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of a thermoelastic assembly involving a
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Abstract. We study the transient response of a thermoelastic structure made of two three-dimensional bodies
connected by a thin adhesive layer. Once more we highlight the powerful flexibility of Trotter’s theory of
approximation of semi-groups of operators acting on variable spaces: considering the geometrical and
physical characteristics of the thin layer as parameters, we are able to show in a unitary way that this situation
leads to a huge variety of limit models the properties of which are detailed. In particular, according to the
relative behaviors of the different parameters involved, new features are evidenced such as the apparition of
an added specific heat coefficient for the interface or of additional thermomechanical state variables defined
not only on the limit geometric interface but on its cartesian product by any interval of real numbers.

Keywords. Bonding problems, Linearized thermoelasticity, Transient problems, m-Dissipative operators,
Asymptotic mathematical modeling, Approximation of semi-groups in the sense of Trotter.
Manuscript received 22nd April 2021, accepted 30th November 2021.

1. Setting the problem

We pursue our investigations on thin junctions initiated in [1,2], then further developed in [3-11],
and hereafter consider the situation of a transient multi-physical coupling within the scope of
linear thermoelasticity. As in our previous works, we have chosen to use notations that may
seem daunting but have the advantage of conveying all the information necessary to express the
complexity of the studied problem.

Because interphases play a crucial role in the analysis of structure assemblies, the studies
devoted to bonding problems cover a huge landscape. Within the scope of Mechanics, the
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28 Christian Licht et al.

reader may refer to [12] and the references quoted therein for a good introduction. Rigorous
mathematical approach to dynamical situations, however, are scarce. And because steady state
cases should in fact be considered as particular cases of transient phenomena, the theory of
approximation of semi-groups offers, from our point of view, an almost perfect tool dedicated to
the mathematical modeling in Physics of continuous media. The interested reader will find good
presentations of this theory in classical textbooks such as [13, 14], while Trotter’s fundamental
contribution [15] is presented and harnessed in various physical applications in [16]. More
recently this theory has been the subject of a revival (see [17]) particularly because of the large
number of problems it can address. Here, the power of this method will appear in three ways:
first, despite the large number of parameters involved, we are able to carry out a rigorous
mathematical study of this transient problem in a unitary manner (Section 2); second, this
unitary study reveals a very wide variety of limit models (Section 3); third, we are able to extract
new thermomechanical features from our models, such as the appearance of an additional
specific heat coeflicient for the interface or additional state variables (Section 4).

Let {e}, ez, e3} be an orthonormal basis of R® assimilated to the physical Euclidean space.
For all & = (£],&2,&3) in RS, 3 stands for (¢1,¢2). The space of all (n x n) symmetric matrices
is denoted by $" and equipped with the usual inner product and norm denoted by - and | |
(as in R3). The space of linear symmetric mappings from S” into $" is denoted by Lin($").
For all n in S3, 7 stands for the matrix (Map)1za,p<2 IN S2. We study the dynamic response of a
linearly thermoelastic structure consisting of two adhering bodies connected by a thin adhesive
layer and subjected to a given loading. Let Q be a domain of R® with a Lipschitz-continuous
boundary 0Q. The intersection of Q with {x3 = 0} is a domain S of R?> with positive two-
dimensional Hausdorff measure - (S). Let € be a positive number and Q* := QN {+x3 > 0}, then
the adhesive and the adhering bodies occupy B := S x (—¢, +¢& and QF := QF + ee3, respectively;
we define Q, := Qf UQ;, S¥ := S+¢eeg and 0, := Q. UB. U S} US;,. We consider two partitions
(4D 14Ny (T D 1INy of 3Q, and for all elements I of these two partitions, the sets I'*, F;—' and
T, respectively denote T N {+x3 > 0}, T* £ £e3 and I’} UT, . Moreover we assume that /5 (-#D+)
and 7, ("7 P*) are positive. The contact between the adhesive and the two adhering bodies is
assumed to be perfect from both thermal and mechanical points of view. The structure is clamped
on I'//P| subjected to body forces of density f, and surface forces of density g on I'/N, it is
maintained at a uniform temperature Ty on I'Y ® Uy7 P x (¢, ¢) and subjected to a thermal flux
ggor on I“LEOTN U)/LOTN x (—¢&,€), where (ny,yer) is a partition of 8S. The whole structure is modeled
as linearly thermoelastic in the following way. Let (o, ur, Br, k1, @r) in (0, +00)%, a; in Lin(S$®),
d:=(p, B a,k,a)in L°(Q,R xR x $% x $3 x Lin($?)) satisfying

a(x)=0a.e.xeQ,
Ic>0s.t. p(x), B(X)=c, x(xX)E-E=cléPVEERS, are-e a(x)e-e=clel’VeeS?, a.exe Q.
(1.1)

The symbols py, B, @1, k1, iz ar respectively represent the mass density, the specific heat coeffi-
cient, the thermal dilatation, the thermal conductivity, and the elasticity tensor of the adhesive,
while d; = (p¢, Be, ®e, Ke, a.) denotes the analogous quantities for the adhering bodies with

des(x):=d(xFee3) a.e. xEQ;—'. (1.2)
Similarly

3(f,g%,g7) e L2(Q,R3) x 2N R%) x 207 N) s.t.

fe(X)=f(xFee3) ae.xeQf, f.(x)=0 ae. x€B,
iy (1.3)
€

g;” (x) = g“” (xFee3) ae.xe , gg” (x)=0 a.e.xedSx(-¢¢),

g7 (x)=g7 (xFee3) aexel?N, g7 (x)=0 ae xey?Nx(-¢e).
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Christian Licht et al. 29

Thus the problem (%) of determining the evolution in the framework of small perturbations
of the assembly, whose state is denoted by U; = (us, vs,05), us, vs,05 being the fields of dis-
placement, velocity and temperature increment with respect to Ty, involves a sextuplet s :=
(¢,p1, 11, B, K1, @) of data so that all the fields will be thereafter indexed by s. If U? = (u?, 19,69
is the given initial state, a formulation of (%%) could be:

Find U sufficiently smooth in 0, x [0, T s.t.
us=00onT/P 0, =00nT7Puy?P x (~¢,¢), Us(0) = U? satisfying:
0 0
, pgf -V + ag(e(us) — Osa,) -e(v) dx+fB pLﬁ V' +prag(e(us) —arfs0) -e(v')dx
@y 4 :fQ fg-v'dx+fFﬂNgg”-v’dJ€2,
603 ! ! !/
fQ ,BEEB +xV0,-VO' + (aza. - e(vs))0' dx
’ a0 -
Br—0" +xVO;-VO' +purar(arl-e(vs)d dx =f g7 0'd,,
B Ot rIN
for all (v/,0") sufficiently smooth in @, and vanishing on TP x (7P uy7 P x (-¢,¢)),

where f denotes the time, e(u) is the linearized strain associated with the field of displacement u,
and I is the identity matrix of S3.

2. Existence and uniqueness of a solution to (%)

Assuming
(f, g% g7)ec® (o, T], L2 Q,R%) x CV1 ([0, T, L2 (TN, R%) x CV1 ([0, T1, L2 N))  (HI)

we seek zg = (ug,0;) in the form

Zs =z + 2y, 2.1
where z¢ is the unique solution to
28 € Zs Ds(z8(D),2)) = Le(0)(2)) VZ'€Z, Vie(0,TI, (2.2)
with
Z1= Hy 450, R*) x H55 (0), 2.3)

where for all open set G of RN 1< N <3, H;(G, RY) denotes the subset of the Sobolev space
HY(G,RY) of elements with vanishing trace on y included in 0G. Let

D(z,2") = (u, )15+ 0,045 — W,0)55+ (1,055 Yz=(u,0), Ve =,0" € Z, (2.4)

(14,1/)1,5::fQ age(u)-e(u')dx+fB urare(u)-e(u')dx Vu,u’EHll‘ﬂD(@’E,W),

0,045 ::fQ nge-va’dx+f3 xVO-VO'dx ve,e/eH;T)(@’g),
(1,0)5,5 := f (@cae - e(u)0dx + fB pra(al-e@)dx ¥(w,0) € Hy (O, R) x Hi gy (OF),
’ ) (2.5)
and
Le(0)(2) := frm gg”-u'djfz+frﬂ_N g70'dx VZ'eZ, Vtelo,T). (2.6)

The bilinear forms ()15, (-,-)4,s and (-,+)s,s are associated with the strain energy, the thermal
dissipation and the thermoelastic coupling respectively.
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30 Christian Licht et al.

As (g%, g7) — z¢ is linear continuous from L?(I"*N,R%) x L2(T7N) into Z;, we have
z¢ e CVY([0, T1, Zy). @2.7)

The remaining part z; of z; will be involved in an evolution equation governed by a m-
dissipative operator A in a Hilbert space s of possible states with finite thermomechanical
(strain, kinetic, thermal) energy defined by

$)51= Hl o 06, R) x L0, R*) x L* @), 2.8)
and endowed with the following inner product and norm:
(U, U= (u, u)1 s+ Ks((1,0), (V,0"), |U%:=(U,U)s, (2.9)
Ks(1,0),(v,0) = (1, V)25 + (0,035 YU=(u,v,0), VU =W/, v,0)eH;, with  (2.10)
(v,v’)z'szzf pgv-v’dx+f orv-v'dx,
Q. Be

0,035 := fﬂ 00’ dx + fB .60 dx.

£

(2.11)

Operator A; is defined by

(i) (v,0)€ Zsand

(i) 3! (w, 1) € L*(O, R3) x L2(O,) s.t. Y (V',0") € Zs :
(w, V)5 + (U, V)15 — (v',0)55 =0, (2.12)
(T,e,)&s + (9,6/)4,3 + (Uy 6,)5,8 = Oy

D(Ag) =4 U = (u,1,0) € Hg;

A

AU =(v,w,1).
It is straightforward to check the following.

Proposition 2.1. Operator A is m-dissipative and, for all o = (pL, 2, $3) in s,

Us=TVs+ P!
— . ZSZWS,ES)EZS; V(z5,2) =Zs(z) Vz=(v,0)eZ
U, = (us, vs,0;) s.t.
{ﬁs ;S[_] s_ (;) with (2.13)
SoTeEETs W= @s+ K,

L(2) 1=~ (P}, )15+ Ks (95, 43),2) Vz=(1,0) € Zi.
Then, taking into account (H1), (2.1), (2.2), (2.7), (2.12), it is clear that (%) is “formally

equivalent” to
du; dué du de¢
{ = — AUy =Fs:=|ug S, - +fs,——d; ,

de STdr dt
UL (0) = U{ - (u€(0),0,6¢(0)),
with fs equal to f./p, in Q, and 0 in B;. So the Hille-Yosida theorem (see [13]) leads to:

(2.14)

Theorem 2.1. If(f,g%, g7 ) satisfies (H1) and U? belongs to (u¢(0),0,0¢(0)) + D(As), then (2.14)
has a unique solution such that U! belongs to C1((0, T1,$s). Hence there exists a unique (us,05) in

(CH(10, T, Hy 4p (G, R*) N C2(10, T], L* (@, R*)) x (C' (10, T1, L* (@) N C°(10, T), Hyr, (G0)),

which does satisfy
us 05,5 = d A yd 7 VueH. (0 R
dtz yu 28+(usru)l,s_(u) 5)5,8 - o f&"u X+ r‘ﬂNgg ‘u 2 ue rej[D( £ )(’2 15)
do; ' dus ~ pu ¢ . :
(E,G 3y3+(05,0)4,5+(5,0)5§ = r?N 8¢ 0d.A4, VGEHFE‘TD(@E)'
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We set
U? = (ug, z9). (2.16)

3. A mathematical analysis of the asymptotic behavior

Now we regard the sextuplet s of geometrical and thermomechanical data as a sextuplet of
parameters taking values in a countable subset of (0,+00)® with a single cluster point 5 in
{0} x [0, +00]® and study the asymptotic behavior of U; in order to suggest a simplified but accurate
enough model for the genuine physical situation. We will show that, depending on the relative
behavior of (o1, 11, Br, K1, ar) with respect to €, numerous (100!) limit models appear. They are
indexed by I = (I, IT) € ({0,1} % {0, 1,2,3,4)2, Iy = vy, Ini2), It = (Ipg, Im2) defined as follows. Let
=M= =1, M=-1,rM=-3,rf=r=r] =1, 7] =r] = -1, we assume:

There exists (pL,ﬁ_L,ﬁIL,RIL) in [0, +00)? x [0, +00]? such that:
(O, Br) = £1£1}8(PL,,3L),

rlITZ

M _ 2
(ﬂIL,RIL) c=lim {pp /e ™2,k /e with lim & (,uzl,Kzl) €[0,+00),
§—S§ §—S§

and

{ IerlTl =0 ipr!BLzo! IMI!Ilel ipr>0r BL>0; (HZ)
fi =0and 7 (*“P~) >0when Iy =0, [} € (0,+00) whenIyp =1,
ﬁIL = +oo and £i£28,uL =0whenIyp =2, ﬁIL € (0, +o00) when Iy = 3,4,
1'<IL =0and #T7P") > 0when I, =0, 1'<IL € (0,+00) when I» =1,
I _

k; = +ooand limexy = 0when Iy, =2, 1'<IL € (0, +o0) when It =3,
§—S

1_<IL = +oo when I = 4.

The physical properties of the adhesive layer corresponding to the various values of I will be
conveyed in Section 4 through brief comments.

3.1. A candidate for the limit behavior

From now on, C denotes various constants which may vary from line to line and we use the
convention 0 x co =00 x 0=0.

3.1.1. The limit space $)'

This candidate could be determined by studying the asymptotic behavior of sequences with
bounded total thermomechanical energy. For the sake of notation simplicity, and when no confu-
sion ensues, we will use the same symbols U, us, vs and 85 to denote both the elements of general
sequences and the solution to (%). It will appear that in some cases the thermomechanical state
of the “limit structure’, where the three-dimensional adhesive layer is geometrically replaced by the
surface S it shrinks to, does not involve the sole state variables of the adhering bodies but addi-
tional thermomechanical state variables not necessarily defined on S but in B := S x (—1,1) which
accounts for the limit behavior of the adhesive layer:

It is convenient to introduce the following “scaling operators” which transform a field y;
defined on B, into afield y;p defined on B in such a way that a bounded energy for y; is equivalent
to a bounded “scaled” energy for y;p:

C. R. Mécanique — 2022, 350, 27-45



32 Christian Licht et al.

Operators "™z ;
ue H'(Bg,R3) — up = ™2 y e H'(B,R3) defined by

Ine =0,1,2 ug(x) = u(x,ex3) a.e.x€B,
ge;j(up), 1<i,j<2
and e?}f‘z (e,up):=1 (e0;upsz +03up;) /12, i=1,2,j=3
03 Ups, i= ] = 3r
Im2 =3 Up(x)=U(X,ex3), ups3(x)=cuz(x,ex3) a.e.x€eB, a1
ei;(up), 1<i,j<2 '
and e?j(e, up):=<% (1/e)e;z(ug), 1<i<2,j=3
(1/e¥ess(up), i=j=3,
Imo =4 Ug(x) =U(X,ex3)le, up3(x)=u3(X,ex3) a.e.x€B,
and e‘l.‘j (e,ug) = e?j(s, ug).
Clearly:
2 — rIM Iv2 wImz 2
UL le(w)|“dx = (yLle MZ) ‘e (&,% u)| dx. (3.2)
B, B
Operators Y, #2:
(1,0) € L?(Bg, B3 x R) — (vp,0p) = (FVv, #20) € [*(B,R® x R) defined by
(vp(x),0p(x)) = (v(X,£x3),0(X,€x3)) a.e.x€B, (3.3
which satisfy
2 2 o2 6,2
(po |v|©dx, ,BLf 0] dx) = (pLEf L?; v| dx, ,BLgf ‘YE 9‘ dx). (3.4)
B Be B B
In view of following Proposition 3.1, it is natural to recall some classical notions. Let
Q:=Q\S ifi=01 Q:=Q ifi=234. (3.5)

For an element y of H LQ\S,RY), 1 < N < 3, we will denote its restrictions to the open sets QF by
y* which is an element of H!(Q*,R"). The symbols ys(y*) and ys(y~) will denote the trace of y*
and y~, respectively, on S. Of course, for y in HY(Q,RYN), vs(y) will denote the trace of y on S. We
also use

1:=ys(yH) -ys(y), (3.6)
Hy,(B,RY):={ye [*(B,RY) s.t. 03y € L*(B,RY)} 1=<N<3, 3.7)
it is well known that a continuous mapping yg: is defined on Hjy, (B,RM) for the traces on
§* := S + e5 with values in I[2(S*,RY), and, from now on, s (y) is treated as an element of
L2(S,RN),
VikL(B) = {ue H'(B,R*); 3w, uf) e H'(S,R?) x H2(S) s.t.
a(x0) = uM(® - 3Vu' @), wus(x)=uf (@ ae.xeB} (3.8
= {ue H' (B,R®; ej;3=0a.e.in B, 1<i<3}.
We will use the following Hilbert spaces and norms:
spaces of displacement fields $':
« =0 9= {u=(uo,ef) € HL Q"R x (0},
e =1 $:= {u = (ug, ep) € H. ,, (Q",R*) x I*(B,S%) s.t.
Jup € Ho, (B,R®); els = dsu @5 e3, s+ (up) = ys ()},
s ho=2 L :={u=(ua,el) € Hl QR x 1%(B,S%) st.

Jup € H'(B,R%);0 = e = 03up ©5 €3, 7t (up) = ys(uo)},

C. R. Mécanique — 2022, 350, 27-45
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« o =3 9l :={u=(ua,el) € Hl QR x 1%(B,S%) st.
Jup € Vki.(B); ug/l :m, uIFg = O,ég = E@},
e Ip=4 9= {M = (uq,ep) € HIEﬂD (Q,R3) x L?(B,S®) s.t.
2(ysu)) =0, Jup € Vi (B); uly = ys(uas), ef = e(un),

and they clearly are complete relatively to the inner product
(w,u)} = fQIW ae(ug) - e(ug,) dx+ﬂILfB agel-ed dx Viyp=0,1,...,4. (3.9)

Note that for a field y in H' (S, R?) we also denote the symmetrized gradient of y by &(y).
spaces of velocity fields $)',:

e =0 9, :={v=vqel*(QRY}, (v,v')IZ::vaQ-vgldx,

e i=1 9 :={v=(vq,vp) e ZQR)x*BR)}, (v, V');;zf qu-vgzderpo VB
vpdx, ¢ B
spaces of temperature fields .619:
e In=0 $Hy:={0=0qel*Q)}, 6,0} :=fﬂﬁ999;2dx,
cIn=1 5}:={0= (00605 € 2Q x 2(B)}, (0,6')13:=/Qﬁ690§2dx+,BLth936%dx,
spaces of limit states $)':
Hli=Hl x 9 x G, (3.10)
U, UH = (u, u)t + (v, )y + 0,00, UM := (U, V2.
So, if T is the operator from L2(Q,,RY) into L2(Q,RM), N =1 or 3, defined by
(Tey) (%) := y(x tees), VxeQ, VyeIL?Q,RY), (3.11)

we have

Proposition 3.1. For all sequences Us = (us, Vs,0;) in 9 such that |Ugls is bounded, there exist
U = (u, v,0) in$H' and a not relabeled subsequence such that
(i) (Teus, Tevs, T05) weakly converges in H%MD (Q\ SR x [2(Q,R3) x [2(Q) toward
(uq, va,0q);
(i) #'vs weakly convergesin L%(B,R®) toward vg iflv1 =1, 926905 weakly converges in I2(B)
toward 0p if It; = 1;
(iii) ™2 (e, #™ uy) weakly converges in L*(B,R®) toward e when Iy is positive;
(v) 1UI" <lim |Uyls.

§—S

Proof. As

U2 = fgae(Teus)-e(Teus)+ﬁ|Tgvs|2+p(Tses)2dx

+fB(pL/rII;/Iﬂ)aLeIMZ(e,yg"'IMZus)-eIMZ(E,%“’IMzuS)+£pL|5”£”vs|2+£ﬁL|5’€693|2dx,
(3.12)

point (ii), and point (i) when # (I*P~) > 0 are obvious.
Anyway the boundedness of (us, us);,s implies that there exists ”5 in Hll D+ (Q*,R%) and a
not relabeled subsequence such that ((T;us)*,ys((Teus)*)) converges weakly in H LQ*,R3) and

strongly in L%(S,R%) toward (ué,ys(ué)), respectively. By using Korn inequality and a cutoff
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function n such thatn(xs) = 1if0 < x3 < L/3, n(x3) = 0if x3 = 2L/3, with L = max{xs; (%, x3) € 0Q"},
one has:

2e
||ITsusH|i2(S[R3) = C(,LL_IJL_/;; |e(us)|2dx+£); (3.13)
\ I X

52
fB lugl?dx < C(ElYS((Tgus)+)|iz(s,R3)+N_,U'LL le(us)|* dx + €. (3.14)
& L €

Hence assumption (H2) implies that there exist ug in H, 1 . (Q7,R% and a not relabeled
subsequence such that (T us)~ converges weakly in H L™, R®) toward Uug and

62
f Iuslzdst £+ —
Be
M
So, if vz = 1,2,(F™2ug, (up/evz)eM2 (e, £ ™M) is bounded in IZ(B,R3 x S3)

HL
so that the convergence up to a not relabeled subsequence of 9’8”’1"“ us in the sense
of distributions on B yields that there exists a unique up in HaS(B,[RS) such that

. (3.15)

(%u,IMZ s, (%U,IMZ Ug)s3, ez (g,eyj:”’h"[2 us)) weakly converges to (g, up3,03up ®g e3) in I2%(B,R?) x
Hp,(B) x L*(B,S®) with yg: (up) = ys(u3) because yg: (M2 ) = o ((T,us)*). Moreover, when
Inz = 2, one has el = 0 and ugq belongs to H' (Q,R?). -

When Iy; = 3, (3.2) implies [ |e3(£,3g”’3)u5|2dx+ Js+ |5€5”'3 ugl? + ((,?j;”’3 us)§/£2)d<]f2 <Cso
that there exist a not relabeled subsequence, up = (@p,0) in Vg (B) and eg in L*(B,S?) such that
(F3 us, € (e, 7% us)) weakly converges in H' (B,R?) x L?(B, S?) toward (ug, e) with e% = e(ugp).

Moreover yg: (F3 ug) = m’gus\)i) and (3.13) yield [uq] =0, m =ysug) = m, which
imply ug € H'(Q,R?), ull = ys(uq), ul =0, ys(ug) € H'(S,R?).

When Iy = 4 one only has (yg: (£ ug)s, e* (¢, %4 us)) bounded in L2(5*) x L2(B,S?), so that,
by using the space £ of infinitesimal rigid displacements and the weak convergence of (5@”'4 Ug)s
in Hp, (B) toward y s(uag), it is routine to establish that there exist a not relabeled subsequence
and some (ug, ep) in Vg1 (B) x L?(B,S?) such that (5”5”’4 us, e* (g, 5@”'4 us)) weakly converges toward
(up,e?) in (H'(B,R?)/Z x H'(B)) x L*(B,S°) with e = e(up). Then ys: (% )3 = ys(Teus)%)
and (3.13) yield [us] = 0, Y+ (up3) = ¥s(uqs) which implies uq € H' (Q,R3) and ys(uq3) € H*(S).
Moreover as there exists an infinitesimal rigid displacement pg such that yg+ (T us/€) + m
strongly converges in L2(S, R?) toward yg: (u5), one deduces that &(ys(ug)) = 0. O

3.1.2. The limit operator A

According to Trotter’s theory of approximation of semi-groups of linear operators acting on
sequences of variable Hilbert spaces [15,16], we examine the asymptotic behavior of the resolvent
(I— Ag)~! of Ay in order to guess the limit operator Al. Proposition 2.1 implies that a sequence
Us = (us, vs,0;) such that |Usls + |AsUsls = C involves (v, vs)1,s + (05,05)4,s < C in addition to
|Usls < C that we already considered. For this purpose we introduce the following spaces Gé”
of temperatures and operators gg:

GY:=1{0=(0q,0p) € H'(Q") x L*(B)}, g%:=0;

G} ={0 = (00,05) € H'(Q") x Hy, (B); ys:0p) =ys(05)}, g5 :=(0,050p);
G2 :={0 = (6q,0p) € H'(Q) x Hy, (B); 030 =0,ys: (0p) =ys(0a)}, g5:=0;
1 G3:=1{0=(00,05) € H'(Q) x H'(B); ys(0a) € H'(S),0305 = 0,y5: 0p) =ys®a)}, ~ G10

8% := (Vysbq,0);
Gp:=10 = (00,08) € H'(Q) x H' (B); ys(0a) = C(=0if 7, (y” P) > 0),
030p =0,ys=(0B) =ys@a)}, gg :=0.
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Thus, if for all 85 in H'(B)
(6603,6393) when I <2,
(663,6393/8) when It > 2,

we have the obvious scalar variant of Proposition 3.1:

g™ (e,0p) = { (3.17)

Proposition 3.2. For all sequences such that (0s,05)4,s < C, there exists 0 in GéTZ such that
(i) T.0; weakly converges in Hllyo Q") toward Oq;
(i) g'r2(e, #00,) converges weakly in L*(B,R®) toward g%, whenIr, = 1.

Note that it is only when Itp < 1, that the “additional” temperature 65 depends on x3. We
therefore make a supplementary assumption:

Im2 =0 no condition,
Ino=1 dIL :=limeay,
§—S
there exists c‘zIL in [0, +00) satisfying: < Im2=2 no condition, (H3)
IM2 =3 C_ZIL = lim(XL,
§—S§
Im2=4 a):=lima;/e,
§—S

so that it is reasonable to suggest the following forms (., -)fl and (-, -)15 as “potential limits” of (-,)4 s
and (-,")s s

G ::fKVQg-VHbdxkaILng-gg,dx v0,0' € G,

(3.18)
(w,0)} := f:(ae(ug)-a)egdx+(ﬁILalL)fB(aLeg.I)ede Yue sy, Vo e Gy
It will be convenient to introduce for all 6 in Gé
« 0 i =0,
§. |00 ifln =0 (3.19)
(0q,0p) ifIt =1.

The boundedness of both py, fBS |vsl2 dx and Ur fBE ae(vs) - e(vg) dx leads us, when Iy; = 1 and
Inm2 = 3,4, to introduce a special space 6551,, for velocities and consequently a special space G$'
of limit possible states with finite energy.

bt LY (B) := {ve L*(B,R%) s.t. v(x) = (D(X),0), U € L*(S,R?)}, 3.20)
LY (B) == {ve H'(B,R%) s.t. v(x) = (—~x3V 3, v3), v3 € L*(S)}, '
then
9}, ifIy; =0 or Iy <2,
GHl, = {(vq, vp) € L*(Q,R3) x LIQ/IL(B)} ifIygp =1and Iy =3, 3.21)
{(va,vp) e L*(Q,R%) x L}, (B)} if Iy =1 and Iy =4,
(v, )} = (0,0 Vi, v eHl, (3.22)
where
72 if Iy =0,
U =1 (vq,vp) ifyp = 1and Iy <33, (3.23)
(v, 0,vp3)) ifly; =1and Iy =4,
and
GH' =9 xGH, x ) (3.24)
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equipped with the norm |- |'. Thus, in order to proceed in a unitary manner, we denote the space

of admissible virtual generalized velocities and temperatures by Z':

Zl= {(v,@) €GH! x G(I,TZ},

u

o5 {{u € !, with ug any element of L?(B,R3)} when Iy =0,

fJIu when Iy >0,

where, for all elements of 6.61u, 1t is defined by:

. uq ifIni1 = 0;
| (ug, up) ifhy =1,

we are in a position to define operator A' in G5! by:

(i) 3(7,0) € Z' s.t.(5,0) = (1,0),

(i) A (w,7) € &, x Hy s.t. V(V,0) € 2
(b, )L+ (u, v - (v, 0L =0,

(T,00L +©0,0", + (3,0"L =0,

< DAY :={ U= (u,10) e6H

AU = (7, w, 7).

(3.25)

(3.26)

(3.27)

(3.28)

Similar to the case of Ay, it can be checked easily that A is m-dissipative and, more specifically,

that for all ¢ = (¢, ¢?,¢%) in GH:
EI — 'VVI +Qb1,

@.0) = @, 0",

vh=o'+ K,

Dl(z,2) = (v, V) +(6,0)} - (v, 0)} + (1,0}

A

U =@, 7.8 st
T -AT =¢

L 2):=-@", v)] + K (9% %), 2).

Z=@,0h ez 9'Z 2 =LYz VzeZ'with

Kl(z,2):= (5,0)+ 6,60, Vz=w0),vz =',0) €7,

(3.29)

Consequently, the same statement as that of Theorem 2.1 is valid for the following equation,

which will be shown to describe the asymptotic behavior of the solution to (Z%):

d(li]:r _AIUIr ZFIIZ (ule_

UIr (0) — UIr,O,

dule duf +LI _dele
dr ' dr p’ dt )
where fI = fifIyy =0, fI = (f,0) if Iy = 1 with
Ze = (u'e,0') e 7, @z (r),2) = L) () VzeZ'Vtelo, T,
L(t)(z)::f g% vodb, +f g7 00 d.7,.
r.l[N rﬁ'N

We set
UIe — (ule ZI@) UI — UIE + UII’
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3.2. Convergence

To prove the convergence of the solution Uy to (2%5) toward U!, we use the framework of Trotter’s
theory of approximation of semi-groups of linear operators acting on variable spaces (see [15,16])
because U; and U' do not inhabit the same space.

First let the representation operator P! defined by

Ue&H'— PLlU = (u},v},00) € (3.33)
with
e ule H;m(@,u;a?’);

M
(u:,u;)l,s:Lae(ug)~e(Tgu;)dx+(/JL/.erIMz)fBaLeB e(e, ™Myl ydx Y, (—:HlﬂD(@,RS),

(3.34)

o (v5,07) € L?(0g,R®) x L*(0);
(s, vh)as :=prvQ-Tgv;dx+epoBvB-yg”v;dx YU, € [*(0g,R®), (3.35)
075,09)3,5 :=LﬁHQTgegdxnﬁLLeByfe;dx V0. € L(O), (3.36)

(of course when Iy =0 or Ity =0, we set vg = 0 or 6 = 0) and which satisfies

Proposition 3.3.

(i) There exists a positive constant C such that |P.U|s < C|U|" for all U in &$' and all s;
(ii) When s tends to s, IPﬁUls converges toward UL forallU in G.V)I.

Proof. The part of the result concerning u; when Iy = 0, vy and 65 is obvious By choosing
u;, = u; and arguing as in the proof of Proposmon 3.1, there exist (ug,, e ") in $!, such that
(T ug eIM2 (6,505” vz ug )) weakly converges (up to a not relabeled subsequence) toward (uQ, eB )
in H%m) (QIMZ/, R3) x LZ_(B,§3). To identify u* := (”g*)’ eg;*) asu:= (uQ,eg), it suffices, for all (ub, eg,)
in 55“ with ezl; in C*°(B,S?%), to build a sequence ug in Hll‘ up O, R3) such that:

f aw(ué‘)-e(ué)dx—»f ae(ug) - e(ug) dx,
Qp Q

ae(ug)-e(Tgu;)dx—»f ae(ug) - e(ug) dx,

¢ . (3.37)

,uLf aLe(u:)-e(u;)dxﬁﬁLf aey ey dx,
Be B

M
r 1 _ /
(,uL/g Imz)f aLeg-eIMz(s,ygu Mzué)dx—»uLf apel - ej dx.
B B

(FM) =1yl in B,
ug(-Fees) inQF
of the mathematical derivation of Kirchhoff-Love theory of plates [18, 19]. Let @5, ¥ defined as
follows:

Clearly, when Iy = 1,2, u’s = { satisfies (3.37). When Iz = 3,4, we use a trick

Ps = (ﬁ(u\’g) - xﬁys(ugls.),ys(ugm))
v = (L) g, . (3.38)
X3 -
WRe(X) := Ef (2@(2,()—5[ Vws(X,8)d¢, Ew,f;(?c,()) d{ ae. xeB,
) 0
where w; := (eB’),g,l <i<3, then the field 1, := ¢ + 1 is such that ™2 (g, #™M2) /. converges

strongly in L?(B, S°) toward e and |y5+(u - uQ( Fee))lpse, w) = = O(¢™272), Hence u} may be
extended into Q; to an element of H! 14D (@, R®) still denoted u), which satisfies (3.37). Lastly by

choosing u}, = u} in (3.34), one obtalns that (u3, u$)1,s tends to (u, u)I O
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Next we state that:
Us in $)sconverges in the sense of Trotter toward Uin ﬁlif lim |P£U —Usls=0. (3.39)
§—S

Remark 3.1. Note that Us converges in the sense of Trotter toward U is equivalent to

Te(us,vs,05) converges strongly toward (uq,vq,0q) in H(OM2 RS x 12(Q,R3) x L2(Q)
M

and ((ungrIMZ)”zeIMZ(5,5”8”'11"‘2us), (L&) 2FY vy, (ﬁLe)I/ZSﬂEBQS) converges strongly toward

(ﬂilzeg, ﬁi’z UB, ,B_i/ZGB) in L2(B,S® x R® x R) which, by (H2), (3.2) and (3.4), is equivalent to:

lim{f ag e(us— (Te) 'uq) - e(us — (Te) ' ug) dx
Qe

§—S§

_ M
W+t )12

_ M
el (%, x3/€)) - (e(us)(x) —¢ v 2 el

+poB ar(e(us)(x)—¢ ep (X, x3/€))dx

+;osfQ lvs— (Te) ™ volzdx+poB lvs(x) — vp(X, x3/€)|* dx

+ﬁ.gf |65—(T5)‘199|2dx+mf |0s(x)—93(x,x3/e)|2dx}=o (3.40)
Q¢ Be

which expresses that the energetic gap between the state U; and the image on the initial physical
configuration O, of the limit state U tends to zero when s goes to 3!

Lastly we conclude by making an additional assumption (H4) about the initial state and
establishing the
Proposition 3.4. There hold
i) Vpen!, lim|PiI-AY"1p-(T-A) ' PLpls=0,
§—S§
(ii) lim|PLU™(8) - UE(t)|s = 0 uniformly on [0, T1,
§—S

T
(iii) lirqf |PLFY (1) — Fy(1)|sdt = 0.
s—5Jo

Proof. Regarding (i), by taking advantage of Proposition 2.1 and (3.29) it first suffices to build for
all z' = (,6') in a dense subspace of Z! a sequence z, in §); such that

lim (T, v91,6 = @01, lim@s,0)4,6= 0,0},

s—3 _ _ s—3

£Lng‘(v;’98)5's = (U’)H)Isv &T} (vsrgg)s,s = (3,9’){5, (340)
hn]_KS((vSyés)) (v;rgg)) = KI(@;E)v (U,)Q,)))

§—§

where Z := (7,0) in ! x G:)TZ is the limit supplied by Propositions 3.1 and 3.2 of Z, = (7s,05), as
Z, satisfies (U5, Us)} + (U5, V), + (05,0,)5 + (05,05)), < C. From Proposition 3.3, the choice v} = v
according to (3.34) is in order, while we use 6’ defined by

0/ )_{Gb(xfreeg) ae xeQl, (3.41)

0710, ae.xeB,,

for any (0},,0}) in Gy> such that 0 belongs to H'(B), because (.0}, (1<L/5rITTz)gIT2 (e, #20))
strongly converges in H L2y x 12(B,R%) toward (96,1’( ng’). This allows us to claim that z =
Z'. Next by choosing z = z; in (2.13), we deduce that (55,35,55) converges in the sense of
Trotter toward (171,31,51) by due account of the remark following the definition (3.39).

Points (ii) and (iii) are established by similar arguments simply taking into account (2.2), (3.31)
and (H1). O
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Thus the convergence result can be stated as:

Theorem 3.1. Under assumptions (H1)-(H3) and

30" e U'0) + D(A") s.t. lim |PLU™ - U5 = 0 (H4)
§—S§
the solution to
dU; e 0
dz - As(Us—-Ug) =0, f5,0), Us0) =Ug (3.42)

converges toward the solution to

du!

o ~AU- U9 =0, fp,0, U(0) =0 (3.43)

in the senselim|P U (1) — Us(1) |} = 0, lim |U(8)|s = U ()" uniformly on [0, T}.
§—3§ $=S

4. A thermomechanical presentation of the results

Here we intend to make more explicit the formulation (3.43) of the limit behavior of the structure.
To lighten notations we skip the superscript I in (u!,0Y) and write (u,0) instead; an over dot '’
denoting differentiation with respect to time, the motion equation reads as:

prilg vg +ale(ug) —0gal)-e(vy)dx + fB priip- Vi + [y ar (el —0pa)I)- eg dx
=fo-v£2dx+/r‘ﬂNg“”-vg’)dJ€2, V' eGH (C9))
while the “energy” equation reads as:
fgﬁégeb +K VO - VO, + (aelig) - al)B), dx + fB BLOs0y +&L gl g% + ik al (ap(el) - DOy dx
= fr 87 0ad 76, VO Gy 4.2

Clearly the fields of stress 0;—’2, thermal flux q;—;, displacement and temperature in the adhering
bodies that occupy Q" and Q™ satisfy the following relations written in strong form:
piiy— divey = finQ*, ojn= g" onT4N*

t=ale(u)-0Zal in QF
0g (e(ug) —0gali 4.3)

'395_ div g5 + ae(i)) - aI =0in Q*, ¢3-n= g7* onITN*

qg, =xVeg in QF

where n denotes the outward normal to Q, fogether with a thermomechanical contact condition
along S, the common boundary of Q* and Q™. This corresponds to the transient response to
the loading (f,g%,g7) of each adhering body clamped on I'*P* maintained at a uniform
temperature Ty on T'7 D* and thermomechanically linked along S. These contact conditions,
which stem from the limit behavior of the adhesive layer, can be deduced from the various
expressions of the two integrals on B in (4.1)-(4.2). The motion and “energy” equations will be
formulated in the form:

M (vy) + Mp(V) :ff-vbdx+fﬂNg“”-v£2d%”2, V' e vime (4.4)
Q I

Tag) +T0}) = f . g -0nd76, VO e G2 (4.5)
I

Besides the singular casely, = 0 (very soft adhesive), we may distinguish two main cases depending
on whether e}, depends explicitly on vg (Im2 = 1,2, i.e. soft, not stiff adhesive) or not (Iv2 = 3,4, i.e.
stiff, very stiff adhesive).
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v When vz = 1,2, as e, = 030 ®5 e3, one has:

Iz =1, V™ :={(vg,vp) € H} ,,(Q\S,R%) x Hp, (B,R%) s.t. ys(v) = 5= (vp)} @5

Imz =2, V™ :={(vg,vp) € H} ,,(Q,R%) x Hy, (B,R®) s.t. 0305 = 0,y5(v0) = 5= (vp)} '
Mo (vg) = fmspug Vg + ale(ug) —Ogal) - e(vy) dx 4.7
M%B(U;g) = LpLuB . 1/% +ﬂIL(,ZL(03uB ®ge3— CTCEQBI) '63 U,B ®ge3 dx. (4.8)

When Iy =2, MB(UJ’B) is equal to ZfS priq - vb d./6, and vanishes when p; = 0. One deduces:
—loesl =2prysliia) 4.9)
so that the two adhering bodies are stuck together (i.e. [uq] = 0) when p; > 0 and perfectly stuck
together (i.e. [uql = [oqesl =0) when gy, =0.
When Iy =1, one has:
./ﬂB(U%) = f prip- UJ/B + ﬂILaL(ag Uup ®ses — &IL@BD -03 U% ®gezdx (4.10)
B
and the mechanical contact condition reads as:
1! 1!
F Uée3 = 5[ PpL(1+ x3)iigdxs + ,aILaL ([[ug]] ®ge3— dIL(Ef O dX3)I) es. (4.11)
-1 -1
Therefore, if p; = 0 and dIL =0 or Op is independent of x3 (i.e. IT» > 1, which means an adhesive
with a not too weak conductance), one deduces:
ugp = Aff(ug) (4.12)
1 1 _
Aff(uq) = (uq) + Exs[[unll, (ug) := E(Ys(ué) +7vs(ug)) (4.13)

Mp(Vp) = ZﬁILfSﬂL([[UQ]] ®ses)-[vgl ®sesdx, or

Mp(Vp) = ZﬂILfSaL([[uQ]] ®se3—alys@a)D) - [vy] ®sesdx (4.14)
Fojes = fipar(lugl ®ses)es, or Foges=fjar(lugl ®ses—ays@a)Des. (4.15)

There is an elastic pull-back with a residual term between the two adhering bodies. The other
cases for the limit mechanical behavior of the adhesive layer, which clearly appears as a continu-
ous distribution of thermoelastic strings orthogonal to S, will be discussed further.

As regards to the thermal behavior, one has:

TaOg) = fmsﬁeg% +xV0q - VO, + (ae(tiq) - a)fg dx (4.16)

T(0)) =fBﬁLegeg+1‘<1Lg§-gg’+gILdlL(aL(aguB ®se3)- DO dx. (4.17)

We may therefore distinguish two main cases: It < 2 (i.e. an adhesive with a very weak or
weak heat conductance) when gy = 0 or (0,0565) and Iy, = 3,4 (adhesive with high or very high
heat conductance) when gg = (?93,0) or 0.

If I, < 2, the limit thermal behavior of the adhesive could be considered as the one of a
continuous distribution of strings orthogonal to S with specific heat coefficient f;, thermal
conductivity 1'<IL (thus insulating strings when It = 0 whereas perfectly conducting ones when
It = 2) subjected to heat sources of lineic density fi} @} a; (0315 ®s e3) - I (vanishing when Iy, =0
or 2). Therefore the thermal contact condition between the adherent bodies reads as:
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e It2 =0, [6q] #0, qQ e3 = 0: perfectly 1nsu1at1ng 1nterface,

o Ity =2, [0a] = 0, —[qa - esl = 2Brys@q) + fi; &, ([iq] ®s e3) - arl : imperfect thermal
contact, perfect when It; = 0 (adhesive with a low specific heat coefficient) and Iy, = 0
or 2.

When I; = 1 we have:
1! o
T (g5 e3) = 5 f (+x5)(BLOp + fiy @} ar(0siip ®s e3) - ) dxg + &} [0q)] (4.18)

thus, when ,BL = 0, there exists a contact conduction whose contact conductance is 1'<IL and a
source ,aILc‘zILaL [i1q] ®5s e3 - I; the other cases will be treated further.

When It = 3,4, we are indeed dealing with a material surface with a specific heat coefficient
,6 1, a thermal conductivity &' 1. (thus perfectly conducting when It = 4) subjected to a heat source
v La LaL[[uQ]] ®ses-I. So, the imperfect thermal contact condition reads as (the symbol A denoting
the Laplacian with respect to the sole coordinates x; and x»):

e I =3, [0l =0, ~[qa-es]l =2f1ys0a) — kILEYs(Qs) +ﬁILC_KIL[[L'tQ]] ®ses-arl,
. IT2 = 4, HGQ]] = 0,}’5(99) = C, pOSSibly T() if%l (}’LOTD) > 0, —ﬂqQ . 83]] = ZﬁLYS(és) +
iy @) [gl ®ses-ar,
the thermal contact being perfect when Ity = 0 and Iy = 2.

v When Iyyz = 0, 4 (v}) reduces to [ priip- vy dx which implies O'IQ e3 = 0: the two adhering
bodies are free to separate. The thermal contact condition was detailed in the previous study of
the case Iypp = 1.

v When Iy, = 3,4, by using eg = ¥ ®g e3, ¥ arbitrary in CSO(B, R3), (4.1) yields (aL(el’é -
aILéB 1));3=0,1<i<3.Then, if d; is the element of Lin($?) defined by:

&“Lq-q:zlnf{aLe-e; eeS’st.e= q},Vq€§2 (4.19)

one has ay (e — @} 0p1) = @ (e(up) — @} 051) and consequently:
Mp (V) = prLi‘iB-§'B+pILaL(@—dILeBT)-@dx,V(u;),ug)eVIMZ (4.20)
TpO}) = fB(BL+ﬂL(aIL)2(aL1-1—&'LT-T))QB%WIng.gg' 4.21)

+ 1y @) (@ e(ip) - DO dx, ¥ (05, 0) € Gy
ve= {u = (vq, vB) € H} 4n (Q,R?) x Vit (B); v} = y5(vq), vf = 0} (4.22)

Vi i={v= (w0, vn) € H} 4 (QR®) x Vi (B); (s (v) =0, vf = ys(vas)}.  (4.23)
An interesting phenomena is highlighted: the appearance of an added specific heat coefficient
3244 .= gt @2 (ap1-1-a,I-D (4.24)

is always positive unless dIL(aLI)ig = 0,1 =i < 3, in the limit behavior of the adhesive layer,
while the stiffness involves a; in place of a; as in the Kirchhoff-Love anisotropic plates theory
(see [10,19,20]).

So, when I = 3, we have

e — 1 1 ) —
-/%B(U],g)=2fspLYS(uQ)'YS(Ub)+,aILaL ?()’s(ug))—E@ILIIQdesI)'?(Ys(Ub))dX (4.25)

and the mechanical contact condition between the adhering bodies reads as:

e [ugl=0
e [oqesls=0

S — — _— 1 1 ~
e —[oqes] =2 ﬁLYs(ilQ)—ﬂILdiV(ﬁL(é(Ys(uQ)))—zdILIIHdesI)).
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It looks like a deformable material surface which is stuck between the adhering bodies and enjoys
only in-plane strains.
The nature of the thermal behavior of the adhesive was already examined but here we can
make more explicit the thermal contact conditions:
e I12=0,[0q] #0, i(qé -e3) = 0 : perfectly insulating interface,
o Ira=1,100] #0, F(q-e3) = J(Br+ B [1, (1+x5)05 dos + 1} @ @ 2(y s () - T+ [B0]:
contact conduction,
o Itz =2,[00] = 0,~[q0 - e3] = (Br + B ys(a) + i &) @1 e(ys(ig)) - T: imperfect thermal
contact,
o Iy =3,100] =0, —[qa-esl = (BL+ B ys0q) -k Ays(0a) + i} @ are(ys(iq))-I: imper-
fect thermal contact,
e Io =4,[0q] = 0,ys(0q) constant on S, possibly equal to Ty if #3 ()/gD) >0, —-[gq-esl =
(Br+Bys0q) + it al a.e(ys(ug)) - I: imperfect thermal contact.

When Iy = 4 one has:

L N 1. — =
ME(Vp) =2 fs priia3 Vs +ﬁ£(aLe(u?)‘e(ng) + gaLDZYS(UKB) - D?y5(vgs)

1 1 =N 1 Y~
- (,_IIL (5[ 93 dX3) ﬁLI‘ é(v’MB) +f X393 dxgiiLI- Dz}/S(UéB) d%g (4.26)
-1

973(91’3)=fB(ﬁ_L+,3_fdd)939}g+7_<1ng‘gg/+ﬁILdIL(ﬁL(?(uBM)—x313§Ys(u93))~D9}3dx- (4.27)

Because g;g’ = (VIE,0) when It = 3, the limit behavior of the adhesive layer is then similar
to the one observed by [21] for thin linearly thermoelastic plates: a flexural problem for the
component of the displacement field normal to S with a coupled membrane-thermal problem
for the in-plane component of the displacement and the temperature.

The mechanical contact condition between the adhering bodies reads as:

- lual=0
e e(ys(ug)) =0 (4.28)

1~ o~
e —[(oqes)-e3]l =2prys(iins) + gDZ(ﬁLDzYs(qu;))

The material surface inserted between the two adhering bodies may be considered as a second-
grade elastic one, enjoying only a motion orthogonal to S (a flexural problem ...).
On the other hand, the thermal contact condition reads as:

(0] =0, —[qa-esl =2|(Br+ B[ D00~k AysOa) + f @) are(uy) - T (4.29)
it involves the additional variable uff defined on S with values in R? satisfying
G5 =y a @uy) - ayys@a)), diveg=0. (4.30)

All this corresponds to a thermomechanical material surface occupying S whose material
constants are given by §+ 74, k!, al, il @, subjected to an inner heat source and free of
mechanical loading. Of course ug” may be eliminated and consequently the thermal contact
condition along S is a nonlocal relation (in time, only) between the normal flux (qg—r2 -e3)(X, t) at
the courant time ¢ and the whole history of y5(6q)(X,7),0< T < ¢.

When It = 4, 1‘<IL = oo compels Vys(fq) = 0, so that S is an isothermal surface possibly at T
when /4, ()/g- Dy > 0, while the mechanical contact is similar to (4.28), (4.30).

This is also the case when I, = 0 or 2 but with thermal conditions like:

o I2=0, [0l #0, Fq3-e3=0: perfectly insulating wall,
e Iz=2, [0al=0, —Iqa-esl=2(Br+pBys@q) +atalarewd)-T.
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When I; =1 (high specific heat coefficient), as the additional temperature variable 8 does
depend on x3, the limit thermoelastic behavior of the adhesive layer cannot be interpreted in
terms of a material surface.

Thus, in order to clarify the thermomechanical condition between the two adhering bodies,
difficulties occur when Iy = 1 or 4 and/or It = 1, which correspond to the cases when the
additional state variable up depends on x3 (Ip2 = 1), does not explicitly depends on the traces
on S of the displacements of the adhering bodies (Inj2 = 4) and/or the additional state variable
O0p depends on x3 (It = 1). In some of these cases, by adding a condition like Iy;; = 0 (light
adhesive layer) or It; = 0 (low specific heat coefficient) we again meet thermomechanical contact
conditions involving the traces on S of the state variables of the adhering bodies only as in the
cases we listed previously.

When Iy = 1, u := up — Aff(uq) satisfies

uly € Hy, s+us- (B,R%) := {u € Hy, (B,R) s.t. yg: (1) = 0},

~ .0 i 0
prily- V' + [ ar(03uy ®ses)- (030" ®s e3)dx

= —fB prAff(uq) - v/ + HBﬁILdILaLag V' ®ges-Idx, Yv' € Hy, g+us- (B, R
(4.31)
so that, except when I;; =0 and It» #0,1 or a?IL =0, up differs from Aff(uq) and the mechanical
contact condition (4.11) does not involves the sole instantaneous values of the traces on S of ué
and 65. Of course, as the equations governing the evolutions of uz and 05 can be solved in terms

of the whole history of the traces on S of u;—g and 9;—3, the contact condition at (X, ¢) is a rather

complex function of the history of )/s(u;—;) (%,-) and vs ((9;—“2) (%,+) and not only of the history of the

jumps [uql(%,-), [0l (%, ).

When I, = 1, if Aff(0q) is defined similarly as Aff(uq) (see (4.13)), 9% := 0 — Aff(0q) satisfies:
9% € H03,S+U57 (B))
f PLO30" + k1 0563056" dx = - f (BLAtEO0) + 1, & ar 0s s ©5 €9)-1)0" dx, i Tyy = 1,2

B B
f (BL+ B9N0%0" + &L 056%036' dx =

B

- fB ((BL + BT O0) + 1) &) aretys(u)) - T)e’dx, if Iy = 3
= V0’ € Hy, s+,5- (B)

—fB ((BL + ﬁ_fdd)Aff(HQ) - x3:aILdILﬁLb\2YS(uQ3) . T)H’dx, if Ipp = 4.
(4.32)
Except when (Inp,I11) = (2,0) or (dIL,ITl) = (0,0), Aff(6q) does not solve (4.32), the thermal
contact condition which at time t reads as:

1! ~ .
5,[ (1+x3)BrOp + {1} @} ar (03115 ®s e3) - Idxs + &} [0a], if Iy =1,2
1

1 s e — .
Tq5-es= Ef (A +x3)(Br+ BRY0p dxs + @ @t are(ys(ug)) - T+&. 6], iflvz =2,3

% f () (Bu+ P00 + [0} 8Dy s(ugs) - Tradxs + &1 100l ifluz =4
(4.33)
involves the whole history of ys(ug) and ys(6g).

So, in every cases, the limit thermomechanical behavior of the two adhering bodies and of the
adhesive layer are of the same (thermoelastic) type as that of the original situation. But, of course,
peculiarities of the limit behavior of the layer and the thermomechanical contact condition which
replaces it strongly depend on the relative behaviors of the geometric and thermomechanical
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parameters. The thermomechanical coupling perpetuates when ﬂILdIL ey does not vanish which is
the case when Iy, differs from 0 or 2 with dIL positive.

5. Concluding remarks

This rather lengthy and complex thermomechanical presentation of the results of our mathemat-
ical analysis exemplifies the flexibility of use but also the power of Trotter’s theory of approxima-
tion of semi-groups of operators acting on variable spaces: it permits a unitary treatment with
very few technicalities.

Our proposal of simplified but accurate enough models for the behavior of the structure made
of the two adhering bodies and the thin adhesive layer, which has to be formulated on the genuine
reference configurations QF and B; is of course obtained through the Trotter representant PLU*
of the solution U' of the limit problem (3.43), s taking the values of the original data. When
Iyz differs from 0, a variant of PLU' may be used through the construct detailed in the proof
of Proposition 3.3. Thus, from a computational and practical point of view, a finite element
approximation can be implemented without meshing the thin layer occupied by the adhesive!

It should be noted that, contrary to the cumbersome method—frequent in the literature—
consisting of firstly switching to a fixed abstract domain through a “scaling” (change of coordi-
nates and unknowns), abstract domain where the convergence is formally or rigorously studied,
and secondly returning—but not always—to the initial physical domain, we have hereby treated
directly through the representation operator P! the convergence of the initial problem where,
obviously, the limit can be, according to index I, expressed in a fixed abstract domain defined
through the “scaling” outlined above but which is used only when it is necessary to refine the de-
termination of the asymptotic behavior of sequences of thermomechanical states with bounded
energies.

To reduce the weight of our already copious study we have not detailed the cases Ip;, =3+«
and Iy, =4 + B corresponding to:

fi} = lim (up/e'*2%) = 400, a€(0,1)
S R 3+ _ (5.1)
g :=lim (up/e’*P) =+oco, >0

for which a straightforward comparison argument leads to the mechanical spaces defined by:

1 vl = —
(uq, up) € {HEM(Q'Rg),e(ys(um) =0} x {0}, Imp=3+a 5.2)
(ue, up) € {HL 4 o €(rs(ua)) =0} x {0}, Inp=4+p

endowed by the norm defined in (3.9) together with the convention co x 0 = 0.

Eventually the present study which corrects and improves [6] may be considered as a frame-
work to assess the formal and partial modelings proposed in [22], concerning poroelasticity as it
is well known that the equations involved in linear poroelasticity are the same as those in linear
thermoelasticity, and [23].
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