

Study of the 777 nm Lines Profile of Atomic Oxygen Using Laser-Induced Plasmas

Aurélien Favre, Milan Dimitrijevic, Vincent Morel, Stevica Djurovic, Zoran Mijatovic, Gilles Godard, Arnaud Bultel

► To cite this version:

Aurélien Favre, Milan Dimitrijevic, Vincent Morel, Stevica Djurovic, Zoran Mijatovic, et al.. Study of the 777 nm Lines Profile of Atomic Oxygen Using Laser-Induced Plasmas. SCSLSA, Jun 2019, Vrdnik, Serbia. hal-03011322

HAL Id: hal-03011322 https://hal.science/hal-03011322

Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

12TH Serbian Conference on Spectral Line Shapes in Astrophysics, Vrdnik, SERBIA, June 3-7, 2019

12th Serbian Conference on Spectral Line Shapes in Astrophysics

Study of the 777 nm Lines Profile of Atomic Oxygen Using Laser-Induced Plasmas

AURÉLIEN FAVRE^{1‡}, MILAN DIMITRIJEVIC², VINCENT MOREL¹, STEVICA DJUROVIC³, ZORAN MIJATOVIC³, GILLES GODARD¹, ARNAUD BULTEL¹

¹ CORIA, UMR CNRS 6614, Normandie Université, 76801 Saint-Étienne du Rouvray, FRANCE ² Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia ³ Department of Physics, Faculty of Sciences, University of Novi Sad, Novi Sad, 21000, Serbia *‡favrea@coria.fr*

CONTEXT & OBJECTIVES

Diagnostic technique

The lines of the O I triplet at 777.4 nm represent one of the most important radiative contributions in the spectrum of a plasma containing oxygen. Indeed, the upper levels of the related transitions can be easily populated (their excitation energy is of the order of 10.7 eV) and their Einstein coefficient is significant (of the order of $4 \times 10^7 \, s^{-1}$). The triplet can therefore be used to diagnose the plasma, i.e. to determine the electron temperature (T_e) and density (n_e) , if no hydrogen line can be detected in the spectrum. **Objectives and methodology**

EXPERIMENTAL SETUP

The laser pulse (1064 nm, 30 ps, 14 mJ) is focused to produce a plasma in an Aceton-saturated Argon (80 % - 20 % vol.) atmosphere (black chamber) at atmospheric pressure. The plasma is formed (lifetime of the order of $10 \ \mu s$). Its radiation is collected along a second optical axis and analyzed using an Isoplane SCT-320 spectrometer over the [200, 850] nm spectral range.

New line Stark parameters (broadening ω_s and shift $\Delta \lambda_s$) are investigated. Laser-induced plasmas are produced in an Aceton-Argon mixture and the profile of the O I triplet is studied in order to correlate the Stark parameters and n_e . Comparisons are made with Griem's parameters.

$n_e AND T_e EVOLUTIONS$

Electron temperature T_e is of the order of 15000 to 20000 K.

Electron density

The determination of n_e is based on

- The FWHM of the H_{α} line,
- The FWHM of the H_{β} line,
- The shift of the H_{α} line.

WIDTH OF THE O I 777 NM TRIPLET

The uncertainty on n_e from the H_{α} FWHM is taken as twice the one from the H_{β} FWHM. The final n_e values are plotted in green.

CONCLUSION & PERSPECTIVES

Conclusion

- Laser-induced plasmas produced with spectra involving the emission of the O I triplet at 777.4 nm \bullet
- Stark broadening parameter obtained for $n_e < 10^{24} m^{-3}$ almost twice of the value of Griem
- Stark shift parameter obtained for $n_e < 10^{24} m^{-3}$ in good agreement with the value of Griem

Perspectives

- Assessment of the departure from equilibrium using Ar lines
- Validation of the n_e values by comparison with equilibrium calculations