{I}}=f$ if $\mathrm{I}_{\mathrm{M} 1}=0, f^{\mathrm{I}}=(f, 0)$ if $\mathrm{I}_{\mathrm{M} 1}=1$ with

$$
\begin{align*}
& z^{\mathrm{Ie}}=\left(u^{\mathrm{Ie}}, \theta^{\mathrm{Ie}}\right) \in Z^{\mathrm{I}} ; \quad \Phi^{\mathrm{I}}\left(z^{\mathrm{Ie}}(t), z\right)=L(t)(z) \quad \forall z \in Z^{\mathrm{I}} \forall t \in[0, T], \\
& L(t)(z):=\int_{\Gamma^{\mathcal{N}}} g^{\mathcal{M}} \cdot v_{\Omega} d \mathcal{H}_{2}+\int_{\Gamma^{\mathcal{N}}} g^{\mathcal{T}} \theta_{\Omega} d \mathcal{H}_{2} . \tag{3.30}
\end{align*}
$$

We set

$$
\begin{equation*}
U^{\mathrm{Ie}}=\left(u^{\mathrm{I} e}, z^{\mathrm{Ie}}\right), \quad U^{\mathrm{I}}=U^{\mathrm{Ie}}+U^{\mathrm{Ir}} . \tag{3.31}
\end{equation*}
$$

3.2. Convergence

To prove the convergence of the solution U_{s} to $\left(\mathcal{P}_{s}\right)$ toward the solution U^{I} to $\left(\mathcal{P}^{\mathrm{I}}\right)$, we use the framework of Trotter's theory of approximation of semi-groups of linear operators acting on variable spaces (see [13, 14]) because U_{s} and U^{I} do not inhabit the same space.

First let the representation operator P_{s}^{I} defined by

$$
\begin{equation*}
U \in \mathfrak{G} \mathfrak{H}^{\mathrm{I}} \mapsto P_{s}^{\mathrm{I}} U=\left(u_{s}^{*}, v_{s}^{*}, \theta_{s}^{*}\right) \in \mathfrak{H}_{s} \tag{3.32}
\end{equation*}
$$

with

- $u_{s}^{*} \in H_{\Gamma_{\varepsilon}^{M \mathrm{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right)$;

$$
\begin{equation*}
\left(u_{s}^{*}, u_{s}^{\prime}\right)_{1, s}=\int_{\Omega} a e\left(u_{\Omega}\right) \cdot e\left(T_{\varepsilon} u_{s}^{\prime}\right) d x+\left(\mu_{L} / \varepsilon^{r_{\mathrm{M} 2}^{\mathrm{M}}}\right) \int_{B} a_{L} e_{B}^{u} \cdot e\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}^{\prime}\right) d x \quad \forall u_{s}^{\prime} \in H_{\Gamma_{\varepsilon}^{M \mathrm{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right), \tag{3.33}
\end{equation*}
$$

- $\left(v_{s}^{*}, \theta_{s}^{*}\right) \in L^{2}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right) \times L^{2}\left(O_{\varepsilon}\right) ;$

$$
\begin{align*}
& \left(v_{s}^{*}, v_{s}^{\prime}\right)_{2, s}:=\int_{\Omega} \rho v_{\Omega} \cdot T_{\varepsilon} v_{s}^{\prime} d x+\varepsilon \rho_{L} \int_{B} v_{B} \cdot \mathcal{S}_{\varepsilon}^{v} v_{s}^{\prime} d x \quad \forall v_{s}^{\prime} \in L^{2}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right) \tag{3.34}\\
& \left(\theta_{s}^{*}, \theta_{s}^{\prime}\right)_{3, s}:=\int_{\Omega} \beta \theta_{\Omega} T_{\varepsilon} \theta_{s}^{\prime} d x+\varepsilon \beta_{L} \int_{B} \theta_{B} \mathcal{S}_{\varepsilon}^{\theta} \theta_{s}^{\prime} d x \quad \forall \theta_{s}^{\prime} \in L^{2}\left(O_{\varepsilon}\right) \tag{3.35}
\end{align*}
$$

(of course when $\mathrm{I}_{\mathrm{M} 1}=0$ or $\mathrm{I}_{\mathrm{T} 1}=0$, we set $v_{B}=0$ or $\theta_{B}=0$) and which satisfies

Proposition 3.3.

i) There exists a positive constant C such that $\left|P_{s}^{\mathrm{I}} U\right|_{s} \leq C\left|U^{\mathrm{I}}\right|^{\mathrm{I}}$ for all U^{I} in $\subseteq \mathfrak{S}^{\mathrm{I}}$ and all s;
ii) When stends to $\bar{s},\left|P_{s}^{\mathrm{I}} U\right|_{s}$ converges toward $|U|^{\mathrm{I}}$ for all U^{I} in $\mathcal{G}_{\mathfrak{H}}{ }^{\mathrm{I}}$.

Proof. The part of the result concerning u_{s}^{*} when $\mathrm{I}_{\mathrm{M} 2}=0, v_{s}^{*}$ and θ_{s}^{*} is obvious. By choosing $u_{s}^{\prime}=u_{s}^{*}$ and arguing as in the proof of Proposition 3.1, there exist $\left(u_{\Omega}^{*}, e_{B}^{u^{*}}\right)$ in \mathfrak{S}_{u}^{I} such that $\left(T_{\varepsilon} u_{s}^{*}, e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}} u_{s}^{*}\right)\right.$) weakly converges (up to a not relabeled subsequence) toward $\left(u_{\Omega}^{*}, e_{B}^{u^{*}}\right)$ in $H_{\Gamma}^{1}\left(\Omega^{\mathrm{I}_{\mathrm{M} 2}} ; \mathbb{R}^{3}\right) \times L^{2}\left(B ; \mathbb{S}^{3}\right)$. To identify $u^{*}:=\left(u_{\Omega}^{*}, e_{B}^{u^{*}}\right)$ as $u:=\left(u_{\Omega}, e_{B}^{u}\right)$, it suffices, for all $\left(u_{\Omega}^{\prime}, e_{B}^{u^{\prime}}\right)$ in \mathfrak{G}_{u}^{I} with $e_{B}^{u^{\prime}}$ in $C^{\infty}\left(\bar{\Omega} ; \mathbb{S}^{3}\right)$, to build a sequence u_{s}^{\prime} in $H_{\Gamma \mathcal{M D}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right)$ such that :

$$
\begin{align*}
& \int_{\Omega_{\varepsilon}} a_{\varepsilon} e\left(u_{\varepsilon}^{*}\right) \cdot e\left(u_{s}^{\prime}\right) d x \rightarrow \int_{\Omega} a e\left(u_{\Omega}^{*}\right) \cdot e\left(u_{\Omega}^{\prime}\right) d x, \\
& \int_{\Omega_{\varepsilon}} a_{\varepsilon} e\left(u_{\varepsilon}\right) \cdot e\left(T_{\varepsilon} u_{s}^{\prime}\right) d x \rightarrow \int_{\Omega} a e\left(u_{\Omega}\right) \cdot e\left(u_{\Omega}^{\prime}\right) d x, \\
& \left(\mu_{L} / \varepsilon^{r_{\mathrm{M} 2}^{\mathrm{M}}}\right) \int_{B} a_{L} e_{B}^{u} \cdot e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u \mathrm{I}_{\mathrm{M} 2}} u_{s}^{\prime}\right) d x \rightarrow \bar{\mu}_{L} \int_{B} a_{L} e_{B}^{u} \cdot e_{B}^{u^{\prime}} d x, \tag{3.36}\\
& \mu_{L} \int_{B_{\varepsilon}} a_{L} e\left(u_{s}^{*}\right) \cdot e\left(u_{s}^{\prime}\right) d x \rightarrow \bar{\mu}_{L} \int_{B} a_{L} e_{B}^{u^{*}} \cdot e_{B}^{u^{\prime}} d x,
\end{align*}
$$

Clearly, when $\mathrm{I}_{\mathrm{M} 2}=1,2, u_{s}^{\prime}:=\left\{\begin{array}{ll}\left(\mathcal{S}_{\varepsilon}^{u \mathrm{I}_{\mathrm{M} 2}}\right)^{-1} u_{B}^{\prime} & \text { in } B_{\varepsilon} \\ u_{\Omega}^{\prime}\left(\cdot \mp \varepsilon e_{3}\right) & \text { in } \Omega_{\varepsilon}^{ \pm}\end{array}\right.$satisfies 3.36. When $\mathrm{I}_{\mathrm{M} 2}=3$, 4, we use a trick of the
mathematical derivation of Kirchhoff-Love theory of plates [15, 16]. Let φ_{s}, ψ_{s} defined as follows:

$$
\begin{align*}
& \varphi_{s}:= \begin{cases}\gamma_{S}\left(u_{\Omega}^{\prime}\right) \quad \text { in } B_{\varepsilon} & \text { if } \mathrm{I}_{\mathrm{M} 2}=3 \\
\left(\mathcal{S}_{\varepsilon}^{u, 4}\right)^{-1} u_{B}^{\prime}=\left(\varepsilon u_{B}^{\prime M}-x_{3} \widehat{\nabla} \gamma_{S}\left(u_{\Omega 3}^{\prime}\right), \gamma_{S}\left(u_{\Omega 3}^{\prime}\right)\right) & \text { if } \mathrm{I}_{\mathrm{M} 2}=4,\end{cases} \tag{3.37}\\
& \psi_{s}:=\left(\mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{\mathrm{M} 2}}\right)^{-1} \psi_{B \varepsilon}, \quad \psi_{B \varepsilon}(x):=\varepsilon \int_{0}^{x_{3}}\left[\widehat{w}(\widehat{x}, \zeta)-\varepsilon \int_{0}^{\zeta} \widehat{\nabla} w_{3}(\widehat{x}, \xi) d \xi\right] d \zeta \quad \text { a.e. } x \in B,
\end{align*}
$$

where $\left(e_{B}^{u^{\prime}}\right)^{\perp}=w \otimes_{S} e_{3}$, then the field $u_{s}^{\prime}:=\varphi_{s}+\psi_{s}$ is such that $e^{\mathrm{I}_{M 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u, \mathrm{I}_{M 2}}\right) u_{s}^{\prime}$ converges strongly in $L^{2}\left(B ; \mathbb{S}^{3}\right)$ toward $e_{B}^{u^{\prime}}$ and $\mid \gamma_{S_{\varepsilon}^{ \pm}}\left(u_{s}^{\prime}-\left.u_{\Omega}^{\prime}\left(\cdot \mp \varepsilon e_{3}\right)\right|_{L^{2}\left(S_{\varepsilon}^{ \pm} ; \mathbb{R}^{3}\right)}=O\left(\varepsilon^{\mathrm{I} \mathrm{I}_{2}-2}\right)\right.$. Hence u_{s}^{\prime} may be extended into Ω_{ε} to an element of $H_{\Gamma_{\varepsilon}^{M \mathrm{D}}}^{1}\left(O_{\varepsilon} ; \mathbb{R}^{3}\right)$ still denoted u_{s}^{\prime} which satisfies 3.36. Lastly by choosing $u_{s}^{\prime}=u_{s}^{*}$ in (3.33), one obtains that $\left(u_{s}^{*}, u_{s}^{*}\right)_{1, s}$ tends to $(u, u)_{1}^{\mathrm{I}}$.

Next we state that:

$$
\begin{equation*}
U_{s} \text { in } \mathfrak{G}_{s} \text { converges in the sense of Trotter toward } U^{\mathrm{I}} \text { in } \mathfrak{H}^{\mathrm{I}} \text { if } \lim _{s \rightarrow \bar{s}}\left|P_{s}^{\mathrm{I}} U^{\mathrm{I}}-U_{s}\right|_{s}=0 . \tag{3.38}
\end{equation*}
$$

Note that U_{s} converges in the sense of Trotter toward U is equivalent to $T_{\varepsilon}\left(u_{s}, v_{s}, \theta_{s}\right)$ converges strongly toward $\left(u_{\Omega}, v_{\Omega}, \theta_{\Omega}\right)$ in $H^{1}\left(\Omega^{\mathrm{I}_{\mathrm{M} 2}}, \mathbb{R}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{2}(\Omega)$ and $\left(\left(\mu_{L} / \varepsilon^{r_{\mathrm{M} 2}}\right)^{1 / 2} e^{\mathrm{I}_{\mathrm{M} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{u \mathrm{I}_{\mathrm{M} 2}} u_{s}\right),\left(\rho_{L} \varepsilon\right)^{1 / 2} \mathcal{S}_{\varepsilon}^{v} v_{s},\left(\beta_{L} \varepsilon\right)^{1 / 2} \mathcal{S}_{\varepsilon}^{\theta} \theta_{s}\right)$ converges strongly toward $\left(\bar{\mu}_{L}^{1 / 2} e_{B}^{u}, \bar{\rho}_{L}^{1 / 2} v_{B}, \bar{\beta}_{L}^{1 / 2} \theta_{B}\right)$ in $L^{2}\left(B ; \mathbb{S}^{3} \times \mathbb{R}^{3} \times \mathbb{R}\right)$.

Lastly we conclude by making an additional assumption (H4) about the initial state and establishing the

Proposition 3.4. There hold

i) $\forall \phi \in \mathfrak{H}^{\mathrm{I}}, \quad \lim _{s \rightarrow \bar{s}}\left|P_{s}^{\mathrm{I}}\left(I-A^{\mathrm{I}}\right)^{-1} \phi-\left(I-A_{s}\right)^{-1} P_{s}^{\mathrm{I}} \phi\right|_{s}=0$,
ii) $\lim _{s \rightarrow \bar{s}}\left|P_{s}^{\mathrm{I}} U^{\mathrm{Ie}}(t)-U_{s}^{\mathrm{Ie}}(t)\right|_{s}=0$ uniformly on $[0, T]$,
iii) $\lim _{s \rightarrow \bar{s}} \int_{0}^{T}\left|P_{s}^{\mathrm{I}} F^{\mathrm{I}}(t)-F_{s}(t)\right|_{s} d t=0$.

Proof. Taking advantage of Proposition 2.1 and (3.28), it suffices to build for all z^{\prime} in a dense subspace of Z^{1} a sequence z_{s}^{\prime} in H_{s} such that if U_{s} satisfies $\left|U_{s}\right|_{s} \leq C$ and $\left(v_{s}, v_{s}\right)_{1, s}+\left(\theta_{s}, \theta_{s}\right)_{4, s} \leq C$ one has

$$
\begin{align*}
& \lim _{s \rightarrow \bar{s}}\left(v_{s}, v_{s}^{\prime}\right)_{1, s}=\left(v, v^{\prime}\right)_{1}^{\mathrm{I}}, \quad \lim _{s \rightarrow \bar{s}}\left(\theta_{s}, \theta_{s}^{\prime}\right)_{4, s}=\left(\theta, \theta^{\prime}\right)_{4}^{\mathrm{I}}, \\
& \lim _{s \rightarrow \bar{s}}\left(v_{s}^{\prime}, \theta_{s}\right)_{5, s}=\left(v^{\prime}, \theta\right)_{5}^{\mathrm{I}}, \quad \lim _{s \rightarrow \bar{s}}\left(v_{s}, \theta_{s}^{\prime}\right)_{5, s}=\left(v, \theta^{\prime}\right)_{5}^{\mathrm{I}} \tag{3.39}\\
& \lim _{s \rightarrow \bar{s}} K_{s}\left(\left(v_{s}, \theta_{s}\right),\left(v_{s}^{\prime}, \theta_{s}^{\prime}\right)\right)=K^{\mathrm{I}}\left((v, \theta),\left(v^{\prime}, \theta^{\prime}\right)\right),
\end{align*}
$$

where $\left(\left(v_{\Omega}, e_{B}^{v}\right),\left(v_{\Omega}, v_{B}\right), \theta\right)$ is the limit in the sense of Trotter of $\left(v_{s}, v_{s}, \theta_{s}\right)$. From Proposition 3.3, the choice $v_{s}^{\prime}=v_{s}^{\prime *}$ is in order, while we use θ_{s}^{\prime} defined by

$$
\theta_{s}^{\prime}(x)= \begin{cases}\theta_{\Omega}^{\prime}\left(x \mp \varepsilon e_{3}\right) & \text { a.e. } x \in \Omega_{\varepsilon}^{I}, \tag{3.40}\\ \left(\mathcal{S}^{\varepsilon} \theta\right)^{-1}\left(\theta_{B}^{\prime}\right) & \text { a.e. } x \in B_{\varepsilon},\end{cases}
$$

for any $\left(\theta_{\Omega}^{\prime}, \theta_{B}^{\prime}\right)$ in $G_{\theta}^{\mathrm{I}_{\mathrm{T}}}$ such that θ_{B}^{\prime} belongs to $H^{1}(B)$, because $\left(T_{\varepsilon} \theta_{s}^{\prime},\left(\kappa_{L} / \varepsilon^{r_{\mathrm{T}_{\mathrm{Tz}}}^{\mathrm{T}}}\right) g_{\varepsilon}^{\mathrm{I}_{\mathrm{T} 2}}\left(\varepsilon, \mathcal{S}_{\varepsilon}^{\theta} \theta_{s}^{\prime}\right)\right)$ strongly converges in $H^{1}\left(\Omega^{\mathrm{I}_{\mathrm{T} 2}}\right) \times L^{2}\left(B ; \mathbb{R}^{3}\right)$ toward $\left(\theta_{\Omega}^{\prime}, \bar{\kappa}_{L}^{\mathrm{I}} g_{B}^{\theta^{\prime}}\right)$.

Thus the convergence result can be stated as:
Theorem 3.1. Under assumptions (H1)-(H3) and

$$
\begin{equation*}
\exists U^{\mathrm{I} 0} \in U^{\mathrm{I} e}(0)+D\left(A^{\mathrm{I}}\right) \text { s.t. } \lim _{s \rightarrow \bar{s}}\left|P_{s}^{\mathrm{I}} U^{\mathrm{I} 0}-U_{s}^{0}\right|_{s}=0 \tag{H4}
\end{equation*}
$$

the solution to

$$
\begin{equation*}
\frac{d U_{s}}{d t}-A_{s}\left(U_{s}-U_{s}^{e}\right)=\left(0, f_{s}, 0\right), \quad U_{s}(0)=U_{s}^{0} \tag{3.41}
\end{equation*}
$$

converges toward the solution to

$$
\begin{equation*}
\frac{d U^{\mathrm{I}}}{d t}-A^{\mathrm{I}}\left(U^{\mathrm{I}}-U^{\mathrm{I}} e\right)=\left(0, f^{\mathrm{I}} / \rho, 0\right), \quad U^{\mathrm{I}}(0)=U^{\mathrm{I} 0} \tag{3.42}
\end{equation*}
$$

in the sense $\lim _{s \rightarrow \bar{s}}\left|P_{s}^{\mathrm{I}} U^{\mathrm{I}}(t)-U_{s}(t)\right|_{s}^{\mathrm{I}}=0, \lim _{s \rightarrow \bar{s}}\left|U_{s}(t)\right|_{s}=\left|U^{\mathrm{I}}(t)\right|^{\mathrm{I}}$ uniformly on $[0, T]$.

4. Thermomechanical presentation of the results

Here we intend to make more explicit the formulation (3.42) of the limit behavior of the structure. An over dot ${ }^{\prime .}$ denoting differentiation with respect to time, the motion equation reads as:

$$
\begin{align*}
\left.\int_{\Omega} \rho \ddot{u}_{\Omega} \cdot v_{\Omega}^{\prime}+a\left(e\left(u_{\Omega}\right)-\theta_{\Omega} \alpha I\right) \cdot e\left(v_{\Omega}^{\prime}\right)\right) d x+\int_{B} \bar{\rho}_{L} \ddot{u}_{B} \cdot v_{B}^{\prime} & +\bar{\mu}_{L}^{\mathrm{I}} a_{L}^{\mathrm{I}}\left(e_{B}^{u}-\theta_{B} \bar{\alpha}_{L}^{\mathrm{I}} I\right) \cdot e_{B}^{v^{\prime}} d x \\
& =\int_{\Omega} f \cdot v_{\Omega}^{\prime} d x+\int_{\Gamma_{\mathcal{M N}}} g^{\mathcal{M}} \cdot v_{\Omega}^{\prime} d \mathcal{H}_{2}, \quad \forall v^{\prime} \in \mathbb{S} \mathfrak{H}_{v}^{\mathrm{I}} \tag{4.1}
\end{align*}
$$

while the "energy" equation reads as:

$$
\begin{align*}
\int_{\Omega} \beta \dot{\theta}_{\Omega} \theta_{\Omega}^{\prime}+\kappa \nabla \theta_{\Omega} \cdot \nabla \theta_{\Omega}^{\prime}+\left(a e\left(\dot{u}_{\Omega}\right) \cdot \alpha I\right) \theta_{\Omega}^{\prime} d x+\int_{B} \bar{\beta}_{L} \dot{\theta}_{B} \theta_{B}^{\prime}+\bar{\kappa}_{L}^{\mathrm{I}} g_{B}^{\theta} \cdot g_{B}^{\theta^{\prime}}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}}\left(a_{L}^{\mathrm{I}}\left(e_{B}^{\dot{u}}\right) \cdot I\right) \theta_{B}^{\prime} d x & \\
& =\int_{\Gamma^{\mathcal{T N}}} g^{\mathcal{T}} \theta_{\Omega}^{\prime} d \mathcal{H}_{2}, \quad \forall \theta^{\prime} \in G_{\theta}^{\mathrm{I}_{\mathrm{T} 2}} \tag{4.2}
\end{align*}
$$

Clearly the stress $\sigma_{\Omega}^{ \pm}$, thermal flux $q_{\Omega}^{ \pm}$, displacement and temperature fields in the adhering bodies that occupy Ω^{+} and Ω^{-}satisfy the following relations written in strong form:

$$
\left\{\begin{array}{l}
\rho \ddot{u}_{\Omega}^{ \pm}-\operatorname{div} \sigma_{\Omega}^{ \pm}=f \text { in } \Omega^{ \pm}, \quad \sigma_{\Omega}^{ \pm} n=g^{\mathcal{M}^{ \pm}} \text {on } \Gamma^{\mathcal{M} N^{ \pm}} \tag{4.3}\\
\sigma_{\Omega}^{ \pm}=a\left(e\left(u_{\Omega}^{ \pm}\right)-\theta_{\Omega}^{ \pm} \alpha I\right) \text { in } \Omega^{ \pm} \\
\beta \dot{\theta}_{\Omega}^{ \pm}-\operatorname{div} q_{\Omega}^{ \pm}+a e\left(\dot{u}_{\Omega}^{ \pm}\right) \cdot \alpha I=0 \text { in } \Omega^{ \pm}, \quad q_{\Omega}^{ \pm} \cdot n=g^{\mathcal{T}} \pm \text { on } \Gamma^{\mathcal{T} N^{ \pm}} \\
q_{\Omega}^{ \pm}=\kappa \nabla \theta_{\Omega}^{ \pm} \text {in } \Omega^{ \pm}
\end{array}\right.
$$

where n denotes the outward normal to Ω, together with a thermomechanical contact condition along S, the common boundary of Ω^{+}and Ω^{-}. This corresponds to the transient response to the loading $\left(f, g^{\mathcal{M}}, g^{\mathcal{T}}\right)$ of each adhering body clamped on $\Gamma^{\mathcal{M} \mathrm{D}^{ \pm}}$maintained at a uniform temperature T_{0} on $\Gamma^{\mathcal{T} \mathrm{D}^{ \pm}}$and thermomechanically linked along S. These contact conditions, which stem from the limit behavior of the adhesive layer, can be deduced from the various expressions of the two integrals on B in $4.1-4.2$. The motion and "energy" equations will be formulated in the form:

$$
\begin{align*}
\mathcal{M}_{\Omega}\left(v_{\Omega}^{\prime}\right)+\mathcal{M}_{B}\left(v_{B}^{\prime}\right) & =\int_{\Omega} f \cdot v_{\Omega}^{\prime} d x+\int_{\Gamma^{\mathcal{M}}} g^{\mathcal{M}} \cdot v_{\Omega}^{\prime} d \mathcal{H}_{2}, \quad \forall v^{\prime} \in V^{\mathrm{I}_{\mathrm{M} 2}} \tag{4.4}\\
\mathcal{T}_{\Omega}\left(\theta_{\Omega}^{\prime}\right)+\mathcal{T}_{B}\left(\theta_{B}^{\prime}\right) & =\int_{\Gamma^{\mathcal{T}} \mathrm{N}} g^{\tau} \cdot \theta_{\Omega}^{\prime} d \mathcal{H}_{2}, \quad \forall \theta^{\prime} \in G^{\mathrm{I}_{\mathrm{T} 2}} \tag{4.5}
\end{align*}
$$

Besides the singular case $\mathrm{I}_{\mathrm{M} 2}=0$, we may distinguish two main cases depending on whether e_{B}^{v} depends explicitly on $v_{B}\left(\mathrm{I}_{\mathrm{M} 2}=1,2\right)$ or $\operatorname{not}\left(\mathrm{I}_{\mathrm{M} 2}=3,4\right)$.

When $\mathrm{I}_{\mathrm{M} 2}=1,2$, as $e_{B}^{v}=\partial_{3} v_{B} \otimes_{S} e_{3}$, one has:

$$
\begin{cases}\mathrm{I}_{\mathrm{M} 2}=1, & V^{\mathrm{I} \mathrm{M} 2}:=\left\{\left(v_{\Omega}, v_{B}\right) \in H_{\Gamma^{M D}}^{1}\left(\Omega \backslash S ; \mathbb{R}^{3}\right) \times H_{\partial_{3}}\left(B ; \mathbb{R}^{3}\right) \text { s.t. } \gamma_{S}\left(v_{\Omega}^{ \pm}\right)=\gamma_{S^{ \pm}}\left(v_{B}\right)\right\} \\ \mathrm{I}_{\mathrm{M} 2}=2, & V^{\mathrm{I} \mathrm{M} 2}:=\left\{\left(v_{\Omega}, v_{B}\right) \in H_{\Gamma^{M \mathrm{D}}}^{1}\left(\Omega ; \mathbb{R}^{3}\right) \times H_{\partial_{3}}\left(B ; \mathbb{R}^{3}\right) \text { s.t. } \partial_{3} v_{B}=0, \gamma_{S}\left(v_{\Omega}\right)=\gamma_{S^{ \pm}}\left(v_{B}\right)\right\} \\ & \mathcal{M}_{\Omega}\left(v_{\Omega}^{\prime}\right):=\int_{\Omega \mid S} \rho \ddot{u}_{\Omega} \cdot v_{\Omega}^{\prime}+a\left(e\left(u_{\Omega}\right)-\theta_{\Omega} \alpha I\right) \cdot e\left(v_{\Omega}^{\prime}\right) d x \tag{4.8}\\ & \mathcal{M}_{B}\left(v_{B}^{\prime}\right):=\int_{B} \bar{\rho}_{L} \ddot{u}_{B} \cdot v_{B}^{\prime}+\bar{\mu}_{L}^{\mathrm{I}} a_{L}\left(\partial_{3} u_{B} \otimes_{S} e_{3}-\bar{\alpha}_{L}^{I} \theta_{B} I\right) \cdot \partial_{3} v_{B}^{\prime} \otimes_{S} e_{3} d x .\end{cases}
$$

When $\mathrm{I}_{\mathrm{M} 2}=2, \mathcal{M}_{B}\left(v_{B}^{\prime}\right)$ is equal to $2 \int_{S} \bar{\rho}_{L} \ddot{u}_{\Omega} \cdot v_{\Omega}^{\prime} d \mathcal{H}_{2}$ and vanishes when $\bar{\rho}_{L}=0$. One deduces:

$$
\begin{equation*}
-\llbracket \sigma e_{3} \rrbracket=2 \bar{\rho}_{L} \gamma_{S}\left(\ddot{u}_{\Omega}\right) \tag{4.9}
\end{equation*}
$$

so that the two adhering bodies are stuck together (i.e. $\llbracket u_{\Omega} \rrbracket=0$) when $\bar{\rho}_{L}>0$ and perfectly stuck together (i.e. $\llbracket u_{\Omega} \rrbracket=\llbracket \sigma_{\Omega} e_{3} \rrbracket=0$) when $\bar{\rho}_{L}=0$.

When $\mathrm{I}_{\mathrm{M} 2}=1$, one has:

$$
\begin{equation*}
\mathcal{M}_{B}\left(v_{B}^{\prime}\right)=\int_{B} \bar{\rho}_{L} \ddot{u}_{B} \cdot v_{B}^{\prime}+\bar{\mu}_{L}^{\mathrm{I}} a_{L}\left(\partial_{3} u_{B} \otimes_{S} e_{3}-\bar{\alpha}_{L}^{\mathrm{I}} \theta_{B} I\right) \cdot \partial_{3} v_{B}^{\prime} \otimes_{S} e_{3} d x \tag{4.10}
\end{equation*}
$$

and the mechanical contact condition reads as:

$$
\begin{equation*}
\mp \sigma_{\Omega}^{ \pm} e_{3}=\frac{1}{2} \int_{-1}^{1} \bar{\rho}_{L}\left(1+x_{3}\right) \ddot{u}_{B} d x_{3}+\bar{\mu}_{L}^{I} a_{L}\left(\llbracket u_{\Omega} \rrbracket \otimes_{S} e_{3}-\bar{\alpha}_{L}^{\mathrm{I}}\left(\frac{1}{2} \int_{-1}^{1} \theta_{B} d x_{3}\right) I\right) e_{3} . \tag{4.11}
\end{equation*}
$$

Therefore, if $\bar{\rho}_{L}=0$ and θ_{B} is independent of x_{3} (i.e. $\mathrm{I}_{\mathrm{T} 2}>1$), one deduces:

$$
\begin{align*}
u_{B} & =\operatorname{Aff}\left(u_{\Omega}\right) \tag{4.12}\\
\operatorname{Aff}\left(u_{\Omega}\right) & :=\left\langle u_{\Omega}\right\rangle+\frac{1}{2} x_{3} \llbracket u_{\Omega} \rrbracket, \quad\left\langle u_{\Omega}\right\rangle:=\frac{1}{2}\left(\gamma_{S}\left(u_{\Omega}^{+}\right)+\gamma_{S}\left(u_{\Omega}^{-}\right)\right) \tag{4.13}\\
\mathcal{M}_{B}\left(v_{B}^{\prime}\right) & =2 \bar{\mu}_{L}^{\mathrm{I}} \int_{S} a_{L}\left(\llbracket u_{\Omega} \rrbracket \otimes_{S} e_{3}-\bar{\alpha}_{L}^{\mathrm{I}} \gamma_{S}\left(\theta_{\Omega}\right) I\right) \cdot \llbracket v_{\Omega}^{\prime} \rrbracket \otimes_{S} e_{3} d \widehat{x} \tag{4.14}\\
\mp \sigma_{\Omega}^{ \pm} e_{3} & =\bar{\mu}_{L}^{\mathrm{I}} a_{L}\left(\llbracket u_{\Omega} \rrbracket \otimes_{S} e_{3}-\bar{\alpha}_{L}^{\mathrm{I}} \gamma_{S}\left(\theta_{\Omega}\right) I\right) e_{3} . \tag{4.15}
\end{align*}
$$

There is an elastic pull-back with a residual term between the two adhering bodies. The general case for the limit mechanical behavior of the adhesive layer, which clearly appears as a continuous distribution of thermoelastic strings orthogonal to S, will be discussed further.

As regards to the thermal behavior, one has:

$$
\begin{align*}
& \mathcal{T}_{\Omega}\left(\theta_{\Omega}^{\prime}\right)=\int_{\Omega \backslash S} \beta \theta_{\Omega} \theta_{\Omega}^{\prime}+\kappa \nabla \theta_{\Omega} \cdot \nabla \theta_{\Omega}^{\prime}+\left(a e\left(\dot{u}_{\Omega}\right) \cdot \alpha I\right) \theta_{\Omega}^{\prime} d x \tag{4.16}\\
& \mathcal{T}_{B}\left(\theta_{B}^{\prime}\right)=\int_{B} \bar{\beta}_{L} \theta_{B} \theta_{B}^{\prime}+\bar{\kappa}_{L}^{\mathrm{I}} g_{B}^{\theta} \cdot g_{B}^{\theta^{\prime}}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}}\left(a_{L}\left(\partial_{3} \dot{u}_{B} \otimes_{S} e_{3}\right) \cdot I\right) \theta_{B}^{\prime} d x \tag{4.17}
\end{align*}
$$

We may therefore distinguish two main cases: $\mathrm{I}_{\mathrm{T} 2} \leq 2$ when $g_{B}^{\theta}=0$ or $\left(0, \partial_{3} \theta_{B}\right)$ and $\mathrm{I}_{\mathrm{T} 2}=3,4$ when $g_{B}^{\theta}=\left(\widehat{\nabla} \theta_{B}, 0\right)$ or 0.

If $\mathrm{I}_{\mathrm{T} 2} \leq 2$, the limit thermal behavior of the adhesive could be considered as the one of a continuous distribution of strings orthogonal to S with specific heat coefficient $\bar{\beta}_{L}$, thermal conductivity $\bar{\kappa}_{L}^{\mathrm{I}}$ (thus insulating strings when $\mathrm{I}_{\mathrm{T} 2}=0$ whereas perfectly conducting ones when $\mathrm{I}_{\mathrm{T} 2}=0$) subjected to heat sources of lineic density $\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} a_{L}\left(\partial_{3} \dot{u}_{B} \otimes_{S} e_{3}\right) \cdot I$ (vanishing when $\mathrm{I}_{\mathrm{M} 2}=0$ or 2). Therefore the thermal contact condition between the adherent bodies reads as:

- $\mathrm{I}_{\mathrm{T} 2}=0, \llbracket \theta_{\Omega} \rrbracket \neq 0, q_{\Omega}^{ \pm} \cdot e_{3}=0$: perfectly insulating interface,
- $\mathrm{I}_{\mathrm{T} 2}=2, \llbracket \theta_{\Omega} \rrbracket=0,-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=2 \bar{\beta}_{L} \gamma_{S}\left(\dot{\theta}_{\Omega}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}}\left(\llbracket \dot{u}_{\Omega} \rrbracket \otimes_{S} e_{3}\right) \cdot a_{L} I$: imperfect thermal contact, perfect when $\mathrm{I}_{\mathrm{T} 1}=0$ and $\mathrm{I}_{\mathrm{M} 2}=0$ or 2 .

When $\mathrm{I}_{\mathrm{T} 2}=1$ we have:

$$
\begin{equation*}
\mp\left(q_{\Omega}^{ \pm} \cdot e_{3}\right)=\frac{1}{2} \int_{-1}^{1}\left(1+x_{3}\right)\left(\bar{\beta}_{L} \dot{\theta}_{B}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} a_{L}\left(\partial_{3} \dot{u}_{B} \otimes_{S} e_{3}\right) \cdot I\right) d x_{3}+\bar{\kappa}_{L}^{\mathrm{I}} \llbracket \theta_{\Omega} \rrbracket \tag{4.18}
\end{equation*}
$$

thus, when $\bar{\beta}_{L}=0$, there exists a contact conduction whose contact conductance is $\bar{\kappa}_{L}^{\mathrm{I}}$ and a source $\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} a_{L} \llbracket \dot{u}_{\Omega} \rrbracket \otimes_{S} e_{3} \cdot I$. The general case will be treated further.

When $\mathrm{I}_{\mathrm{T} 2}=3,4$, we are indeed dealing with a material surface with a specific heat coefficient $\bar{\beta}_{L}$, a thermal conductivity $\bar{\kappa}_{L}^{\mathrm{I}}$ (thus perfectly conducting when $\mathrm{I}_{\mathrm{T} 2}=4$) subjected to a heat source $\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} a_{L} \llbracket \dot{u}_{\Omega} \rrbracket \otimes_{S} e_{3} \cdot I$. So, the imperfect thermal contact condition reads as (the symbol $\widehat{\Delta}$ denoting the Laplacian with respect to the sole coordinates x_{1} and x_{2}):

- $\mathrm{I}_{\mathrm{T} 2}=3, \llbracket \theta_{\Omega} \rrbracket=0,-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=2 \bar{\beta}_{L} \gamma_{S}\left(\dot{\theta}_{\Omega}\right)-\bar{\kappa}_{L}^{\mathrm{I}} \widehat{\Delta} \gamma_{S}\left(\theta_{s}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \llbracket \dot{u}_{\Omega} \rrbracket \otimes_{S} e_{3} \cdot a_{L} I$,
- $\mathrm{I}_{\mathrm{T} 2}=4, \llbracket \theta_{\Omega} \rrbracket=0, \gamma_{S}\left(\theta_{\Omega}\right)=C$, possibly T_{0} if $\mathcal{H}_{1}\left(\gamma^{\mathcal{T} \mathrm{D}}\right)>0,-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=2 \bar{\beta}_{L} \gamma_{S}\left(\dot{\theta}_{s}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \llbracket \dot{u}_{\Omega} \rrbracket \otimes_{S} e_{3} \cdot a_{L} I$,
the thermal contact being perfect when $\mathrm{I}_{\mathrm{T} 1}=0$ and $\mathrm{I}_{\mathrm{M} 2}=2$.
When $\mathrm{I}_{\mathrm{M} 2}=0, \mathcal{M}_{B}\left(v_{B}^{\prime}\right)$ reduces to $\int_{B} \bar{\rho}_{L} \ddot{u}_{B} \cdot v_{B}^{\prime} d x$ which implies $\sigma_{\Omega}^{\mathrm{I}} e_{3}=0$: the two adhering bodies are free to separate. The thermal contact condition was detailed in the previous study of the case $\mathrm{I}_{\mathrm{M} 2}=1$.

When $\mathrm{I}_{\mathrm{M} 2}=3,4$, by using $e_{B}^{\Psi}=\Psi \otimes_{S} e_{3}, \Psi$ arbitrary in $C_{0}^{\infty}\left(B ; \mathbb{R}^{3}\right), 4.1$ yields $\left[a_{L}\left(e_{B}^{u}-\alpha_{L}^{\mathrm{I}} \bar{\theta}_{B} I\right)\right]^{\perp}=0$. Then, if \tilde{a}_{L} is the element of $\operatorname{Lin}\left(\mathbb{S}^{2}\right)$ defined by:

$$
\begin{equation*}
\tilde{a}_{L} q \cdot q:=\operatorname{Inf}\left\{a_{L} e \cdot e ; e \in \mathbb{S}^{3} \text { s.t. } \widehat{e}=q\right\}, \forall q \in \mathbb{S}^{2} \tag{4.19}
\end{equation*}
$$

one has $\widehat{a_{L}\left(e_{B}^{u}-\bar{\alpha}_{L}^{\mathrm{I}} \theta_{B} I\right)}=\widetilde{a}_{L}\left(\widehat{e\left(u_{B}\right)}-\bar{\alpha}_{L}^{\mathrm{I}} \theta_{B} \widehat{I}\right)$ and consequently:

$$
\begin{align*}
\mathcal{M}_{B}\left(v_{B}^{\prime}\right) & =\int_{B} \bar{\rho}_{L} \ddot{u}_{B} \cdot \dot{v}_{B}^{\prime}+\bar{\mu}_{L}^{\mathrm{I}} \widetilde{a}_{L}\left(\widehat{e\left(u_{B}\right)}-\bar{\alpha}_{L}^{\mathrm{I}} \theta_{B} \widehat{I}\right) \cdot \widehat{e\left(v_{B}^{\prime}\right)} d x, \forall\left(v_{\Omega}^{\prime}, v_{B}^{\prime}\right) \in V^{\mathrm{IM2}} \tag{4.20}\\
\mathcal{T}_{B}\left(\theta_{B}^{\prime}\right) & =\int_{B}\left(\bar{\beta}_{L}+\bar{\mu}_{L}^{\mathrm{I}}\left(\bar{\alpha}_{L}^{\mathrm{I}}\right)^{2}\left(a_{L} I \cdot I-\widetilde{a}_{L} \widehat{I} \cdot \widehat{I}\right)\right) \dot{\theta}_{B} \theta_{B}^{\prime}+\bar{\kappa}_{L}^{\mathrm{I}} g_{B}^{\theta} \cdot g_{B}^{\theta^{\prime}}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}}\left(\widetilde{a}_{L} \widehat{e}\left(\dot{u}_{B}\right) \cdot \widehat{I}\right) \theta_{B}^{\prime} d x, \forall\left(\theta_{\Omega}^{\prime}, \theta_{B}^{\prime}\right) \in G_{\theta}^{\mathrm{I} \mathrm{M} 2} \tag{4.21}\\
V^{3} & :=\left\{v=\left(v_{\Omega}, v_{B}\right) \in H_{\Gamma \mathcal{M D}}^{1}\left(\Omega ; \mathbb{R}^{3}\right) \times V_{\mathrm{KL}}(B) ; \gamma_{S}\left(u_{\Omega 3}\right)=C, u_{B}^{M}=\gamma_{S}\left(\widehat{u}_{\Omega}\right), \widehat{\nabla} u_{B}^{F}=0\right\} \tag{4.22}\\
V^{4} & :=\left\{v=\left(v_{\Omega}, v_{B}\right) \in H_{\Gamma \mathcal{M D}}^{1}\left(\Omega ; \mathbb{R}^{3}\right) \times V_{\mathrm{KL}}(B) ; \widehat{e}\left(\gamma_{S}\left(\widehat{u}_{\Omega}\right)\right)=0, u_{B}^{F}=\gamma_{S}\left(u_{\Omega 3}\right)\right\} . \tag{4.23}
\end{align*}
$$

An interesting phenomena is highlighted: the appearance of an added specific heat coefficient

$$
\begin{equation*}
\bar{\beta}_{L}^{\text {add }}:=\bar{\mu}_{L}^{\mathrm{I}}\left(\bar{\alpha}_{L}^{\mathrm{I}}\right)^{2}\left(a_{L} I \cdot I-\widetilde{a} \widehat{I} \cdot \widehat{I}\right) \tag{4.24}
\end{equation*}
$$

always positive unless $\bar{\alpha}_{L}^{\mathrm{I}}(a I)^{\perp}=0$, in the limit behavior of the adhesive layer, while the stiffness involves \widetilde{a} in place of a as in the Kirchhoff-Love anisotropic plates theory (see [10, 16, 17]).

So, when $\mathrm{I}_{\mathrm{M} 2}=3$, we have

$$
\begin{equation*}
\mathcal{M}_{B}\left(v_{B}^{\prime}\right)=2 \int_{S} \bar{\rho}_{L} \gamma_{S}\left(\widehat{u ̈}_{\Omega}\right) \cdot \gamma_{S}\left(\widehat{v}_{\Omega}^{\prime}\right)+\bar{\mu}_{L}^{\mathrm{I}} \widetilde{a}_{L}\left(\widehat{e}\left(\gamma_{S}\left(\widehat{u}_{\Omega}\right)\right)-\frac{1}{2} \bar{\alpha}_{L}^{\mathrm{I}} \int_{-1}^{1} \theta_{B} d x_{3} \widehat{I}\right) \cdot \widehat{e}\left(\gamma_{S}\left(\widehat{v}_{\Omega}^{\prime}\right)\right) d x \tag{4.25}
\end{equation*}
$$

and the mechanical contact condition between the adhering bodies reads as:

- $\llbracket u_{\Omega} \rrbracket=0$
- $u_{\Omega 3}$ constant on $S, \int_{S}\left(\sigma_{\Omega}^{ \pm} e_{3}\right) \cdot e_{3} d \mathcal{H}_{2}=0$
$-\llbracket \widehat{\sigma_{\Omega} e_{3}} \rrbracket=2\left(\bar{\rho}_{L} \gamma_{S}\left(\widehat{\ddot{u}}_{\Omega}\right)-\bar{\mu}_{L}^{\mathrm{I}} \widehat{\operatorname{div}}\left(\widetilde{a}_{L}\left(\widehat{e}\left(\gamma_{S}\left(\widehat{u}_{\Omega}\right)\right)\right)-\frac{1}{2} \bar{\alpha}_{L}^{\mathrm{I}} \int_{-1}^{1} \theta_{B} d x_{3} \widehat{I}\right)\right)$.
It looks like a deformable material surface which is stuck between the adhering bodies and enjoys only in-plane strains.

The nature of the thermal behavior of the adhesive was already examined but here we can make more explicit the thermal contact conditions:

- $\mathrm{I}_{\mathrm{T} 2}=0, \llbracket \theta_{\Omega} \rrbracket \neq 0, \mp\left(q_{\Omega}^{ \pm} \cdot e_{3}\right)=0$: perfectly insulating interface,
- $\mathrm{I}_{\mathrm{T} 2}=1, \llbracket \theta_{\Omega} \rrbracket \neq 0, \mp\left(q_{\Omega}^{ \pm} \cdot e_{3}\right)=\frac{1}{2}\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \int_{-1}^{1}\left(1+x_{3}\right) \dot{\theta}_{B} d x_{3}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{e}\left(\gamma_{S}\left(\widehat{\dot{u}}_{\Omega}\right)\right) \cdot \widehat{I}+\bar{\kappa}_{L}^{\mathrm{I}} \llbracket \theta_{\Omega} \rrbracket:$ contact conduction,
- $\mathrm{I}_{\mathrm{T} 2}=2, \llbracket \theta_{\Omega} \rrbracket=0,-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \gamma_{S}\left(\dot{\theta}_{\Omega}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a} \widehat{e}\left(\gamma_{S}\left(\widehat{u}_{\Omega}\right)\right) \cdot \widehat{I}:$ imperfect thermal contact,
- $\mathrm{I}_{\mathrm{T} 2}=3, \llbracket \theta_{\Omega} \rrbracket=0,-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \gamma_{S}\left(\dot{\theta}_{\Omega}\right)-\bar{\kappa}_{L}^{\mathrm{I}} \widehat{\Delta} \gamma_{S}\left(\theta_{\Omega}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{e}\left(\gamma_{S}\left(\dot{u}_{\Omega}\right)\right) \cdot \widehat{I}$: imperfect thermal contact,
- $\mathrm{I}_{\mathrm{T} 2}=4, \llbracket \theta_{\Omega} \rrbracket=0, \gamma_{S}\left(\theta_{\Omega}\right)$ constant on S, possibly equal to T_{0} if $\mathcal{H}_{1}\left(\gamma^{\mathcal{T} \mathrm{D}}\right)>0,-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \gamma_{S}\left(\dot{\theta}_{\Omega}\right)+$ $\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widehat{e}\left(\gamma_{S}\left(\dot{u}_{\Omega}\right)\right) \cdot \widehat{I}:$ imperfect thermal contact.

When $\mathrm{I}_{\mathrm{M} 2}=4$ one has:

$$
\begin{gather*}
\mathcal{M}_{B}\left(v_{B}^{\prime}\right)=2 \int_{S} \bar{\rho}_{L} \ddot{u}_{\Omega 3} v_{\Omega 3}^{\prime}+\bar{\mu}_{L}^{\mathrm{I}}\left(\widetilde{a}_{L} \widehat{e}\left(u_{B}^{M}\right) \cdot \widehat{e}\left(v_{B}^{\prime M}\right)+\frac{1}{3} \widetilde{a}_{L} \widehat{D^{2}} \gamma_{S}\left(u_{\Omega 3}\right) \cdot \widehat{D^{2}} \gamma_{S}\left(v_{\Omega 3}^{\prime}\right)\right. \\
\left.-\bar{\alpha}_{L}^{\mathrm{I}}\left(\frac{1}{2} \int_{-1}^{1} \theta_{B} d x_{3}\right) \widetilde{a}_{L} \widehat{I} \cdot \widehat{e}\left(v_{B}^{\prime M}\right)+\int_{-1}^{1} x_{3} \theta_{B} d x_{3} \widetilde{a}_{L} \widehat{I} \cdot \widehat{D^{2}} \gamma_{S} v_{\Omega 3}^{\prime}\right) d \mathcal{H}_{2} \tag{4.26}\\
\mathcal{T}_{B}\left(\theta_{B}^{\prime}\right)=\int_{B}\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \dot{\theta}_{B} \theta_{B}^{\prime}+\bar{\kappa}_{L}^{\mathrm{I}} g_{B}^{\theta} \cdot g_{B}^{\theta^{\prime}}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}}\left(\widetilde{a}\left(\widehat{e}\left(u_{B}^{M}\right)-x_{3} \widehat{D^{2}} \gamma_{S}\left(u_{\Omega 3}\right)\right) \cdot \widehat{I}\right) \theta_{B}^{\prime} d x . \tag{4.27}
\end{gather*}
$$

Because $g_{B}^{\mathcal{T}}=\left(\widehat{\nabla} \mathcal{T}_{B}, 0\right)$ when $\mathrm{I}_{\mathrm{T} 2}=3$, the limit behavior of the adhesive layer is then similar to the one observed by [18] for thin linearly thermoelastic plates: a flexural problem for the component of the displacement field normal to S with a coupled membrane-thermal problem for the in-plane component of the displacement and the temperature.

The mechanical contact condition between the adhering bodies reads as:

- $\llbracket u_{\Omega} \rrbracket=0$
- $\widehat{e}\left(\gamma_{S}\left(\widehat{u}_{\Omega}\right)\right)=0$
- $-\llbracket\left(\sigma_{\Omega} e_{3}\right) \cdot e_{3} \rrbracket=2 \bar{\rho}_{L} \gamma_{S}\left(\ddot{u}_{\Omega 3}\right)+\frac{1}{3} \widehat{D^{2}}\left(\widetilde{a}_{L} \widehat{D^{2}} \gamma_{S}\left(u_{\Omega 3}\right)\right)$
the material surface inserted between the two adhering bodies may be considered as a second-grade elastic one, enjoying only a motion orthogonal to S (a flexural problem ...).

On the other hand, the thermal contact condition reads as:

$$
\begin{equation*}
\llbracket \theta_{\Omega} \rrbracket=0, \quad-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=2\left[\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \dot{\theta}_{\Omega}-\bar{\kappa}_{L}^{\mathrm{I}} \widehat{\Delta}_{S}\left(\theta_{\Omega}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{e}\left(u_{B}^{M}\right) \cdot \widehat{I}\right] \tag{4.29}
\end{equation*}
$$

it involves the additional variable u_{B}^{M} defined on S with values in \mathbb{R}^{2} satisfying

$$
\begin{equation*}
\widehat{\sigma}_{B}=\bar{\mu}_{L}^{\mathrm{I}} \widetilde{a}_{L}\left(\widehat{e}\left(u_{B}^{M}\right)-\bar{\alpha}_{L}^{\mathrm{I}} \gamma_{S}\left(\theta_{\Omega}\right) \widehat{I}\right), \quad \widehat{\operatorname{div}} \widehat{\sigma}_{B}=0 \tag{4.30}
\end{equation*}
$$

All this corresponds to a thermomechanical material surface occupying S whose material constants are given by $\bar{\beta}+\bar{\beta}_{L}^{\text {add }}, \bar{\kappa}_{L}^{\mathrm{I}}, \bar{\alpha}_{L}^{I}, \bar{\mu}_{L}^{\mathrm{I}} \widetilde{a}$ subjected to an inner heat source and free of mechanical loading. Of course u_{B}^{M} may be eliminated and consequently the thermal contact condition along S is a non local relation (in time, only) between the normal flux $\left(q_{\Omega}^{ \pm} \cdot e_{3}\right)(\widehat{x}, t)$ at the courant time t and the whole history of $\gamma_{S}\left(\theta_{\Omega}\right)(\widehat{x}, \tau), 0 \leq \tau \leq t$.

When $\mathrm{I}_{\mathrm{T} 2}=4, \bar{\kappa}_{L}^{\mathrm{I}}=\infty$ compels $\widehat{\nabla} \gamma_{S}\left(\theta_{\Omega}\right)=0$, so that S is an isothermal surface possibly at T_{0} when $\mathcal{H}_{1}\left(\gamma^{\mathcal{T} \mathrm{D}}\right)>0$, while the mechanical contact is similar to 4.28, 4.30).

This is also the case when $\mathrm{I}_{\mathrm{T} 2}=0$ or 2 but with thermal conditions like:

- $\mathrm{I}_{\mathrm{T} 2}=0, \quad \llbracket \theta_{\Omega} \rrbracket \neq 0, \quad \mp q_{\Omega}^{ \pm} \cdot e_{3}=0$: perfectly insulating wall,
- $\mathrm{I}_{\mathrm{T} 2}=2, \quad \llbracket \theta_{\Omega} \rrbracket=0, \quad-\llbracket q_{\Omega} \cdot e_{3} \rrbracket=2\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \gamma_{S}\left(\dot{\theta}_{\Omega}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{e}\left(u_{B}^{M}\right) \cdot \widehat{I}$.

When $\mathrm{I}_{\mathrm{T} 1}=1$, as the additional temperature variable θ_{B} does depend on x_{3}, the limit thermoelastic behavior of the adhesive layer cannot be interpreted in terms of a material surface.

Thus, in order to clarify the thermomechanical condition between the two adhering bodies, difficulties occur when $\mathrm{I}_{\mathrm{M} 2}=1$ or $4 \mathrm{and} /$ or $\mathrm{I}_{\mathrm{T} 2}=1$, which correspond to the cases when the additional state variable u_{B} depends on x_{3} $\left(\mathrm{I}_{\mathrm{M} 2}=1\right)$, does not explicitly depends on the traces on S of the displacements of the adhering bodies $\left(\mathrm{I}_{\mathrm{M} 2}=4\right)$ and/or the additional state variable θ_{B} depends on $x_{3}\left(\mathrm{I}_{\mathrm{T} 2}=1\right)$. In some of these cases, by adding a condition like $\mathrm{I}_{\mathrm{M} 1}=0$ (light adhesive layer) or $\mathrm{I}_{\mathrm{T} 1}=0$ (low specific heat coefficient) we again meet thermomechanical contact conditions involving the traces on S of the state variables of the adhering bodies only as in the cases we listed previously.

When $\mathrm{I}_{\mathrm{M} 2}=1, u_{B}^{0}:=u_{B}-\operatorname{Aff}\left(u_{\Omega}\right)$ satisfies

$$
\left\{\begin{array}{l}
u_{B}^{0} \in H_{\partial_{3}, S^{+} \cup S^{-}}\left(B ; \mathbb{R}^{3}\right):=\left\{u \in H_{\partial_{3}}\left(B ; \mathbb{R}^{3}\right) \text { s.t. } \gamma_{S^{ \pm}}(u)=0\right\}, \tag{4.31}\\
\int_{B} \bar{\rho}_{L} \ddot{u}_{B}^{0} \cdot v^{\prime}+\bar{\mu}_{L}^{\mathrm{I}} a_{L}\left(\partial_{3} u_{B}^{0} \otimes_{S} e_{3}\right) \cdot\left(\partial_{3} v^{\prime} \otimes_{S} e_{3}\right) d x \\
=-\int_{B} \rho_{L} A \ddot{A f f}\left(u_{\Omega}\right) \cdot v^{\prime}+\theta_{B} \bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} a_{L} \partial_{3} v_{B}^{\prime} \otimes_{S} e_{3} \cdot I d x, \forall v^{\prime} \in H_{\partial_{3}, S^{+} \cup S^{-}}\left(B ; \mathbb{R}^{3}\right)
\end{array}\right.
$$

so that except when $\mathrm{I}_{\mathrm{M} 1}=0$ and $\mathrm{I}_{\mathrm{T} 2} \neq 0,1, u_{B}$ differs from $\operatorname{Aff}\left(u_{\Omega}\right)$ and the mechanical condition (4.11) does not involves the instantaneous values of the traces on S of $u_{\Omega}^{ \pm}$and $\theta_{\Omega}^{ \pm}$. Of course, as the equations governing the evolutions of u_{B} and θ_{B} can be solved in terms of the whole history of the traces on S of $u_{\Omega}^{ \pm}$and $\theta_{\Omega}^{ \pm}$, the contact condition at ($\left.\widehat{x}, t\right)$ is a rather complex function of the history of $\gamma_{S}\left(u_{\Omega}^{ \pm}\right)(\widehat{x}, \cdot)$ and $\gamma_{S}\left(\theta_{\Omega}^{ \pm}\right)(\widehat{x}, \cdot)$ and not only of the history of the jumps $\llbracket u_{\Omega} \rrbracket(\widehat{x}, \cdot), \llbracket \theta_{\Omega} \rrbracket(\widehat{x}, \cdot)$.

When $\mathrm{I}_{\mathrm{T} 2}=1$, if $\operatorname{Aff}\left(\theta_{\Omega}\right)$ is defined similarly as $\operatorname{Aff}\left(u_{\Omega}\right)$ (see 4.13), $\theta_{B}^{0}:=\theta_{B}-\operatorname{Aff}\left(\theta_{\Omega}\right)$ satisfies:

$$
\left\{\begin{array}{l}
\theta_{B}^{0} \in H_{\partial_{3}, S^{+} \cup S^{-}}(B), \tag{4.32}\\
\int_{B} \bar{\beta}_{L} \dot{\theta}_{B}^{0} \theta^{\prime}+\bar{\kappa}_{L}^{\mathrm{I}} \partial_{3} \theta_{B}^{0} \partial_{3} \theta_{B}^{\prime} d x=-\int_{B}\left(\bar{\beta}_{L} \operatorname{Aff}\left(\theta_{\Omega}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} a_{L}\left(\partial_{3} \dot{u}_{B} \otimes_{S} e_{3}\right) \cdot I\right) \theta^{\prime} d x, \quad \text { if } \mathrm{I}_{\mathrm{M} 2}=1,2 \\
\int_{B}\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \dot{\theta}_{B}^{0} \theta_{B}^{\prime}+\bar{\kappa}_{L}^{\mathrm{I}} \partial_{3} \theta_{B}^{0} \partial_{3} \theta_{B}^{\prime} d x=\left\{\begin{array}{l}
-\int_{B}\left(\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \dot{A f f}\left(\theta_{\Omega}\right)+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{e}\left(\gamma_{S}\left(\widehat{u}_{\Omega}\right)\right) \cdot \widehat{I}\right) \theta^{\prime} d x, \text { if } \mathrm{I}_{\mathrm{M} 2}=3 \\
-\int_{B}\left(\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \dot{A f f}\left(\theta_{\Omega}\right)-x_{3} \bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{D}^{2} \gamma_{S}\left(u_{\Omega 3}\right) \cdot \widehat{I}\right) \theta^{\prime} d x, \text { if } \mathrm{I}_{\mathrm{M} 2}=4 .
\end{array}\right.
\end{array}\right.
$$

Except when $\left(\mathrm{I}_{\mathrm{M} 2}, \mathrm{I}_{\mathrm{T} 1}\right)=(2,0), \operatorname{Aff}\left(\theta_{\Omega}\right)$ does not solve (4.32), the thermal contact condition which at time t reads as:

$$
\mp q_{\Omega}^{ \pm} \cdot e_{3}=\left\{\begin{array}{l}
\frac{1}{2} \int_{-1}^{1}\left(1+x_{3}\right) \bar{\beta}_{L} \dot{\theta}_{B}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} a_{L}\left(\partial_{3} \dot{u}_{B} \otimes_{S} e_{3}\right) \cdot I d x_{3}+\bar{\kappa}_{L}^{\mathrm{I}} \llbracket \theta_{\Omega} \rrbracket, \quad \text { if } \mathrm{I}_{\mathrm{M} 2}=1,2 \tag{4.33}\\
\frac{1}{2} \int_{-1}^{1}\left(1+x_{3}\right)\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \dot{\theta}_{B} d x_{3}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{e}\left(\gamma_{S}\left(\widehat{\dot{u}}_{\Omega}\right)\right) \cdot \widehat{I}+\bar{\kappa}_{L}^{\mathrm{I}} \llbracket \theta_{\Omega} \rrbracket, \quad \text { if } \mathrm{I}_{\mathrm{M} 2}=2,3 \\
\frac{1}{2} \int_{-1}^{1}\left(1+x_{3}\right)\left(\bar{\beta}_{L}+\bar{\beta}_{L}^{\text {add }}\right) \dot{\theta}_{B}+\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} \widetilde{a}_{L} \widehat{D^{2}} \gamma_{S}\left(u_{\Omega 3}\right) \cdot \widehat{I} x_{3} d x_{3}+\bar{\kappa}_{L}^{\mathrm{I}} \llbracket \theta_{\Omega} \rrbracket, \quad \text { if } \mathrm{I}_{\mathrm{M} 2}=4
\end{array}\right.
$$

involves the whole history of $\gamma_{S}\left(u_{\Omega}^{ \pm}\right)$and $\gamma_{S}\left(\theta_{\Omega}^{ \pm}\right)$.
So, in every cases, the limit thermomechanical behavior of the two adhering bodies and of the adhesive layer are of the same (thermoelastic) type as that of the original situation. But, of course, peculiarities of the limit behavior of the layer and the thermomechanical contact condition which replaces it strongly depend on the relative behaviors of the geometric and thermomechanical parameters. The thermomechanical coupling perpetuates when $\bar{\mu}_{L}^{\mathrm{I}} \bar{\alpha}_{L}^{\mathrm{I}} e_{B}^{u}$ does not vanish which is the case when $\mathrm{I}_{\mathrm{M} 2}$ differs from 0 or 2 with $\bar{\alpha}_{L}^{\mathrm{I}}$ positive.

5. Concluding remarks

This rather lengthy and complex thermomechanical presentation of the results of our mathematical analysis exemplifies the flexibility of use but also the power of Trotter's theory of approximation of semi-groups of operators acting on variable spaces: it permits a unitary treatment with very few technicalities.

Our proposal of simplified but accurate enough models for the behavior of the structure made of the two adhering bodies and the thin adhesive layer, which has to be formulated on the genuine reference configurations $\Omega_{\varepsilon}^{ \pm}$and B_{ε} is of course obtained through the Trotter representant $P_{s}^{\mathrm{I}} U^{\mathrm{I}}$ of the solution U^{I} of the limit problem (3.42), s taking the values of the original data. When $\mathrm{I}_{\mathrm{M} 2}$ differs from 0 , a variant of $P_{s}^{\mathrm{I}} U^{\mathrm{I}}$ may be used through the construct detailed in the proof of Proposition 3.3 Thus, from a computational and practical point of view, a finite element approximation can be implemented without meshing the thin layer occupied by the adhesive!

It should be noted that, contrary to the cumbersome method - frequent in the literature - consisting of firstly switching back to a fixed abstract domain through a "scaling" (change of coordinates and unknowns), abstract domain where the convergence is formally or rigorously studied and secondly returning - but not always - to the initial physical domain, we have hereby treated directly through the representation operator P_{s}^{I} the convergence of the initial problem where, obviously, the limit can be, according to index I, expressed in a fixed abstract domain defined through the
"scaling" outlined above but which is used only when it is necessary to refine the determination of the asymptotic behavior of sequences of thermomechanical states with bounded energies.

Eventually the present study which corrects and improves [6] may be considered as a framework to assess the formal and partial modeling proposed in [19] concerning poroelasticity as it is well-known that equations involved in linear poroelasticity are the same as those in linear thermoelasticity.

References

[1] C. Licht, Comportement asymptotique dune bande dissipative mince de faible rigidité, C.R. Acad. Sci. Paris, Sér. I 317 (1993) 429-433.
[2] C. Licht, G. Michaille, A modelling of elastic adhesive bonded joints, Advances in Mathematical Sciences and Applications 7 (1997) 711-740.
[3] C. Licht, F. Lebon, A. Léger, Dynamics of elastic bodies connected by a thin adhesive layer. In: Léger A., Deschamps M. (eds) Ultrasonic Wave Propagation in Non Homogeneous Media. Springer Proceedings in Physics, vol 128 (2009) Springer, Berlin, Heidelberg.
[4] C. Licht, A. Léger, S. Orankitjaroen, A. Ould Khaoua, Dynamics of elastic bodies connected by a thin soft viscoelastic layer, Journal de Mathématiques Pures et Appliquées 99 (2013) 685-703.
[5] C. Licht, S. Orankitjaroen, Dynamics of elastic bodies connected by a thin soft inelastic layer, C. R. Mécanique 341 (2013) 323-332.
[6] C. Licht, A. Ould Khaoua, T. Weller, Transient response of thermoelastic bodies linked by a thin layer of low stiffness and high thermal resistivity, C. R. Mécanique 343 (2015) 18-26.
[7] C. Licht, S. Orankitjaroen, P. Viriyasrisuwattana, T. Weller, Thin linearly piezoelectric junctions, C. R. Mécanique 343 (2015) 282-288.
[8] C. Licht, G. Michaille, P. Juntharee, An asymptotic model for a thin, soft and imperfectly bonded elastic joint, Mathematical Methods in The Applied Sciences 39 (2016) 981-997.
[9] P. Viriyasrisuwattana,C. Licht, S. Orankitjaroen, T. Weller, Thin hybrid linearly piezoelectric junctions, C. R. Mécanique 344 (2016) 128-135.
[10] C. Licht, S. Orankitjaroen, A. Ould Khaoua, T. Weller, Transient response of elastic bodies connected by a thin stiff viscoelastic layer with evanescent mass, C. R. Mécanique 344 (2016) 736-742.
[11] E. Bonetti, G. Bonfanti, C. Licht, R. Rossi, Dynamics of two linearly elastic bodies connected by a heavy thin soft viscoelastic layer, J. Elast 141 (2020) 75-107.
[12] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
[13] H. F. Trotter, Approximation of semi-groups of operators, Pac. J. Math. 28 (1958) 897-919.
[14] C. Licht, T. Weller, Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media, Discrete \& Continuous Dynamical Systems - S 12 (6) (2019) 1709-1741.
[15] P. G. Ciarlet, Mathematical Elasticity, Vol. II, North-Holland, 1997.
[16] C. Licht, Asymptotic modeling of assemblies of thin linearly elastic plates, C.R. Mécanique 335 (2007) 775780.
[17] O. Iosifescu, C. Licht, G. Michaille, Nonlinear Boundary Conditions in Kirchhoff-Love Plate Theory, J. Elasticity 96 (2009) 57-79.
[18] D. Blanchard, G. A. Francfort, Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math. 45 (1987) 645-667.
[19] M. Serpilli, Classical and higher order interface conditions in poroelasticity, Annals of Solid and Structural Mechanics 11 (2019) 1-10.

[^0]: Email addresses: christian.licht@umontpellier.fr (Christian Licht), somsak.ora@mahidol.ac.th (Somsak Orankitjaroen), thibaut.weller@umontpellier.fr (Thibaut Weller)

