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Abstract

We study the transient response of a thermoelastic structure made of two tridimensional bodies connected by a thin
adhesive layer. Once more we highlight the powerful flexibility of Trotter’s theory of approximation of semi-groups
of operators acting on variable spaces: considering the geometrical and physical characteristics of the thin layer as
parameters, we are able to show in a unitary way that this situation leads to a huge variety of limit models the
properties of which are detailed. In particular, according to the relative behaviors of the different parameters involved,
new features are evidenced such as the apparition of an added specific heat coefficient for the interface or of additional
thermomechanical state variables defined not only on the limit geometric interface but on its cartesian product by any
interval of real numbers.

Résumé

On étudie la réponse transitoire d’une structure thermoélastique composée de deux corps tridimensionnels reliés par
une fine couche adhésive. À nouveau, la théorie de Trotter d’approximation de semi-groupes d’opérateurs agissant
sur des espaces variables montre sa grande flexibilité : en considérant les caractéristiques géométriques et physiques
de la couche mince comme des paramètres, on établit de manière unitaire que cette situation conduit à une étonnante
variété de modèles limites dont les propriétés sont détaillées. En particulier, en fonction des comportements relatifs
des différents paramètres impliqués, des caractéristiques singulières sont mises en évidence, comme l’apparition d’un
coefficient de chaleur spécifique ajouté pour l’interface ou de variables d’état thermomécaniques supplémentaires
définies non seulement sur l’interface géométrique limite mais aussi sur son produit cartésien par tout intervalle de
nombres réels.

Keywords: Bonding problems, linearized thermoelasticity, transient problems, m-dissipative operators, asymptotic
mathematical modeling, approximation of semi-groups in the sense of Trotter.

1. Setting the problem

We pursue our investigations on thin junctions initiated in [1, 2], then further developped in [3–11], and hereafter
consider the situation of a transient multi-physical coupling within the scope of linear thermoelasticity.

Let { e1, e2, e3 } be an orthonormal basis of R3 assimilated to the physical Euclidean space. For all ξ = (ξ1, ξ2, ξ3)
in R3, ξ̂ stands for (ξ1, ξ2). The space of all (n × n) symmetric matrices is denoted by Sn and equipped with the
usual inner product and norm denoted by · and | | (as in R3). The space of linear symmetric mappings from Sn

into Sn is denoted by Lin(Sn). For all η in S3, η̂ stands for the matrix (ηαβ)1≤α,β≤2 in S2. We study the dynamic
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response of a linearly thermoelastic structure consisting of two adhering bodies connected by a thin adhesive layer
and subjected to a given loading. Let Ω be a domain of R3 with Lipschitz-continuous boundary ∂Ω. The intersection
of Ω with {x3 = 0} is a domain S of R2 with positive two-dimensional Hausdorff measureH2(S ). Let ε be a positive
number and Ω± := Ω ∩ {±x3 > 0}, then the adhesive and the adhering bodies occupy Bε := S × (−ε,+ε) and
Ω±ε := Ω± ± εe3, respectively; we define Ωε := Ω+

ε ∪ Ω−ε , S ±ε := S ± εe3 and Oε := Ωε ∪ Bε ∪ S +
ε ∪ S −ε . We consider

two partitions (ΓMD,ΓMN), (ΓTD,ΓTN) of ∂Ω, and for all elements Γ of these two partitions, the sets Γ±, Γ±ε and Γε
respectively denote Γ ∩ {±x3 > 0}, Γ± ± εe3 and Γ+

ε ∪ Γ−ε . Moreover, we assume that H2(ΓMD+) and H2(ΓTD+) are
positive. The contact between the adhesive and the two adhering bodies is assumed to be perfect from both thermal
and mechanical points of view. The structure is clamped on ΓMD

ε , subjected to body forces of density fε and surface
forces of density gMε on ΓMN

ε , it is maintained at a uniform temperature T0 on ΓTD
ε ∪ γTD × (−ε, ε) and subjected to

a thermal flux gTε on ΓTN
ε ∪ γTN × (−ε, ε), where (γTD, γTN) is a partition of ∂S . The whole structure is modeled as

linearly thermoelastic in the following way. Let (ρL, µL, βL, κL, αL) in (0,+∞)5, aL in Lin(S3), d := (ρ, β, α, κ, a) in
L∞(Ω;R × R × S3 × S3 × Lin(S3)) satisfying®

α(x) ≥ 0 a.e. x ∈ Ω,
∃c > 0 s.t. ρ(x), β(x) ≥ c, κ(x)ξ · ξ ≥ c|ξ|2 ∀ξ ∈ R3, aLe · e, a(x)e · e ≥ c|e|2 ∀e ∈ S3, a.e x ∈ Ω.

(1.1)

The symbols ρL, βL, αL, κL, µLaL respectively represent the mass density, the specific heat coefficient, the thermal
dilatation, the thermal conductivity, and the elasticity tensor of the adhesive, while dε = (ρε, βε, αε, κε, aε) denotes the
analogous quantities for the adhering bodies with

dε(x) := d(x ∓ εe3) a.e. x ∈ Ω±ε . (1.2)

Similarly 
∃( f , gM, gT ) ∈ L2(Ω;R3) × L2(ΓMN;R3) × L2(ΓTN) s.t.
fε(x) = f (x ∓ εe3) a.e. x ∈ Ω±ε , fε(x) = 0 a.e. x ∈ Bε,
gMε (x) = gM(x ∓ εe3) a.e. x ∈ ΓMN

ε , gMε (x) = 0 a.e. x ∈ ∂S × (−ε, ε),
gTε (x) = gT (x ∓ εe3) a.e. x ∈ ΓTN

ε , gTε (x) = 0 a.e. x ∈ γTN × (−ε, ε).

(1.3)

Thus the problem (Ps) of determining the evolution in the framework of small perturbations of the assembly, whose
state is denoted by Us = (us, vs, θs), us, vs, θs being the fields of displacement, velocity and temperature increment
with respect to T0, involves a sextuplet s := (ε, ρL, µL, βL, κL, αL) of data so that all the fields will be thereafter indexed
by s. If U0

s = (u0
s , v

0
s , θ

0
s ) is the given initial state, a formulation of (Ps) could be:

(Ps)



Find Us sufficiently smooth in Oε × [0,T ] such that us = 0 on ΓMD
ε , θs = 0 on ΓTD

ε ∪ γTD × (−ε, ε)
Us(0) = U0

s satisfying:∫
Ωε

ρε
∂vs

∂t
· v′ + aε(e(us) − θsαε) · e(v′) dx +

∫
Bε
ρL
∂vs

∂t
· v′ + µLaL(e(us) − αLθsI) · e(v′) dx

=

∫
Ωε

fε · v′ dx +

∫
ΓMN
ε

gMε · v
′ dH2,∫

Ωε

βε
∂θs

∂t
θ′ + κε∇θs · ∇θ

′ + (aεαε · e(vs))θ′ dx +

∫
Bε
βL
∂θs

∂t
θ′ + κL∇θs · ∇θ

′ + µLαL(aLI · e(vs))θ′ dx

=

∫
ΓTN
ε

gTε θ
′ dH2

for all (v′, θ′) sufficiently smooth in Oε and vanishing on ΓMD
ε ×

(
ΓTD
ε ∪ γTD × (−ε, ε)

)
,

where t denotes the time, e(u) is the linearized strain associated with the field of displacement u, and I is the identity
matrix of S3.
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2. Existence and uniqueness of a solution to (Ps)

Assuming

( f , gM, gT ) ∈ C0,1([0,T ]; L2(Ω;R3)
)
×C1,1([0,T ]; L2(ΓMN;R3)

)
×C1,1([0,T ]; L2(ΓTN)

)
, (H1)

we seek zs = (us, θs) in the form
zs = ze

s + zr
s, (2.1)

where ze
s is the unique solution to

ze
s(t) ∈ Zs; Φs(ze

s(t), z
′) = Lε(t)(z′) ∀z′ ∈ Zs, ∀t ∈ [0,T ], (2.2)

with
Zs := H1

ΓMD
ε

(Oε;R3) × H1
ΓTD
ε

(Oε), (2.3)

where for all open set G of RN ,N = 1 or 3, H1
γ(G;RN) denotes the subset of the Sobolev space H1(G;RN) of elements

with vanishing trace on γ included in ∂G,

Φs(z, z′) := (u, u′)1,s + (θ, θ′)4,s − (u′, θ)5,s + (u, θ′)5,s ∀z = (u, θ), ∀z′ = (u′, θ′) ∈ Zs, (2.4)

(u, u′)1,s :=
∫

Ωε

aεe(u) · e(u′) dx +

∫
Bε
µLaLe(u) · e(u′) dx ∀u, u′ ∈ H1

ΓMD
ε

(Oε;R3),

(θ, θ′)4,s :=
∫

Ωε

κε∇θ · ∇θ
′ dx +

∫
Bε
κL∇θ · ∇θ

′ dx ∀θ, θ′ ∈ H1
ΓTD
ε

(Oε),

(u, θ)5,s :=
∫

Ωε

(aεαε · e(u))θ dx +

∫
Bε
µLαL(aLI · e(u))θ dx ∀(u, θ) ∈ H1

ΓMD
ε

(Oε;R3) × H1
ΓTD
ε

(Oε),

(2.5)

and

Lε(t)(z′) :=
∫

ΓMN
ε

gMε · u
′ dH2 +

∫
ΓTN
ε

gTε θ
′ dx ∀z′ ∈ Zs, ∀t ∈ [0,T ], (2.6)

As (gM, gT ) 7→ ze
s is linear continuous from L2(ΓMN;R3) × L2(ΓTN) into Zs, we have

ze
s ∈ C1,1([0,T ]; Zs). (2.7)

The remaining part zr
s of zs will be involved in an evolution equation governed by an m-dissipative operator As in

a Hilbert space Hs of possible states with finite thermomechanical (strain, kinetic, thermal) energy defined by

Hs := H1
ΓMD
ε

(Oε;R3) × L2(Oε;R3) × L2(Oε), (2.8)

and endowed with the following inner product and norm:

(U,U′)s := (u, u′)1,s + Ks((v, θ), (v′, θ′)), |U |2s := (U,U)s, (2.9)

Ks((v, θ), (v′, θ′)) = (v, v′)2,s + (θ, θ′)3,s ∀U = (u, v, θ), ∀U′ = (u′, v′, θ′) ∈ Hs, with (2.10)
(v, v′)2,s :=

∫
Ωε

ρεv · v′ dx +

∫
Bε
ρLv · v′ dx,

(θ, θ′)3,s :=
∫

Ωε

βεθθ
′ dx +

∫
Bε
βLθθ

′ dx.
(2.11)
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Operator As is defined by
D(As) :=

U = (u, v, θ) ∈ Hs;


i) (v, θ) ∈ Zs and
ii) ∃! (w, τ) ∈ L2(Oε;R3) × L2(Oε) s.t.

(w, v′)2,s + (u, v′)1,s − (v′, θ)5,s = 0 ∀v′ ∈ H1
ΓMD
ε

(Oε;R3),

(τ, θ′)3,s + (θ, θ′)4,s + (v, θ′)5,s = 0 ∀θ′ ∈ H1
ΓTD
ε

(Oε),


AsU = (v,w, τ).

(2.12)
It is straightforward to check the following.

Proposition 2.1. Operator As is m-dissipative, and for all φs = (φ1
s , φ

2
s , φ

3
s) in Hs ,®

U s = (us, vs, θs) s.t.
U s − AsU s = φs

⇐⇒



us = vs + φ1
s

zs = (vs, θs) ∈ Zs; Ψs(zs, z) = Ls(z) ∀z = (v, θ) ∈ Zs

with
Ψs = Φs + Ks

Ls(z) = −(φ1
s , u)1,s + Ks((φ2

s , φ
3
s), z) ∀z = (v, θ) ∈ Zs.

(2.13)

Then, taking into account (H1), (2.1), (2.2), (2.7), (2.12), it is clear that (Ps) is “formally equivalent” to
dUr

s

dt
− AsUr

s = Fs :=
Å

ue
s −

due
s

dt
,−

due
s

dt
+ fs,−

dθe
s

dt

ã
,

Ur
s(0) = U0

s −
(
ue

s(0), 0, θe
s(0)
)
,

(2.14)

with fs equal to fε/ρε in Ωε and 0 in Bε. Consequently ([12]) the following holds:

Theorem 2.1. If ( f , gM, gT ) satisfies (H1) and U0
s belongs to (ue

s(0), 0, θe
s(0))+D(As), then (2.14) has a unique solution

such that Ur
s belongs to C1([0,T ];Hs). Hence there exists a unique (us, θs) inÄ

C1([0,T ]; H1
ΓMD
ε

(Oε;R3)
)
∩C2([0,T ]; L2(Oε;R3)

)ä
×
Ä

C1([0,T ]; L2(Oε)
)
∩C0([0,T ]; H1

ΓTD
ε

(Oε)
)ä
,

which does satisfyÅ
d2us

dt2 , u
ã

2,s
+ (us, u)1,s − (u, θs)5,s =

∫
Ωε

fε · u dx +

∫
ΓMN
ε

gMε · u dH2 ∀u ∈ H1
ΓMD
ε

(Oε;R3),Å
dθs

dt
, θ

ã
3,s

+ (θs, θ)4,s +

Å
dus

dt
, θ

ã
5,s

=

∫
ΓTN
ε

gTε θ dH2 ∀θ ∈ H1
ΓTD
ε

(Oε).
(2.15)

We set
Ue

s = (ue
s, z

e
s). (2.16)

3. A mathematical analysis of the asymptotic behavior

Now we regard the sextuplet s of geometrical and thermomechanical data as a sextuplet of parameters taking
values in a countable subset of (0,+∞)6 with a single cluster point s in {0} × [0,+∞]5 and study the asymptotic
behavior of Us in order to suggest a simplified but accurate enough model for the genuine physical situation. We will
show that, depending on the relative behavior of (ρL, µL, βL, κL, αL) with respect to ε, numerous (100!) limit models
appear. They are indexed by I = (IM, IT) ∈ ({0, 1} × {0, 1, 2, 3, 4})2, IM = (IM1, IM2), IT = (IT1, IT2) defined as follows.
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Let rM
0 = rM

1 = rM
2 = 1, rM

3 = −1, rM
4 = −3, rT

0 = rT
1 = rT

2 = 1, rT
3 = rT

4 = −1, we assume:

There exists (ρ̄L, β̄L, µ̄
I
L, κ̄

I
L) in [0,+∞)2 × [0,+∞]2 such that:

(ρ̄L, β̄L) := lim
s→s̄

ε (ρL, βL) ,

(µ̄I
L, κ̄

I
L) := lim

s→s̄

Ä
µL/ε

rM
IM2 , κL/ε

rT
IT2

ä
with lim

s→s̄
ε2 (µ−1

L , κ−1
L

)
∈ [0,+∞)2,

and
IM1, IT1 = 0 if ρ̄L, β̄L = 0, IM1, IT1 = 1 if ρ̄L > 0, β̄L > 0,

µ̄I
L = 0 andH2(ΓMD−) > 0 when IM2 = 0, µ̄I

L ∈ (0,+∞) when IM2 = 1,

µ̄I
L = +∞ and lim

s→s̄
εµL = 0 when IM2 = 2, µ̄I

L ∈ (0,+∞) when IM2 = 3, 4,

κ̄I
L = 0 andH2(ΓTD−) > 0 when IT2 = 0, κ̄I

L ∈ (0,+∞) when IT2 = 1,

κ̄I
L = +∞ and lim

s→s̄
εκL = 0 when IT2 = 2, κ̄I

L ∈ (0,+∞) when IT2 = 3,

κ̄I
L = +∞ when IT2 = 4.

(H2)

3.1. A candidate for the limit behavior

From now on, C denotes various constants which may vary from line to line and we use the convention 0 × ∞ =

∞× 0 = 0.

3.1.1. The limit space HI

This candidate could be determined by studying the asymptotic behavior of sequences with bounded total thermo-
mechanical energy. It will appear that in some cases the thermomechanical state of the “limit structure”, where the
three-dimensional adhesive layer is geometrically replaced by the surface S , it shrinks to, does not involve the sole
state variables of the adhering bodies but additional thermomechanical state variables not necessarily defined on S but
in B := S × (−1, 1) which accounts for the limit behavior of the adhesive layer.

It is convenient to introduce the following “scaling operators” which transform a field ys defined on Bε into a field
ysB defined on B in such a way that a bounded energy for ys is equivalent to a bounded “scaled” energy for ysB:

Operators Su,IM2
ε :

u ∈ H1(Bε;R3) 7→ uB = Su,IM2
ε u ∈ H1(B;R3) defined by

IM2 = 0, 1, 2 uB(x) = u(x̂, εx3) a.e. x ∈ B,

and eIM2
i j (ε, uB) :=


εei j(uB), 1 ≤ i, j ≤ 2
(ε∂iuB3 + ∂3uBi) /2, i = 1, 2, j = 3
∂33uB3, i = j = 3,

IM2 = 3 ûB(x) = û(x̂, εx3), uB3(x) = u3(x̂, εx3)/ε a.e. x ∈ B,

and e3
i j(ε, uB) :=


ei j(uB), 1 ≤ i, j ≤ 2
(1/ε)ei3(uB), 1 ≤ i ≤ 2, j = 3
(1/ε2)e33(uB), i = j = 3,

IM2 = 4 ûB(x) = û(x̂, εx3)/ε, uB3(x) = u3(x̂, εx3) a.e. x ∈ B,
and e4

i j(ε, uB) = e3
i j(ε, uB).

(3.1)

Clearly:

µL

∫
Bε
|e(u)|2 dx =

(
µL/rM

IM2

) ∫
B

∣∣eIM2 (ε,Su,IM2
ε u)

∣∣2 dx. (3.2)
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Operators Sv
ε,S

θ
ε:

(v, θ) ∈ L2(Bε;R3 × R) 7→ (vB, θB) = (Sv
εv,S

θ
εθ) ∈ L2(B;R3 × R) defined by

(vB(x), θB(x)) = (v(x̂, εx3), θ(x̂, εx3)) a.e. x ∈ B, (3.3)

which satisfy Å
ρL

∫
Bε
|v(x)|2 dx, βL

∫
Bε
|θ(x)|2 dx

ã
=

Å
ρLε

∫
B

∣∣Sv
εv
∣∣2 dx, βLε

∫
B

∣∣Sθεθ∣∣2 dx
ã
. (3.4)

In view of following Proposition 3.1, it is natural to recall some classical notions. Let

Ωi := Ω \ S if i = 0, 1, Ωi := Ω if i = 2, 3, 4. (3.5)

For an element u of H1(Ω \ S ;RN), N = 1 or 3, we will denote its restrictions to the open sets Ω± by u± which is an
element of H1(Ω±;RN). The symbols γS (u+) and γS (u−) will denote the trace of u+ and u−, respectively, on the set S .
Of course, for u in H1(Ω;RN), γS (u) will denote the trace of u on S . We also use

~u� = γS (u+) − γS (u−), (3.6)

H∂3 (B;RN) :=
{

u ∈ L2(B;RN) s.t. ∂3u ∈ L2(B;RN)
}

N = 1 or 3, (3.7)

it is well-known that a continuous mapping γS ± is defined on H∂3 (B;RN) for the traces on S ± := S ± e3 with values in
L2(S ±;RN), and, from now on, γS ± (u) is treated as an element of L2(S ;RN),

VKL(B) :=
{

u ∈ H1(B;R3); ∃(uM , uF) ∈ H1(S ;R2) × H2(S ) s.t.

û(x) = uM(x̂) − x3∇̂uF(x̂), u3(x) = uF(x̂) a.e. x ∈ B
}

= { u ∈ H1(B;R3); ei3 = 0 a.e. in B, 1 ≤ i ≤ 3 }.

(3.8)

We will use the following Hilbert spaces and norms:

space of displacement fields HI
u:

• IM2 = 0 HI
u :=

{
uI = (uΩ, eu

B) ∈ H1
ΓMD (Ω0;R3) × {0}

}
,

• IM2 = 1 H
I
u :=

{
uI = (uΩ, eu

B) ∈ H1
ΓMD (Ω1;R3) × L2(B;S3) s.t.

∃uB ∈ H∂3 (B;R3); eu
B = ∂3uB ⊗S e3, γS ± (uB) = γS (u±Ω)

}
,

• IM2 = 2 HI
u :=

{
uI = (uΩ, eu

B) ∈ H1
ΓMD (Ω;R3) × L2(B;S3) s.t.

∃uB ∈ H1(B;R3); 0 = eu
B = ∂3uB ⊗S e3, γ

±
S (uB) = γS (uΩ)

}
,

• IM2 = 3 HI
u :=

{
uI = (uΩ, eu

B) ∈ H1
ΓMD (Ω;R3) × L2(B;S3) s.t.

γS (uΩ3) = C,∃uB ∈ VKL(B); uM
B = γS (ûΩ), ∇̂uF

B = 0, “eu
B := ‘e(uB)

©
,

• IM2 = 4 HI
u :=

{
uI = (uΩ, eu

B) ∈ H1
ΓMD (Ω;R3) × L2(B;S3) s.t.

ê(γS (ûΩ)) = 0, ∃uB ∈ VKL(B); uF
B = γS (uΩ3), “eu

B := ‘e(uB)
©
,

and they clearly are complete for the norms

(uI, uI)I
1 :=

∫
ΩIM2

ae(uΩ) · e(uΩ) dx + µ̄I
L

∫
B

aLeu
B · e

u
B dx ∀IM2 = 0, 1, . . . , 4. (3.9)

Note that for a field w in H1(S ;R2) we also denote the symmetrized gradient of w by ê(w).

space of velocity fields HI
v:
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• IM1 = 0 H
I
v :=

{
vI = vΩ ∈ L2(Ω;R3)

}
, (vI, vI)I

2 :=
∫

Ω

ρvΩ · vΩ dx,

• IM1 = 1 H
I
v :=

{
vI = (vΩ, vB) ∈ L2(Ω;R3) × L2(B;R3)

}
, (vI, vI)I

2 :=
∫

Ω

ρvΩ · vΩ dx + ρ̄L

∫
B
|vB|

2 dx,

space of temperature fields HI
θ:

• IT1 = 0 H
I
θ :=

{
θI = θΩ ∈ L2(Ω)

}
, (θI, θI)I

3 :=
∫

Ω

βθ2
Ω dx,

• IT1 = 1 H
I
θ :=

{
θI = (θΩ, θB) ∈ L2(Ω) × L2(B)

}
, (θI, θI)I

3 :=
∫

Ω

βθ2
Ω dx + β̄L

∫
B
θ2

B dx.

So, if Tε is the operator from L2(Ω;RN) into L2(Ω;RN), N = 1 or 3, defined by

(Tεw)(x) := w(x ± εe3), ∀x ∈ Ω±, (3.10)

we have

Proposition 3.1. For all sequences Us = (us, vs, θs) in Hs such that |Us|s is bounded, there exists UI = (uI, θI, θI) in HI

and a not relabeled subsequence such that

i) (Tεus,Tεvs,Tεθs) weakly converges in H1
ΓMD (Ω \ S ;R3) × L2(Ω;R3) × L2(Ω) toward (u, v, θ);

ii) Sv
εvs weakly converges in L2(B;R3) toward vB if IM1 = 1, Sθεθs weakly converges in L2(B) toward θB if IT1 = 1;

iii) eIM2 (ε,Su,IM2
ε us) weakly converges in L2(B;R3) toward eu

B when IM2 is positive;
iv) |UI|I :=

{
(uI, uI)I

1 + (vI, vI)I
2 + (θI, θI)I

3

}1/2
≤ lim

s→s̄
|Us|s.

Proof. As

|Us|
2
s =

∫
Ω

ae(Tεus) · e(Tεus) + β|vs|
2 + ρθ2

s dx

+

∫
B

(
µL/rM

IM2

)
aLeIM2 (ε,Su,IM2

ε us) · eIM2 (ε,Su,IM2
ε us) + ερL|S

v
εvs|

2 + εβL|S
θ
εθs|

2 dx, (3.11)

point ii), and point i) whenH2(ΓMD−) > 0 are obvious.

Anyway the boundedness of (us, us)1,s implies that there exists u+
Ω in H1

ΓMD+ (Ω+;R3) and a not relabeled subse-
quence such that

(
(Tεus)+, γS ((Tεus)+)

)
converges weakly in H1(Ω+;R3) and strongly in L2(S ;R3) toward

(
u+

Ω, γS (u+
Ω)
)
,

respectively. By using Korn inequality and a cut-off function η such that η(x3) = 1 if 0 ≤ x3 ≤ L/3, η(x3) = 0 if
x3 ≥ 2L/3, with L = max{x3; (x̂, x3) ∈ ∂Ω+ }, one has:∣∣∣~Tεus�

∣∣∣2
L2(S ;R3)

≤ C
Å

2ε
µL
µL

∫
Bε
|e(us)|2 dx + ε

ã
, (3.12)∫

Bε
|us|

2 dx ≤ C
Å
ε
∣∣γS ((T εus)+)

∣∣2
L2(S ;R3) +

ε2

µL
µL

∫
Bε
|e(us)|2 dx + ε2

ã
. (3.13)

Hence assumption (H2) implies that there exist u−Ω in H1
ΓMD− (Ω−;R3) and a not relabeled subsequence such that (Tεus)−

converges weakly in H1(Ω−;R3) toward u−Ω and∫
Bε
|us|

2 dx ≤ C
Å
ε +

ε2

µL

ã
. (3.14)

So, if IM2 = 1, 2,
Ä
Su,IM2
ε us, (µL/ε

rM
IM2 )eIM2 (ε,Su,IM2

ε us)
ä

is bounded in L2(B;R3 × S3) so that the convergence up
to a not relabeled subsequence of Su,IM2

ε us in the sense of distributions on B yields that there exists a unique uB in
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H∂3 (B;R3) such that
Å’
S

u,IM2
ε us, (Su,IM2

ε us)3, eIM2 (ε,Su,IM2
ε us)

ã
weakly converges to (ûB, uB3, ∂3uB ⊗S e3) in L2(B;R2) ×

H∂3 (B) × L2(B;S3) with γS ± (uB) = γS (u±Ω) because γS ± (Su,IM2
ε us) = γS ((Tεus)±). Moreover when IM2 = 2, one has

eu
B = 0 and uΩ in H1(Ω;R3).

When IM2 = 3, one only has
(
Ŝ

u,3
ε us, e3(ε,Su,3

ε us)
)

bounded in L2(B;R2 × S3), so that by using the space of

infinitesimal rigid displacements it is routine to establish that there exists some uB in VKL(B) and eu
B in L2(B;S3) such

that
(
Su,3
ε uΩ, e3(ε,Su,3

ε uΩ)
)

weakly converges toward (uB, eu
B) in

(
H1(B;R2) × H1(B)/R

)
× L2(B;S3) with “eu

B = ‘e(uB).

Then the perfect contact condition on Bε, of which one can exploit γS ± (
’
S

u,3
ε us) = γS (◊�(T εus)±) only, and (3.12) yield

~uΩ� = 0, γS ± (ûB) = γS (û±Ω) = γS (ûΩ), which imply uΩ ∈ H1(Ω;R3), uM
B = γS (ûΩ), ∇̂uF

B = 0, γS (ûΩ) ∈ H1(S ;R2).
Moreover as there exists a constant Cε such that γS ((Tεus)+

3 /ε) + Cε strongly converges in L2(S ) toward γS + (uF
B), one

deduces that γS (uΩ3) is constant.

Proceeding as in the previous case, we deduce, when IM2 = 4, that there exists uB in VKL(B) with uF
B = γS (uΩ3)

such that (Su,4
ε us, e4(ε,Su,4

ε us)) weakly converges in H1(B;R3) × L2(B;S3) toward (uB, eu
B) with “eu

B = ‘e(uB).

3.1.2. The limit operator AI

According to Trotter’s theory of approximation of semi-groups of linear operators acting on sequences of variable
Hilbert spaces ([13, 14]), we examine the asymptotic behavior of the resolvent (I − As)−1 in order to guess the limit
operator AI. Proposition 2.1 implies that a sequence Us = (us, vs, θs) such that |Us|s + |AsUs|s ≤ C involves (vs, vs)1,s +

(θs, θs)4,s ≤ C in addition to |Us|s ≤ C that we already considered. For this purpose we introduce the following spaces
GIT2
θ of temperatures and operators gθB:

G0
θ :=

{
θI = (θΩ, θB) ∈ H1(Ω0) × L2(B)

}
, gθB := 0;

G1
θ :=

{
θI = (θΩ, θB) ∈ H1(Ω1) × H∂3 (B); γS ± (θB) = γS (θ±Ω)

}
, gθB := (0, ∂3θB);

G2
θ :=

{
θI = (θΩ, θB) ∈ H1(Ω) × H∂3 (B); ∂3θB = 0, γS ± (θB) = γS (θΩ)

}
, gθB := 0;

G3
θ :=

{
θI = (θΩ, θB) ∈ H1(Ω) × H1(B); γS (θΩ) ∈ H1(S ), ∂3θB = 0, γS ± (θB) = γS (θΩ)

}
,

gθB := (∇̂γS θΩ, 0);

G4
θ :=

{
θI = (θΩ, θB) ∈ H1(Ω) × H1(B); γS (θΩ) = C(= 0 ifH1(γTD) > 0),
∂3θB = 0, γS ± (θB) = γS (θΩ)

}
, gθB := 0.

(3.15)

Thus, if for all θB in H1(B)

gIT2 (ε, θB) =

{Ä
ε∇̂θB, ∂3θB

ä
when IM2 ≤ 2,Ä

∇̂θB, ∂3θB/ε
ä

when IM2 > 2,
(3.16)

we have the obvious scalar variant of Proposition 3.1:

Proposition 3.2. For all sequences such that (θs, θs)3,s ≤ C, there exist θI in GIT2
θ such that

i) Tεθs weakly converges in H1
ΓTD (ΩIT2 ) toward θΩ;

ii) gIT2 (ε,Sθεθs) converges weakly in L2(B;R3) toward gθB, when IM2 ≥ 1.

Note that it is only when IT2 ≤ 1, that the “additional” temperature θB depends on x3. We therefore make a
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supplementary assumption. Let ᾱI
L in [0,+∞) satisfying:

IM2 = 0 no condition,

IM2 = 1 ᾱI
L := lim

s→s̄
εαL,

IM2 = 2 no condition,

IM2 = 3 ᾱI
L := lim

s→s̄
αL,

IM2 = 4 ᾱI
L := lim

s→s̄
αL/ε,

(H3)

it is reasonable to suggest the following forms (·, ·)I
4 and (·, ·)I

5 as “potential limits” of (·, ·)4,s and (·, ·)5,s:

(θI, θ′I)I
4 :=

∫
Ω

κ∇θΩ · ∇θ
′
Ω dx + κ̄I

L

∫
B

gθB · g
θ′

B dx ∀θI, θ′I ∈ GI
θ,

(uI, θI)I
5 :=

∫
Ω

(ae(u) · α)θΩ dx + (µ̄I
Lᾱ

I
L)
∫

B
(aLeu

B · I)θB dx ∀uI ∈ HI
u,∀θ

I ∈ GI
θ.

(3.17)

It will be convenient to introduce for all θI in GI
θ

θ̌I :=

®
θΩ if IT1 = 0,
(θΩ, θB) if IT1 = 1.

(3.18)

The boundedness of both ρL

∫
Bε
|vs|

2 dx and µL

∫
Bε

ae(vs) · e(vs) dx leads us, when IM1 = 1 and IM2 = 3, 4, to

introduce a special space SHI
v for velocities and consequently a special space of limit possible states with finite

energy SHI.
Let

LM
KL(B) :=

{
v ∈ L2(B;R3) s.t. v(x) = (v̂(x̂), 0), v̂ ∈ L2(S ;R2)

}
,

LF
KL(B) :=

¶
v ∈ H−1(B;R3) s.t. v(x) = (−x3∇̂v3, v3), v3 ∈ L2(S )

©
,

(3.19)

then

SH
I
v :=


HI

v if IM1 = 0 or IM2 ≤ 2;{
(vΩ, vB) ∈ L2(Ω;R3) × LM

KL(B)
}

if IM1 = 1 and IM2 = 3;{
(vΩ, vB) ∈ L2(Ω;R3) × LF

KL(B)
}

if IM1 = 1 and IM2 = 4,

(3.20)

(vI, v′I)I
2 := (v̊I, v̊′I)I

2 ∀vI, v′I ∈ SHI
v, (3.21)

where

v̊I =


vΩ if IM1 = 0;
(vΩ, vB) if IM1 = 1 and IM2 ≤ 3;
(vΩ, (0, vB3)) if IM1 = 1 and IM2 = 4,

(3.22)

and

SH
I := HI

u ×SH
I
v × H

I
θ (3.23)

equipped with the norm | · |I. Thus, in order to proceed in a unitary manner, we denote the space of admissible virtual
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generalized velocities and temperatures by ZI:

ZI :=
¶

(vI, θI) ∈ SHI
u ×GIT2

θ

©
, (3.24)

SH
I
u :=

{{
uI ∈ HI

u with uB any element of L2(B;R3))
}

when IM2 = 0,

HI
u when IM2 > 0,

(3.25)

where, for all elements of SHI
u, ǔI is defined by:

ǔI :=

®
uΩ if IM1 = 0;
(uΩ, uB) if IM1 = 1,

(3.26)

we are in a position to define operator AI in SHI by:


D(AI) :=


UI = (uI, vI, θI) ∈ SHI;



i) ∃! (ṽI, θ̃I) ∈ ZI s.t. ˇ̃vI = vI,

ii) ∃! (wI, τI) ∈ SHI
v × H

I
θ s.t.

(ẘI, v̌′I)I
2 + (uI, v′I)I

1 − (v′I, θ̃I)I
5 = 0,

(τI, θ̌′I)I
3 + (θ̃I, θ′I)I

4 + (ṽI, θ′I)I
5 = 0, ∀(v′I, θ′I) ∈ ZI,


AIUI = (ṽI, ẘI, τI).

(3.27)

Similar to the case of As, it can be checked easily that AI is m-dissipative and, more specifically, that for all φ =

(φ1, φ2, φ3) in SHI:

®
UI

= (uI, vI, θ
I) s.t.

UI
− AIUI

= φ
⇐⇒



uI = ṽI + φ1,

vI = ṽΩ if IM1 = 0, vI = (ṽΩ, ṽB) if IM1 = 1,

θ
I

= θ̃Ω if IT1 = 0, θ
I

= (θ̃Ω, θ̃B) if IT1 = 1,

zI = (ṽI, θ̃I) ∈ ZI; ΨI(zI, z) = LI(z) ∀z ∈ ZI with

ΨI := ΦI + KI,

ΦI(z, z′) := (v, v′)I
1 + (θ, θ′)I

4 − (v′, θ)I
5 + (v, θ′)I

5

KI(ž, ž′) := (v̌, v̌′)I
2 + (θ̌, θ̌′)I

3, ∀z = (v, θ),∀z′ = (v′, θ′) ∈ ZI,

LI(z) := −(φ1, v)I
1 + KI((φ2, φ3), z).

(3.28)

Consequently, the same statement as that of Theorem 2.1 is valid for the following equation, which will be shown to
describe the asymptotic behavior of the solution to (Ps):

(PI)


dUIr

dt
− AIUIr = FI :=

Ä
uIe −

duIe

dt
,−

due

dt
+

f I

ρ
,−

dθIe

dt

ä
,

UIr(0) = UIr,0,

(3.29)

where f I = f if IM1 = 0, f I = ( f , 0) if IM1 = 1 with

zIe = (uIe, θIe) ∈ ZI; ΦI(zIe(t), z) = L(t)(z) ∀z ∈ ZI ∀t ∈ [0,T ],

L(t)(z) :=
∫

ΓMN
gM · vΩ dH2 +

∫
ΓTN

gT θΩ dH2.
(3.30)
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We set
UIe =

Ä
uIe, zIe

ä
, UI = UIe + UIr. (3.31)

3.2. Convergence

To prove the convergence of the solution Us to (Ps) toward the solution UI to (PI), we use the framework of
Trotter’s theory of approximation of semi-groups of linear operators acting on variable spaces (see [13, 14]) because
Us and UI do not inhabit the same space.

First let the representation operator PI
s defined by

U ∈ SHI 7→ PI
sU = (u∗s, v

∗
s, θ
∗
s) ∈ Hs (3.32)

with

• u∗s ∈ H1
ΓMD
ε

(Oε;R3);

(u∗s, u
′
s)1,s =

∫
Ω

ae(uΩ) · e(Tεu′s) dx +
Ä
µL/ε

rM
IM2

ä∫
B

aLeu
B · e(ε,Su,IM2

ε u′s) dx ∀u′s ∈ H1
ΓMD
ε

(Oε;R3), (3.33)

• (v∗s, θ
∗
s) ∈ L2(Oε;R3) × L2(Oε);

(v∗s, v
′
s)2,s :=

∫
Ω

ρvΩ · Tεv′s dx + ερL

∫
B

vB · S
v
εv
′
s dx ∀v′s ∈ L2(Oε;R3), (3.34)

(θ∗s , θ
′
s)3,s :=

∫
Ω

βθΩTεθ′s dx + εβL

∫
B
θBS

θ
εθ
′
s dx ∀θ′s ∈ L2(Oε), (3.35)

(of course when IM1 = 0 or IT1 = 0, we set vB = 0 or θB = 0) and which satisfies

Proposition 3.3.

i) There exists a positive constant C such that |PI
sU |s ≤ C|UI|I for all UI in SHI and all s;

ii) When s tends to s̄, |PI
sU |s converges toward |U |I for all UI in SHI.

Proof. The part of the result concerning u∗s when IM2 = 0, v∗s and θ∗s is obvious. By choosing u′s = u∗s and arguing as
in the proof of Proposition 3.1, there exist (u∗Ω, e

u∗
B ) in HI

u such that
(
Tεu∗s, e

IM2 (ε,Su,IM2
ε u∗s)

)
weakly converges (up to a

not relabeled subsequence) toward (u∗Ω, e
u∗
B ) in H1

ΓMD (ΩIM2 ;R3)× L2(B;S3). To identify u∗ := (u∗Ω, e
u∗
B ) as u := (uΩ, eu

B),
it suffices, for all (u′Ω, e

u′
B ) in HI

u with eu′
B in C∞(Ω;S3), to build a sequence u′s in H1

ΓMD (Oε;R3) such that :∫
Ωε

aεe(u∗ε) · e(u′s) dx→
∫

Ω

ae(u∗Ω) · e(u′Ω) dx,∫
Ωε

aεe(uε) · e(Tεu′s) dx→
∫

Ω

ae(uΩ) · e(u′Ω) dx,Ä
µL/ε

rM
IM2

ä ∫
B

aLeu
B · e

IM2 (ε,Su,IM2
ε u′s) dx→ µ̄L

∫
B

aLeu
B · e

u′
B dx,

µL

∫
Bε

aLe(u∗s) · e(u′s) dx→ µ̄L

∫
B

aLeu∗
B · e

u′
B dx,

(3.36)

Clearly, when IM2 = 1, 2, u′s :=

®(
Su,IM2
ε

)−1u′B in Bε
u′Ω(· ∓ εe3) in Ω±ε

satisfies (3.36). When IM2 = 3, 4, we use a trick of the
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mathematical derivation of Kirchhoff-Love theory of plates [15, 16]. Let ϕs, ψs defined as follows:

ϕs :=

®
γS (u′Ω) in Bε if IM2 = 3,(
Su,4
ε

)−1u′B =
(
εu′MB − x3∇̂γS (u′Ω3), γS (u′Ω3)

)
if IM2 = 4,

ψs :=
(
Su,IM2
ε

)−1
ψBε , ψBε(x) := ε

∫ x3

0

ï
ŵ(x̂, ζ) − ε

∫ ζ

0
∇̂w3(x̂, ξ) dξ

ò
dζ a.e. x ∈ B,

(3.37)

where (eu′
B )⊥ = w⊗S e3, then the field u′s := ϕs +ψs is such that eIM2 (ε,Su,IM2

ε )u′s converges strongly in L2(B;S3) toward
eu′

B and |γS ±ε (u′s−u′Ω(·∓εe3)|L2(S ±ε ;R3) = O(εIM2−2). Hence u′s may be extended into Ωε to an element of H1
ΓMD
ε

(Oε;R3) still
denoted u′s which satisfies (3.36). Lastly by choosing u′s = u∗s in (3.33), one obtains that (u∗s, u

∗
s)1,s tends to (u, u)I

1.

Next we state that:

Us in Hs converges in the sense of Trotter toward UI in HI if lim
s→s̄
|PI

sU
I − Us|s = 0. (3.38)

Note that Us converges in the sense of Trotter toward U is equivalent to Tε(us, vs, θs) converges strongly toward
(uΩ, vΩ, θΩ) in H1(ΩIM2 ,R3) × L2(Ω;R3) × L2(Ω) and

Ä
(µL/ε

rM
IM2 )1/2eIM2 (ε,Su,IM2

ε us), (ρLε)1/2Sv
εvs, (βLε)1/2Sθεθs

ä
con-

verges strongly toward (µ̄1/2
L eu

B, ρ̄
1/2
L vB, β̄

1/2
L θB) in L2(B;S3 × R3 × R).

Lastly we conclude by making an additional assumption (H4) about the initial state and establishing the

Proposition 3.4. There hold

i) ∀φ ∈ HI, lim
s→s̄
|PI

s(I − AI)−1φ − (I − As)−1PI
sφ|s = 0,

ii) lim
s→s̄
|PI

sU
Ie(t) − UIe

s (t)|s = 0 uniformly on [0,T ],

iii) lim
s→s̄

∫ T

0
|PI

sF
I(t) − Fs(t)|s dt = 0.

Proof. Taking advantage of Proposition 2.1 and (3.28), it suffices to build for all z′ in a dense subspace of ZI a
sequence z′s in Hs such that if Us satisfies |Us|s ≤ C and (vs, vs)1,s + (θs, θs)4,s ≤ C one has

lim
s→s̄

(vs, v′s)1,s = (v, v′)I
1, lim

s→s̄
(θs, θ

′
s)4,s = (θ, θ′)I

4,

lim
s→s̄

(v′s, θs)5,s = (v′, θ)I
5, lim

s→s̄
(vs, θ

′
s)5,s = (v, θ′)I

5,

lim
s→s̄

Ks
(
(vs, θs), (v′s, θ

′
s)
)

= KI ((v, θ), (v′, θ′)) , (3.39)

where ((vΩ, ev
B), (vΩ, vB), θ) is the limit in the sense of Trotter of (vs, vs, θs). From Proposition 3.3, the choice v′s = v′∗s

is in order, while we use θ′s defined by

θ′s(x) =

®
θ′Ω(x ∓ εe3) a.e. x ∈ ΩI

ε,

(Sεθ)−1(θ′B) a.e. x ∈ Bε,
(3.40)

for any (θ′Ω, θ
′
B) in GIT2

θ such that θ′B belongs to H1(B), because
Ä

Tεθ′s, (κL/ε
rT

IT2 )gIT2
ε (ε,Sθεθ

′
s)
ä

strongly converges in
H1(ΩIT2 ) × L2(B;R3) toward

(
θ′Ω, κ̄

I
Lgθ

′

B

)
.

Thus the convergence result can be stated as:

Theorem 3.1. Under assumptions (H1)–(H3) and

∃UI0 ∈ UIe(0) + D(AI) s.t. lim
s→s̄
|PI

sU
I0 − U0

s |s = 0 (H4)
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the solution to
dUs

dt
− As(Us − Ue

s) = (0, fs, 0), Us(0) = U0
s (3.41)

converges toward the solution to

dUI

dt
− AI(UI − U

Ie) = (0, f I/ρ, 0), UI(0) = UI0 (3.42)

in the sense lim
s→s̄
|PI

sU
I(t) − Us(t)|Is = 0, lim

s→s̄
|Us(t)|s = |UI(t)|I uniformly on [0,T ].

4. Thermomechanical presentation of the results

Here we intend to make more explicit the formulation (3.42) of the limit behavior of the structure. An over dot ′ ˙ ′

denoting differentiation with respect to time, the motion equation reads as:

∫
Ω

ρüΩ · v′Ω + a
(
e(uΩ) − θΩαI

)
· e(v′Ω)) dx +

∫
B
ρ̄L ¨̊uB · v′B + µ̄I

LaI
L

(
eu

B − θBᾱ
I
LI
)
· ev′

B dx

=

∫
Ω

f · v′Ω dx +

∫
ΓMN

gM · v′Ω dH2, ∀v′ ∈ SHI
v (4.1)

while the ”energy” equation reads as:∫
Ω

βθ̇Ωθ
′
Ω + κ∇θΩ · ∇θ

′
Ω +

(
ae(u̇Ω) · αI

)
θ′Ω dx +

∫
B
β̄Lθ̇Bθ

′
B + κ̄I

LgθB · g
θ′

B + µ̄I
Lᾱ

I
L

(
aI

L(eu̇
B) · I

)
θ′B dx

=

∫
ΓTN

gT θ′Ω dH2, ∀θ′ ∈ GIT2
θ . (4.2)

Clearly the stress σ±Ω, thermal flux q±Ω, displacement and temperature fields in the adhering bodies that occupy Ω+

and Ω− satisfy the following relations written in strong form:
ρü±Ω − div σ±Ω = f in Ω±, σ±Ω n = gM

±

on ΓMN±

σ±Ω = a
(
e(u±Ω) − θ±ΩαI

)
in Ω±

βθ̇±Ω − div q±Ω + ae(u̇±Ω) · αI = 0 in Ω±, q±Ω · n = gT± on ΓTN±

q±Ω = κ∇θ±Ω in Ω±

(4.3)

where n denotes the outward normal to Ω, together with a thermomechanical contact condition along S, the common
boundary of Ω+ and Ω−. This corresponds to the transient response to the loading ( f , gM, gT ) of each adhering
body clamped on ΓMD± maintained at a uniform temperature T0 on ΓTD± and thermomechanically linked along S .
These contact conditions, which stem from the limit behavior of the adhesive layer, can be deduced from the various
expressions of the two integrals on B in (4.1)-(4.2). The motion and ”energy” equations will be formulated in the
form:

MΩ(v′Ω) +MB(v′B) =

∫
Ω

f · v′Ω dx +

∫
ΓMN

gM · v′Ω dH2, ∀v′ ∈ V IM2 (4.4)

TΩ(θ′Ω) + TB(θ′B) =

∫
ΓTN

gτ · θ′Ω dH2, ∀θ′ ∈ GIT2 . (4.5)

Besides the singular case IM2 = 0, we may distinguish two main cases depending on whether ev
B depends explicitly on

vB (IM2 = 1, 2) or not (IM2 = 3, 4).
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When IM2 = 1, 2, as ev
B = ∂3vB ⊗S e3, one has:

IM2 = 1, V IM2 :=
¶

(vΩ, vB) ∈ H1
ΓMD (Ω \ S ;R3) × H∂3 (B;R3) s.t. γS (v±Ω) = γS ± (vB)

©
IM2 = 2, V IM2 :=

¶
(vΩ, vB) ∈ H1

ΓMD (Ω;R3) × H∂3 (B;R3) s.t. ∂3vB = 0, γS (vΩ) = γS ± (vB)
© (4.6)

MΩ(v′Ω) :=
∫

Ω\S
ρüΩ · v′Ω + a

(
e(uΩ) − θΩαI

)
· e(v′Ω) dx (4.7)

MB(v′B) :=
∫

B
ρ̄LüB · v′B + µ̄I

LaL
(
∂3uB ⊗S e3 − ᾱ

I
LθBI

)
· ∂3v′B ⊗S e3 dx. (4.8)

When IM2 = 2,MB(v′B) is equal to 2
∫

S
ρ̄LüΩ · v′Ω dH2 and vanishes when ρ̄L = 0. One deduces:

− ~σe3� = 2ρ̄LγS (üΩ) (4.9)

so that the two adhering bodies are stuck together (i.e. ~uΩ� = 0) when ρ̄L > 0 and perfectly stuck together (i.e.
~uΩ� = ~σΩe3� = 0) when ρ̄L = 0.

When IM2 = 1, one has:

MB(v′B) =

∫
B
ρ̄LüB · v′B + µ̄I

LaL
(
∂3uB ⊗S e3 − ᾱ

I
LθBI

)
· ∂3v′B ⊗S e3 dx (4.10)

and the mechanical contact condition reads as:

∓ σ±Ωe3 =
1
2

∫ 1

−1
ρ̄L(1 + x3)üB dx3 + µ̄I

LaL

Ç
~uΩ� ⊗S e3 − ᾱ

I
L

Å
1
2

∫ 1

−1
θB dx3

ã
I

å
e3. (4.11)

Therefore, if ρ̄L = 0 and θB is independent of x3 (i.e. IT2 > 1), one deduces:

uB = Aff(uΩ) (4.12)

Aff(uΩ) := 〈uΩ〉 +
1
2

x3~uΩ�, 〈uΩ〉 :=
1
2

Ä
γS (u+

Ω) + γS (u−Ω)
ä

(4.13)

MB(v′B) = 2µ̄I
L

∫
S

aL

Ä
~uΩ� ⊗S e3 − ᾱ

I
LγS (θΩ)I

ä
· ~v′Ω� ⊗S e3 dx̂ (4.14)

∓σ±Ωe3 = µ̄I
LaL

Ä
~uΩ� ⊗S e3 − ᾱ

I
LγS (θΩ)I

ä
e3. (4.15)

There is an elastic pull-back with a residual term between the two adhering bodies. The general case for the limit
mechanical behavior of the adhesive layer, which clearly appears as a continuous distribution of thermoelastic strings
orthogonal to S , will be discussed further.

As regards to the thermal behavior, one has:

TΩ(θ′Ω) =

∫
Ω\S

βθΩθ
′
Ω + κ∇θΩ · ∇θ

′
Ω +

(
ae(u̇Ω) · αI

)
θ′Ω dx (4.16)

TB(θ′B) =

∫
B
β̄LθBθ

′
B + κ̄I

LgθB · g
θ′

B + µ̄I
Lᾱ

I
L

(
aL(∂3u̇B ⊗S e3) · I

)
θ′B dx. (4.17)

We may therefore distinguish two main cases: IT2 ≤ 2 when gθB = 0 or (0, ∂3θB) and IT2 = 3, 4 when gθB = (∇̂θB, 0) or
0.
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If IT2 ≤ 2, the limit thermal behavior of the adhesive could be considered as the one of a continuous distribution of
strings orthogonal to S with specific heat coefficient β̄L, thermal conductivity κ̄I

L (thus insulating strings when IT2 = 0
whereas perfectly conducting ones when IT2 = 0) subjected to heat sources of lineic density µ̄I

Lᾱ
I
LaL
(
∂3u̇B ⊗S e3

)
· I

(vanishing when IM2 = 0 or 2). Therefore the thermal contact condition between the adherent bodies reads as:

• IT2 = 0, ~θΩ� , 0, q±Ω · e3 = 0 : perfectly insulating interface,

• IT2 = 2, ~θΩ� = 0, −~qΩ · e3� = 2β̄LγS (θ̇Ω) + µ̄I
Lᾱ

I
L

Ä
~u̇Ω�⊗S e3

ä
· aLI : imperfect thermal contact, perfect when

IT1 = 0 and IM2 = 0 or 2.

When IT2 = 1 we have:

∓ (q±Ω · e3) =
1
2

∫ 1

−1
(1 + x3)

Ä
β̄Lθ̇B + µ̄I

Lᾱ
I
LaL
(
∂3u̇B ⊗S e3

)
· I
ä

dx3 + κ̄I
L~θΩ� (4.18)

thus, when β̄L = 0, there exists a contact conduction whose contact conductance is κ̄I
L and a source µ̄I

Lᾱ
I
LaL~u̇Ω�⊗S e3 ·I.

The general case will be treated further.

When IT2 = 3, 4, we are indeed dealing with a material surface with a specific heat coefficient β̄L, a thermal
conductivity κ̄I

L (thus perfectly conducting when IT2 = 4) subjected to a heat source µ̄I
Lᾱ

I
LaL~u̇Ω� ⊗S e3 · I. So, the

imperfect thermal contact condition reads as (the symbol ∆̂ denoting the Laplacian with respect to the sole coordinates
x1 and x2):

• IT2 = 3, ~θΩ� = 0, −~qΩ · e3� = 2β̄LγS (θ̇Ω) − κ̄I
L∆̂γS (θs) + µ̄I

Lᾱ
I
L~u̇Ω� ⊗S e3 · aLI,

• IT2 = 4, ~θΩ� = 0, γS (θΩ) = C, possibly T0 ifH1(γTD) > 0,−~qΩ · e3� = 2β̄LγS (θ̇s) + µ̄I
Lᾱ

I
L~u̇Ω� ⊗S e3 · aLI,

the thermal contact being perfect when IT1 = 0 and IM2 = 2.

When IM2 = 0,MB(v′B) reduces to
∫

B
ρ̄LüB · v′B dx which implies σI

Ωe3 = 0: the two adhering bodies are free to

separate. The thermal contact condition was detailed in the previous study of the case IM2 = 1.

When IM2 = 3, 4, by using eΨ
B = Ψ ⊗S e3, Ψ arbitrary in C∞0 (B;R3), (4.1) yields

[
aL
(
eu

B − α
I
Lθ̄BI

)]⊥
= 0. Then, if

ãL is the element of Lin(S2) defined by:

ãLq · q := Inf
¶

aLe · e ; e ∈ S3 s.t. ê = q
©
, ∀q ∈ S2 (4.19)

one has aL
(
eu

B − ᾱ
I
LθBI

)∧
= ãL

Ä‘e(uB) − ᾱI
LθB Î

ä
and consequently:

MB(v′B) =

∫
B
ρ̄L ¨̊uB · v̊′B + µ̄I

LãL

Ä‘e(uB) − ᾱI
LθB Î

ä
·‘e(v′B) dx, ∀(v′Ω, v

′
B) ∈ V IM2 (4.20)

TB(θ′B) =

∫
B

Ä
β̄L + µ̄I

L(ᾱI
L)2
Ä

aLI · I − ãL Î · Î
ää
θ̇Bθ

′
B + κ̄I

LgθB · g
θ′

B + µ̄I
Lᾱ

I
L

Ä
ãLê(u̇B) · Î

ä
θ′B dx, ∀(θ′Ω, θ

′
B) ∈ GIM2

θ (4.21)

V3 :=
¶

v = (vΩ, vB) ∈ H1
ΓMD (Ω;R3) × VKL(B); γS (uΩ3) = C, uM

B = γS (ûΩ), ∇̂uF
B = 0

©
(4.22)

V4 :=
¶

v = (vΩ, vB) ∈ H1
ΓMD (Ω;R3) × VKL(B); ê

(
γS (ûΩ)

)
= 0, uF

B = γS (uΩ3)
©
. (4.23)
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An interesting phenomena is highlighted: the appearance of an added specific heat coefficient

β̄ add
L := µ̄I

L

(
ᾱI

L

)2ÄaLI · I − ã Î · Î
ä

(4.24)

always positive unless ᾱI
L(aI)⊥ = 0, in the limit behavior of the adhesive layer, while the stiffness involves ã in place

of a as in the Kirchhoff-Love anisotropic plates theory (see [10, 16, 17]).

So, when IM2 = 3, we have

MB(v′B) = 2
∫

S
ρ̄LγS (̂̈uΩ) · γS (v̂′Ω) + µ̄I

LãL

Ä
ê
(
γS (ûΩ)

)
−

1
2
ᾱI

L

∫ 1

−1
θB dx3 Î

ä
· ê
(
γS (v̂′Ω)

)
dx (4.25)

and the mechanical contact condition between the adhering bodies reads as:

• ~uΩ� = 0

• uΩ3 constant on S ,
∫

S
(σ±Ωe3) · e3 dH2 = 0

• −~‘σΩe3� = 2

Ç
ρ̄LγS (̂̈uΩ) − µ̄I

L
”div
Ä

ãL
(
ê
(
γS (ûΩ)

))
−

1
2
ᾱI

L

∫ 1

−1
θB dx3 Î

äå
.

It looks like a deformable material surface which is stuck between the adhering bodies and enjoys only in-plane
strains.

The nature of the thermal behavior of the adhesive was already examined but here we can make more explicit the
thermal contact conditions:

• IT2 = 0, ~θΩ� , 0, ∓
(
q±Ω · e3

)
= 0 : perfectly insulating interface,

• IT2 = 1, ~θΩ� , 0, ∓(q±Ω·e3) =
1
2

(β̄L+β̄ add
L )

∫ 1

−1
(1+x3)θ̇B dx3+µ̄I

Lᾱ
I
LãLê

(
γS (̂̇uΩ)

)
·Î+κ̄I

L~θΩ� : contact conduction,

• IT2 = 2, ~θΩ� = 0,−~qΩ · e3� =
(
β̄L + β̄ add

L

)
γS (θ̇Ω) + µ̄I

Lᾱ
I
Lãê(γS (̂̇uΩ)) · Î : imperfect thermal contact,

• IT2 = 3, ~θΩ� = 0, −~qΩ ·e3� =
(
β̄L+β̄ add

L

)
γS (θ̇Ω)−κ̄I

L∆̂γS (θΩ)+µ̄I
Lᾱ

I
LãLê

(
γS (u̇Ω)

)
· Î : imperfect thermal contact,

• IT2 = 4, ~θΩ� = 0, γS (θΩ) constant on S , possibly equal to T0 ifH1(γTD) > 0, −~qΩ ·e3� =
(
β̄L +β̄ add

L

)
γS (θ̇Ω)+

µ̄I
Lᾱ

I
Lê
(
γS (u̇Ω)

)
· Î : imperfect thermal contact.

When IM2 = 4 one has:

MB(v′B) = 2
∫

S
ρ̄LüΩ3v′Ω3 + µ̄I

L

Ä
ãLê(uM

B ) · ê(v′MB ) +
1
3

ãLD̂2γS (uΩ3) · D̂2γS (v′Ω3)

− ᾱI
L

Å
1
2

∫ 1

−1
θB dx3

ã
ãL Î · ê(v′MB ) +

∫ 1

−1
x3θB dx3ãL Î · D̂2γS v′Ω3

ä
dH2 (4.26)

TB(θ′B) =

∫
B

(
β̄L + β̄ add

L

)
θ̇Bθ

′
B + κ̄I

LgθB · g
θ′

B + µ̄I
Lᾱ

I
L

Ä
ã
(
ê(uM

B ) − x3D̂2γS (uΩ3)
)
· Î
ä
θ′B dx. (4.27)
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Because gTB =
(
∇̂TB, 0

)
when IT2 = 3, the limit behavior of the adhesive layer is then similar to the one observed

by [18] for thin linearly thermoelastic plates: a flexural problem for the component of the displacement field normal
to S with a coupled membrane-thermal problem for the in-plane component of the displacement and the temperature.

The mechanical contact condition between the adhering bodies reads as:

• ~uΩ� = 0

• ê
(
γS (ûΩ)

)
= 0 (4.28)

• −~(σΩe3) · e3� = 2ρ̄LγS (üΩ3) +
1
3

D̂2
(
ãLD̂2γS (uΩ3)

)
the material surface inserted between the two adhering bodies may be considered as a second-grade elastic one,
enjoying only a motion orthogonal to S (a flexural problem . . . ).

On the other hand, the thermal contact condition reads as:

~θΩ� = 0, −~qΩ · e3� = 2
î(
β̄L + β̄ add

L

)
θ̇Ω − κ̄

I
L∆̂γS (θΩ) + µ̄I

Lᾱ
I
LãLê(uM

B ) · Î
ó

(4.29)

it involves the additional variable uM
B defined on S with values in R2 satisfying

σ̂B = µ̄I
LãL

Ä
ê(uM

B ) − ᾱI
LγS (θΩ)Î

ä
, ”divσ̂B = 0. (4.30)

All this corresponds to a thermomechanical material surface occupying S whose material constants are given by
β̄+ β̄ add

L , κ̄I
L, ᾱI

L, µ̄I
Lã subjected to an inner heat source and free of mechanical loading. Of course uM

B may be eliminated
and consequently the thermal contact condition along S is a non local relation (in time, only) between the normal flux
(q±Ω · e3)(x̂, t) at the courant time t and the whole history of γS (θΩ)(x̂, τ), 0 ≤ τ ≤ t.

When IT2 = 4, κ̄I
L = ∞ compels ∇̂γS (θΩ) = 0, so that S is an isothermal surface possibly at T0 whenH1(γTD) > 0,

while the mechanical contact is similar to (4.28), (4.30).

This is also the case when IT2 = 0 or 2 but with thermal conditions like:

• IT2 = 0, ~θΩ� , 0, ∓q±Ω · e3 = 0 : perfectly insulating wall,

• IT2 = 2, ~θΩ� = 0, −~qΩ · e3� = 2
(
β̄L + β̄ add

L

)
γS (θ̇Ω) + µ̄I

Lᾱ
I
LãLê(uM

B ) · Î.

When IT1 = 1, as the additional temperature variable θB does depend on x3, the limit thermoelastic behavior of the
adhesive layer cannot be interpreted in terms of a material surface.

Thus, in order to clarify the thermomechanical condition between the two adhering bodies, difficulties occur when
IM2 = 1 or 4 and/or IT2 = 1, which correspond to the cases when the additional state variable uB depends on x3
(IM2 = 1), does not explicitly depends on the traces on S of the displacements of the adhering bodies (IM2 = 4) and/or
the additional state variable θB depends on x3 (IT2 = 1). In some of these cases, by adding a condition like IM1 = 0
(light adhesive layer) or IT1 = 0 (low specific heat coefficient) we again meet thermomechanical contact conditions
involving the traces on S of the state variables of the adhering bodies only as in the cases we listed previously.

When IM2 = 1, u0
B := uB − Aff(uΩ) satisfies

u0
B ∈ H∂3,S +∪S − (B;R3) :=

{
u ∈ H∂3 (B;R3) s.t. γS ± (u) = 0

}
,∫

B
ρ̄Lü0

B · v
′ + µ̄I

LaL
(
∂3u0

B ⊗S e3
)
·
(
∂3v′ ⊗S e3

)
dx

= −

∫
B
ρLÄff(uΩ) · v′ + θBµ̄

I
Lᾱ

I
LaL∂3v′B ⊗S e3 · I dx, ∀v′ ∈ H∂3,S +∪S − (B;R3)

(4.31)
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so that except when IM1 = 0 and IT2 , 0, 1, uB differs from Aff(uΩ) and the mechanical condition (4.11) does not
involves the instantaneous values of the traces on S of u±Ω and θ±Ω. Of course, as the equations governing the evolutions
of uB and θB can be solved in terms of the whole history of the traces on S of u±Ω and θ±Ω, the contact condition at (x̂, t)
is a rather complex function of the history of γS (u±Ω)(x̂, ·) and γS (θ±Ω)(x̂, ·) and not only of the history of the jumps
~uΩ�(x̂, ·), ~θΩ�(x̂, ·).

When IT2 = 1, if Aff(θΩ) is defined similarly as Aff(uΩ) (see (4.13)), θ0
B := θB − Aff(θΩ) satisfies:

θ0
B ∈ H∂3,S +∪S − (B),∫
B
β̄Lθ̇

0
Bθ
′ + κ̄I

L∂3θ
0
B∂3θ

′
B dx = −

∫
B

Ä
β̄LȦff(θΩ) + µ̄I

Lᾱ
I
LaL
(
∂3u̇B ⊗S e3

)
· I
ä
θ′ dx, if IM2 = 1, 2

∫
B

(
β̄L + β̄ add

L

)
θ̇0

Bθ
′
B + κ̄I

L∂3θ
0
B∂3θ

′
B dx =


−

∫
B

Ä(
β̄L + β̄ add

L

)
Ȧff(θΩ) + µ̄I

Lᾱ
I
LãLê

(
γS (ûΩ)

)
· Î
ä
θ′ dx, if IM2 = 3

∀θ′ ∈ H∂3,S +∪S − (B)

−

∫
B

Ä(
β̄L + β̄ add

L

)
Ȧff(θΩ) − x3µ̄

I
Lᾱ

I
LãLD̂2γS (uΩ3) · Î

ä
θ′ dx, if IM2 = 4.

(4.32)

Except when (IM2, IT1) = (2, 0), Aff(θΩ) does not solve (4.32), the thermal contact condition which at time t reads
as:

∓ q±Ω · e3 =



1
2

∫ 1

−1

(
1 + x3

)
β̄Lθ̇B + µ̄I

Lᾱ
I
LaL
(
∂3u̇B ⊗S e3

)
· I dx3 + κ̄I

L~θΩ�, if IM2 = 1, 2

1
2

∫ 1

−1

(
1 + x3

)(
β̄L + β̄ add

L

)
θ̇B dx3 + µ̄I

Lᾱ
I
LãLê

(
γS (̂̇uΩ)

)
· Î + κ̄I

L~θΩ�, if IM2 = 2, 3

1
2

∫ 1

−1

(
1 + x3

)(
β̄L + β̄ add

L

)
θ̇B + µ̄I

Lᾱ
I
LãLD̂2γS (uΩ3) · Î x3 dx3 + κ̄I

L~θΩ�, if IM2 = 4

(4.33)

involves the whole history of γS (u±Ω) and γS (θ±Ω).

So, in every cases, the limit thermomechanical behavior of the two adhering bodies and of the adhesive layer are
of the same (thermoelastic) type as that of the original situation. But, of course, peculiarities of the limit behavior
of the layer and the thermomechanical contact condition which replaces it strongly depend on the relative behaviors
of the geometric and thermomechanical parameters. The thermomechanical coupling perpetuates when µ̄I

Lᾱ
I
Leu

B does
not vanish which is the case when IM2 differs from 0 or 2 with ᾱI

L positive.

5. Concluding remarks

This rather lengthy and complex thermomechanical presentation of the results of our mathematical analysis exem-
plifies the flexibility of use but also the power of Trotter’s theory of approximation of semi-groups of operators acting
on variable spaces: it permits a unitary treatment with very few technicalities.

Our proposal of simplified but accurate enough models for the behavior of the structure made of the two adhering
bodies and the thin adhesive layer, which has to be formulated on the genuine reference configurations Ω±ε and Bε is
of course obtained through the Trotter representant PI

sU
I of the solution UI of the limit problem (3.42), s taking the

values of the original data. When IM2 differs from 0, a variant of PI
sU

I may be used through the construct detailed in
the proof of Proposition 3.3. Thus, from a computational and practical point of view, a finite element approximation
can be implemented without meshing the thin layer occupied by the adhesive !

It should be noted that, contrary to the cumbersome method - frequent in the literature - consisting of firstly
switching back to a fixed abstract domain through a ”scaling” (change of coordinates and unknowns), abstract domain
where the convergence is formally or rigorously studied and secondly returning - but not always - to the initial physical
domain, we have hereby treated directly through the representation operator PI

s the convergence of the initial problem
where, obviously, the limit can be, according to index I, expressed in a fixed abstract domain defined through the
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”scaling” outlined above but which is used only when it is necessary to refine the determination of the asymptotic
behavior of sequences of thermomechanical states with bounded energies.

Eventually the present study which corrects and improves [6] may be considered as a framework to assess the
formal and partial modeling proposed in [19] concerning poroelasticity as it is well-known that equations involved in
linear poroelasticity are the same as those in linear thermoelasticity.
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Mécanique 344 (2016) 128–135.

[10] C. Licht, S. Orankitjaroen, A. Ould Khaoua, T. Weller, Transient response of elastic bodies connected by a thin
stiff viscoelastic layer with evanescent mass, C. R. Mécanique 344 (2016) 736–742.
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