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In many natural granular systems, the interstitial pores are filled with a fluid. Deformation of this
two-phase system is complex, highly coupled, and depends on the initial and boundary conditions.
Here we study granular compaction and fluid flow in a saturated, horizontally shaken, unconfined
granular layer, where the fluid is free to flow in and out of the layer through the free upper sur-
face during shaking (i.e., drained boundary condition). The geometry, boundary conditions and
parameters are chosen to resemble a shallow soil layer, subjected to horizontal cyclic acceleration
simulating that of an earthquake. We develop a theory and conduct coupled discrete element and
fluid numerical simulations. Theoretical and simulation results show that under drained conditions
and above a critical acceleration, the grain layer compacts at a rate governed by the fluid flow param-
eters of permeability and viscosity, and is independent of the shaking parameters of frequency and
acceleration. A compaction front develops, swiping upward through the system. Above the front,
compaction occurs and the fluid becomes pressurized. Pressure gradients drive fluid seepage upward
and out of the compacting layer while supporting the granular skeleton. The rate of compaction
and the interstitial fluid pressure gradient coevolve until fluid seepage forces balance solid contact
forces and grain contacts disappear. As an outcome, the imposed shear waves are not transmitted
and the region is liquefied. Below the compaction front (i.e., after its passage), the grains are well
compacted, and shaking is transmitted upward. We conclude that the drained condition for the
interstitial pore fluid is a critical ingredient for the formation of an upward moving compaction
front, which separates a granular region that exhibits a liquid-like rheology from a solid-like region.

I. INTRODUCTION

Deformation of densely packed granular media is a
subject of great complexity with applications ranging
from industry to natural hazards. In particular, the me-
chanics of shearing granular media has been shown to
control earthquakes (e.g., [1–5]), lead to soil liquefac-
tion (e.g., [6–8]) and control the initiation and move-
ment of landslides (e.g., [9–14]). Granular shear exhibits
rich and not well understood behavior even when the
grain layers are dry [15–22]. The deformation becomes
more complicated when a viscous fluid is present in the
pore space between grains, as occurs in most geolog-
ical systems (e.g., [7, 23, 24]). Interstitial pore fluid
may greatly affect granular deformation because shear
deforms the granular skeleton, causing pore space com-
paction and dilation [25–27]. These porosity variations
lead to pore pressure changes [28], that drive fluid flow
[24], and feed back into the granular deformation by im-
posing forces on grains [29]. These coupled interactions
have been studied in various geometrical settings, includ-
ing continuous horizontal shear under imposed normal
stresses [25, 30–33], compaction and decompaction due
to fluid flow [34, 35], vertical discrete tapping [36], im-
pacting intruder [37], vertical continuous shaking [38] and
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cyclic horizontal shear [8, 39] of a horizontally confined
layer.

Here, we aim to study the coupled interactions between
grains and interstitial pore fluid in a setting that corre-
sponds to saturated soils undergoing earthquake shaking.
The soil is represented as a horizontally unconfined layer,
with a finite thickness and a free surface at the top. The
fluid fully occupies the pore space in the layer. The earth-
quake shaking is represented as horizontal cyclic shear at
accelerations that are well below the gravitational ac-
celeration. In this paper, we will use the terms ”cyclic
shear” and ”horizontal shaking” interchangeably, to de-
scribe this boundary condition.

Natural soils under low overburden stresses, as exist
at the shallow subsurface, tend to compact during cyclic
shear [40]. We expect that when a viscous interstitial
fluid is present, compaction will be accompanied by fluid
outflow and pressurization [38]. Here, the fluid drainage
conditions (i.e. its ability to flow in and out of the layer),
have a key role in controlling both the grain layer dynam-
ics and the fluid pressure and flow. It is usually believed
that during the rapid shaking that characterizes earth-
quakes, fluid cannot drain out of the layer and hence fluid
flow does not play an important role in the development
of pore pressure, and in the compaction process [7]. How-
ever, recently it has been suggested [24, 33, 39, 41, 42]
that even during rapid cyclic shearing, upward fluid flow
may be crucial for the coupled deformation, motivat-
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ing a re-evaluation of the effect of fluid flow on pressure
changes and compaction during horizontal cyclic shear.

A critical application of the geometry and dynam-
ics that we study here is the hazardous natural phe-
nomenon called ”soil liquefaction”, which is often trig-
gered by earthquakes. During liquefaction, soils exhibit
an abrupt rheological change where they transition from
elastoplastic stress-supporting solid layers to a liquid-like
granular phase that flows easily under small applied shear
stresses [43, 44]. Observations indicate that liquefaction
is associated with soil compaction and settlement [45],
and pore fluid pressurization is considered as a major
driving mechanism for this rheological change [40]. The
coupled dynamics that emerge from our idealized shaken
saturated grain layer is thus highly relevant to the pro-
cess of liquefaction.

In the following, we develop a theory for such systems,
i.e., unconfined saturated grain layers subjected to hor-
izontal cyclic shear. We establish the conditions under
which the proximity to the surface allows fluid to flow
in and out of the layer during the imposed deformation,
namely, when the grain layer is effectively well-drained.
These drainage conditions impose a particular form of
fluid-grains coupling. We then present a numerical Dis-
crete Element Method (DEM) and Computational Fluid
Dynamics (CFD) framework to study the coupling be-
tween compacting grains and fluid flow and pressuriza-
tion. The agreement between simulation results and the-
ory allows us to present a fully consistent framework of
drained granular dynamics in response to cyclic horizon-
tal shaking.

II. GRAIN-FLUID COUPLING UNDER
DRAINED CONDITIONS

To identify the dominant interactions between a com-
pacting grain layer and the interstitial fluid flow and pres-
surization, we develop a theory for the pore fluid response
to a general deformation of the grain skeleton. Previous
general formulations [24, 33] are adopted to the setting
of a shallow saturated soil column: The non-dimensional
analysis is tailored for low stresses with respect to the
fluid bulk modulus. Based on this analysis, the dominant
interactions under well-drained conditions are identified.

We start with mass conservation equations over repre-
sentative elementary volume for the solid (Eq. (1)) and
the fluid (Eq. (2)) phases:

∂[(1− φ)ρs]

∂t
+∇ · [(1− φ)ρsus] = 0 (1)

∂[φρf ]

∂t
+∇ · [φρfuf ] = 0, (2)

where ρs and ρf are the solid and fluid material den-
sities, respectively, φ is the porosity, us and uf are
the solid grain and fluid velocities, respectively, and t

stands for time (vectors are represented by bold fonts).
Grains are assumed incompressible with respect to the
pore fluid. This assumption is valid for example for
quartz grains and interstitial water with compressibilli-
ties of 2.7 ·10−11 Pa−1 and 4.5 ·10−10 Pa−1, respectively.
With this assumption, Eq. (1) is rewritten as:

∂φ

∂t
= ∇ · [(1− φ)us]. (3)

Further assuming that fluid inertia is negligible compared
to the viscous forces, the fluid momentum equation re-
duces to Darcy flux law [46]. When the solid grain skele-
ton is deformable, this law is expressed as:

φ(uf − us) = −κ
η
∇P ′, (4)

where κ is the permeability, η the fluid dynamic viscos-
ity and P ′ the fluid pressure deviation from hydrostatic
values such that ∇P ′ =∇P − ρfg. The right hand side
of Eq. (4) is commonly referred to as ”Darcy flux”. The
fluid density is described by a state equation of the form:

ρf = ρf,0(1 + βP ′), (5)

where ρf,0 the fluid density under hydrostatic condi-
tions, with atmospheric pressure on top, and β =
(1/ρf )(∂ρf/∂P ) is the adiabatic fluid compressibility.
Next we assess the magnitude of βP ′ in Eq. (5) for the
shallow, saturated and cohesionless soil layer considered
here. The pore water compressibility is O(10−10) Pa−1,
and P ′ cannot significantly exceed the value of effective
static normal stress. To evaluate its value we assume the
top of the water column is exactly at the surface, and
consider a reference case without dynamic pressure:

σ0 = ρeffgy − ρfgy
= [(1− φ)ρs + φρf − ρf ]gy

= (1− φ)(ρs − ρf )gy, (6)

where ρeff is the effective density of a saturated porous
layer and y is the downward vertical coordinate, zeroed
at the surface. In Eq. (6), σ0 increases with depth and its
maximal value within a vertically finite domain occurs at
depth h, the base of the domain, σh0 = σ0(y = h). For a
layer with quartz grains (ρs = 2640 kg m−3) that extends
down to 1 km (much deeper than the systems we consider
here), σh0 . O(107) Pa, and therefore βP ′ � 1 and:

(1 + βP ′) ≈ 1. (7)

Multiplying Eq. (3) by ρf , subtracting it from Eq. (2),
and combining with Eqs. (4), (5) and (7) leads to:

φβ
∂P ′

∂t
+ φβus ·∇P ′ −∇ · [

κ

η
∇P ′] +∇ · us = 0. (8)

In Eq. (8), the first term describes the temporal deriva-
tive of the dynamic pore fluid pressure, the second term
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describes dynamic pore pressure advection, the third
term is the dynamic pore pressure laplacian, correspond-
ing to the divergence of the Darcy flux, and the last term
describes the effect of the granular skeleton deformation
on the fluid pressure via compaction and dilation.

The relative importance of the different terms in
Eq. (8) is evaluated using a non-dimensional analysis. We
choose the system height, h, as the length scale such that
∇ = ∇̂/h, where the symbol ˆ denotes non-dimensional
operators and variables. The time and permeability scale
factors are t0 and κ0, respectively, such that t = t̂t0 and
κ = κ̂κ0. The pore pressure is scaled with the maxi-
mum effective static normal stress as P ′ = P̂ ′σh0 . The
velocity scale factor u0 = (κ0σ

h
0 )/(φηh), is chosen based

on Darcy’s flux (Eq. 4) when ∇P ′ = ∇σ0 = σh0 /h, such
that us = ûsu0. This choice reflects our expectations for
the importance of fluid flow in our system. In other set-
tings, where fluid flow is vanishingly small with respect
to the rate of deformation, a different velocity scale fac-
tor should be used [24, 33]. Following these definitions,
Eq. (8) becomes:

∂P̂ ′

∂t̂
+
κ0t0σ

h
0

φηh2
ûs · ∇̂P̂ ′ −

κ0t0
φβηh2

∇̂ · [κ̂∇̂P̂ ′]

+
κ0t0

φ2βηh2
∇̂ · ûs = 0. (9)

The parametric group td = (h2βηφ)/(κ0) = h2D−1 has
the meaning of a diffusion time scale over the layer depth,
where D = (κ0)/(βηφ) is the pore pressure diffusion co-
efficient. With this definition, Eq. (9) is written as:

∂P̂ ′

∂t̂
+
t0
td
βσh0 ûs · ∇̂P̂ −

t0
td
∇̂ · [κ̂∇̂P̂ ′]

+
t0
td

1

φ
∇̂ · ûs = 0. (10)

Since we focus on a setting where βσh0 � 1, the second
term of Eq. (10) becomes negligible relative to the third
and fourth terms, and Eq. (10) is approximated as:

td
t0

∂P̂ ′

∂t̂
− ∇̂ · [κ̂∇̂P̂ ′] +

1

φ
∇̂ · ûs = 0. (11)

We choose t0 to represent the process time scale, which in
the current system relates to the deformation of the grain
skeleton (the third term in Eq. (11)). A natural choice
is the periodicity of the imposed cyclic shear, t0 = T .
The coefficient in front of the first term of Eq. (11) then
becomes the Deborah number (De) [47], which is the ratio
between the relaxation time scale of a system and the
process time scale:

De =
td
t0

=
h2βηφ

t0κ0
. (12)

Hence, Eq. (11) is written as:

De
∂P̂ ′

∂t̂
− ∇̂ · [κ̂∇̂P̂ ′] +

1

φ
∇̂ · ûs = 0. (13)

When De � 1 the diffusion time scale is significantly
larger than the process time scale, and the pore pressure
will not relax significantly during a single shaking period,
leading to ”undrained” conditions. When De � 1 the
diffusion time scale is significantly smaller than the peri-
odicity, leading to ”drained” conditions. The De number
dictates the relative importance of the terms in Eq. (13).
Leaving the third term aside as the source for any dynam-
ics that originates from deformation of the grain skele-
ton, we note that when De � 1 (”undrained”), the sec-
ond term in Eq. (13) can be neglected and the temporal
evolution of the pore pressure directly correlates to the
overall compaction and dilation of the grains skeleton.
When De� 1 (”drained”), the first term in Eq. (13) be-
comes negligible, and Eq. (13) reduces to a Poisson type
equation of the form:

∇̂ · [κ̂∇̂P̂ ′] =
1

φ
∇̂ · ûs (14)

and in a dimensional form:

∇ · [κ
η
∇P ′] = ∇ · us. (15)

Integrating Eq. (15) while assuming that κ ≈ κ0 leads
to:

κ0

η
∇P ′ = us + C(t). (16)

Eq. (16) reveals the dominant solid-fluid coupling in the
drained setting studied here. The equation predicts that
the solid velocity depends linearly on the dynamic fluid
pressure gradient. When combined with Eq. (4) it be-
comes a statement of mass conservation, where any solid
flux must be compensated by an equal and opposite fluid
flux. The details of this dependency in a horizontally
shaken layer is the focus of the current work.

III. A COUPLED GRAIN-FLUID MODEL

A. The model

We implement a numerical model that fully couples
two phases. A solid phase, which is modeled using the
Discrete Element Method (DEM) [48] and a fluid phase,
which is modeled as a continuum on a superimposed Eu-
lerian grid [24, 33, 49–63]. The core functionality of the
code has been verified and used in previous studies. The
granular dynamics module was used in [13, 14, 16–18, 64]
and the coupling with the continuum module was used
in [33, 59, 60, 65].

The grains are simulated as interacting spheres using
a linear elastic frictional contact model. A velocity de-
pendent damping is added to the normal contact force,
and a threshold friction law based on the ratio of tan-
gential and normal forces between grains is considered,
allowing sliding when the shear force surpasses a fric-
tional criterion [16–18]. Grain motion is determined by
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time integration of the linear (Eq. (17)) and rotational
(Eq. (18)) momentum conservation equations.

miu̇s,i = mig − Vimm,iρfg + ΣjFij −
∇P ′ · Vi

1− φ
(17)

Iiω̇s,i = ΣjRin̂ij × Fij, (18)

where u̇s,i and ω̇s,i are the translational and rotational
accelerations of grain i (dot notation indicates time
derivative) and mi and Ii are the mass and moment of
inertia of grain i. In Eq. (17), the first term on the right
hand side is the gravitational force, and g is the gravi-
tatonal acceleration. The second term is buoyancy force,
induced by the hydrostatic fluid pressure gradient, whose
magnitude depends on the immersed volume of the grain
Vimm,i and the fluid density ρf [66]. The third term is
the sum of contact forces (Fij) of all grains j that are in
contact with grain i. The fourth term is the drag force
exerted by the fluid dynamic pressure gradient (∇P ′),
where Vi is the volume of grain i. In Eq. (18), Ri is
the radius of grain i and n̂ij is a unit vector along the
direction connecting the centers of grains i and j.

The evolution of the dynamic pore fluid pressure is
found by an implicit numerical solver of equation (13)
over a square grid, with grid spacing of two average grain
diameter [24, 33, 54, 55]. Importantly, we do not a priori
assume the state of drainage, and the full three-terms
equation is solved.

In order to achieve a two-way coupling between the
solid and the fluid phases, the grain volumes and veloci-
ties are interpolated via a bi-linear interpolation scheme
into a smooth velocity (us) and porosity (φ) fields on
the grid. Those quantities are used for solving the fluid
equation (Eq. (13)). To solve the solid grains linear mo-
mentum equation (Eq. (17)), the dynamic pore pressure
gradient (∇P ′) along with the local average porosity (φ)
are interpolated using an inverse scheme, from the grid
to each grain (Fig. 1). In the model, the permeability
and the porosity are related by the 3D Kozeny-Carman
relationship [67]:

κ = κ1κ
′(x, y, t) = αr̄2

φ3

(1− φ)2
, (19)

where r̄2 is the spatial average of the squared grain radii
in the surroundings. κ1 = α < r >2 is a constant prefac-

tor, while κ′ = r′
2
f(φ) captures permeability variations

in space and time (< r > is the mean grain radius in
the system and r′ is the local deviation from it, such
that r =< r > r′). In the original Kozeny-Carman
relation, α = 1/45 [67] is a geometrical prefactor for
spheres. In our simulations, we vary α to directly con-
trol the order of magnitude of the permeability between
different simulations, independent of the grain size. This

FIG. 1. Schematic representation of the forces in the model.
Dynamic pore pressure gradients exert forces on each grain
(−(∇P ′Vi)/(1 − φ)). These forces are inferred based on an
interpolation scheme that interpolates the pressure gradients
from grid nodes to the individual grains. As stated in Eq. (17),
this force is added to gravity (mig), buoyancy (−Vimm,iρfg)
and the sum of contact forces (ΣjFij).

approach was suggested by [50–53, 56] and allows to over-
come the numerical limitations on the usage of small nu-
merical grains, with realistic radii, representative of ex-
periments or field conditions. Varying α allows us to
combine numerically feasible grain sizes with permeabil-
ity values that represent natural systems. We stress that
permeability changes due to skeleton deformation are ac-
curately resolved through changes in the porosity. Ap-
pendix A presents numerical relations between grain size,
time step, and permeability and discusses the validity of
the grain size-permeability decoupling.

B. The setup of the numerical simulations

The numerical system (Fig. 2) represents a thin Hele-
Shaw cell of spherical grains with grain radii between
0.8 − 1.2 cm drawn from a distribution with a mean
of 1 cm and a standard deviation of 1 cm. The sys-
tem horizontal dimension is L = 0.8 m, and its height
is h ≈ 0.28 m. We ran simulations under two distinct
modes: The first mode is ”Hydrostatic Pore Pressure”
(HPP) in which the fluid exerts a buoyancy force due to
the constant hydrostatic pressure gradient on the grains
(−ρfg), regardless of the grain dynamics. In this mode,
we do not solve the fluid Eq. (13) and the last term of
Eq. (17) is omitted, i.e., we neglect the dynamic forces
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FIG. 2. Numerical system setup. The domain represents a
Hele-Shaw cell. The bottom wall is constructed of half grains,
glued together. At the top, there is no wall and the grains
are free to move. The grains color-code corresponds to their
relative solid normal stress. The dashed line marked by a
triangle denotes the fluid level. In “Hydrostatic Pore Pres-
sure” (HPP) simulations, the fluid exerts only buoyancy on
the grains. In “Dynamic Pore Pressure” (DPP) simulations,
deviations from hydrostatic conditions develop. The bottom
wall is a no flow boundary and the upper fluid interface is a
zero pressure boundary, allowing the fluid to drain. In the
horizontal direction (x), the system is periodic. The dynam-
ics is induced by cyclic shearing (horizontal shaking) of the
bottom solid wall at a preset amplitude (A) and frequency
(ω). Vertical displacement of the bottom wall is not allowed.

between the fluid and solid. The second mode is “Dy-
namic Pore Pressure” (DPP) in which the fluid and the
grains are fully coupled. The local compaction/dilatation
affects the fluid pressure and the local dynamic fluid pres-
sure gradients exert forces on the grains in addition to the
constant buoyancy force.

The bottom wall is constructed of half grains (drawn
from the same distribution as the internal grains) glued
together and a sinusoidal cyclic shear (horizontal shak-
ing) is imposed on it, X = A sin(ωt), where X is the
bottom wall horizontal displacement, A is the amplitude,
and ω = 2πf is the angular frequency (f = T−1 is the
temporal frequency and T is the periodicity). Vertical
displacement of the bottom wall is not allowed. At the
top boundary, there are no normal nor shear stresses on
the solid phase. For the fluid phase, the bottom wall im-
poses a no flow boundary condition (∂P ′/∂y = 0) and the
top is a constant pressure boundary (P ′ = 0). The water
level is set to be approximately equal to the height of the
top grains in the initial configuration, and due to mass
conservation, it does not change during the simulations.
For both phases, the horizontal direction is periodic, al-
lowing us to simulate a laterally extensive and unconfined
layer. The dynamics are limited to a 2D space but the
porosity in the simulations is calculated as a 3D porosity,
assuming a monolayer of spheres occupying a cell of one
mean grain diameter in width.

All of our simulations start with the same initial con-
figuration, characterized by a porosity of φ0 = 0.434,

which is denser than a 3D random loose packing. This
initial configuration is generated by sedimenting grains
on top of the bottom wall, shaking it for 0.53 seconds at
a low normalized acceleration of Γ = Aω2/g = 0.042
(g = 9.81 m s−2), and allowing complete relaxation.
Each simulation is characterized by a single shaking fre-
quency (ω), and by a single small horizontal displacement
amplitude of A = 0.0431 cm or A = 0.431 cm, corre-
sponding to 4.31% or 43.1% of the mean grain diameter.
Different combinations of frequency and amplitude pro-
vide a range of normalized accelerations of Γ = 0.06−0.3.

The DPP simulations target drained conditions, char-
acterized by De � 1. To achieve that, we modify
α in Eq. (19) and choose relatively high permeabili-
ties, though still within the natural range for soils (κ0

ranges between 3.1 · 10−12 and 6.1 · 10−11 m2). With
η = 10−3 Pa·s as the water dynamic viscosity and t0 = T
(single shaking period), De ranges between O(10−4) to
O(10−2), which means that our simulations indeed rep-
resent well-drained systems. Table I summarizes the pa-
rameter values used in the model.

TABLE I. Physical values used in the model

Grain density ρs = 2640 kg m−3

Grain Young’s modulus E = 1010 Pa
Grain mean radius rs = 0.5 cm
Grain friction coefficient µ = 0.5
Grain normal stiffness kn = 108 N m−1

Grain tangential stiffness ks = 2.64 · 108 N m−1

Grain damping coefficient γ = 2.16 · 105 s−1

Fluid density ρf = 1000 kg m−3

Fluid compressibilty β = 4.5 · 10−10 Pa−1

Fluid dynamic viscosity η = 10−3 Pa s
Gravitational acceleration g = 9.81 m s−2

IV. RESULTS

Figure 3 depicts trends of grain layer compaction in
our simulations. The compaction is presented as the
deviation of the average porosity from its initial value,
∆〈φ〉 = 〈φ(t)〉 − φ0, normalized by the initial value, φ0.
The observed compaction trends may be categorized into
two representative end-members divided by Γc ' 0.15:
At low accelerations (Γ < Γc, red and blue curves in
Fig. 3), both simulation setups of Hydrostatic Pore Pres-
sure (HPP, Fig. 3 (a)) and Dynamic Pore Pressure (DPP,
Fig. 3 (b)) show no significant compaction. At Γ ≥ Γc
(black, grey, pink and green curves in Fig. 3) both HPP
and DPP simulations show significant compaction, where
the porosity decreases by more than ∼ 1% with respect
to its initial value.

The dynamics of the compaction (that occurs for Γ ≥
0.15), differs between the HPP and DPP cases: In HPP
simulations, the rate of compaction decreases with time,
and the compaction trend varies between the simulations.
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FIG. 3. Normalized average porosity change as a func-
tion of time. Two different shaking amplitudes (low ampli-
tude A = 0.0431 cm, solid line, and high amplitude A =
0.431 cm, circles on lines) are compared for variable acceler-
ation, Γ. (a) Hydrostatic pore pressure simulations (HPP).
Compaction occurs only when acceleration exceeds a critical
value, Γc = 0.15 (black, grey, pink and green curves). (b)
Dynamic pore pressure simulations (DPP) with high perme-
ability (κ0 = 6.1 · 10−11 m2, De = 3 · 10−3− 4.6 · 10−4). As in
the HPP simulations, compaction occurs only when acceler-
ation exceeds Γc = 0.15. High acceleration DPP simulations
initially follow a single linear compaction trend. When Γ is
close to Γc (black curves) compaction depends on the shaking
amplitude.

In contrast, the initial compaction rate of the DPP simu-
lations is constant and approximately the same across dif-
ferent runs, despite the different shear parameters. The
linear trend continues for about 5 seconds, after which
the rate of compaction gradually decreases. For Γ ' Γc,
the DPP compaction trend is amplitude-dependent. For
a low shaking amplitude (black solid curve in Fig. 3 (b)),
both final compaction and transient time are lower. Im-
portantly, all the simulations shown in Fig. 3 (b) were
conducted with the same order of magnitude perme-
ability. When permeability is changed, the compaction
curves change dramatically, as we demonstrate next.

Figure 4 shows the compaction curves of high acceler-
ation DPP simulations (Γ = 0.2−0.25), with amplitudes
A = 0.0431 − 0.431 cm, and variable characteristic per-
meability κ0 = 3.1 · 10−12 − 6.1 · 10−11 m2 that leads
to variable De = 0.00094 − 0.054. Note that despite the
order of magnitude change in the permeability, De re-
mains� 1, which ensures that the system is well drained.
The figure shows that for a given permeability (equal κ0

are marked with the same markers in Fig. 4), the com-
paction curves collapse and show a similar linear rate
of compaction, regardless of acceleration, frequency and
shearing amplitude. Furthermore, a positive correlation
is observed between the permeability and the compaction
rate during the initial phase of compaction, whereby in
simulations with a lower permeability, the layer compacts
slower and consequently for a longer duration.

In order to explore differences in both the solid and the
fluid variables, between compactive behavior that occurs
under high cyclic accelerations, and non-compactive be-
havior under low accelerations (as seen in Fig. 3), Figures
5 and 6 explore representative simulations with low and
high accelerations in DPP and HPP cases. The low ac-
celeration simulation (Γ = 0.1 < Γc) exhibits rigid body
translation, with almost no internal strain. More specif-
ically, Fig. 5 (a), (b) and inset shows that the horizontal
grain velocity is independent of depth, i.e., ∂usx/∂y = 0,
for both HPP and DPP. In contrast, for high acceleration
(Γ = 0.25 > Γc), in both the HPP and DPP simulations
the dynamics is radically different. In the HPP simula-
tion, Fig. 6 (a) and inset show a clear delay between the
bottom wall velocity, where the strain is imposed, and
the layers above it. This reflects the fact that the shear
velocity imposed on the bottom wall is transmitted up-
ward via a shear wave. In contrast, the DPP response
to the same high acceleration (Γ = 0.25) (Fig. 6 (b)) in-
cludes the formation of a zone with nearly zero horizontal
grain velocity (usx(y, t) ' 0, orange zone bordered by a
black line in Fig. 6 (b)). When this zone forms (after
a few shearing cycles), it extends from near the bottom
wall to the free surface. However, its thickness shrinks
with time, until it disappears completely. In the case de-
picted in Fig. 6 (b), this occurs after 5 seconds. A zone
with zero horizontal velocity means that the horizontal
shear strain imposed at the bottom wall does not prop-
agate through this horizontal transiently stagnant layer.
After this episode, the DPP simulation behaves similarly
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FIG. 4. Normalized average porosity change as a function
of time for high acceleration, dynamic pore pressure (DPP)
simulations with variable permeability. Simulations of equal
characteristic permeability (κ0, depicted by the same sym-
bol) have roughly the same compaction rate during the initial
rapid linear compaction phase, regardless of the acceleration
(Γ), frequency (f) and amplitude (A). All the simulations are
well-drained (De� 1).

to the HPP simulation, with propagating shear waves
from the base to the top. The episode of nearly zero hor-
izontal grain velocity correlates temporally and spatially
with rapid downward vertical solid grain velocity (usy)
as depicted in Fig. 6 (d) by an orange zone bordered by
a black line.

To clarify the micro-mechanics related to this behavior,
Fig. 7 presents snapshots of the grain dynamics during
a DPP high acceleration simulation (Γ = 0.25). Imme-
diately after the imposed shaking starts (Fig. 7 (b)) the
grain skeleton is solid (the stress chains transmit large
stresses, as indicted by their purple color) and horizontal
shear deformation is transmitted from the bottom wall
via transient granular vortexes (as indicated by the black
arrows in Fig. 7 (c)). After a few cycles (Fig. 7 (d)), the
stress chains almost vanish and shear is not transmitted
upward. The thickness of the sheared layer gradually

increases (Fig. 7 (e)) until the whole layer regains its
strength and is sheared as in the very beginning (Fig. 7
(f)).

To identify the role that fluid pressure plays in this
behavior, we follow the spatial and temporal evolution
of the dynamic pore pressure gradient (∇P ′, where P ′

is the pressure deviation from hydrostatic) in the DPP
simulations. Figure 8 depicts its vertical component, av-
eraged horizontally and normalized by the static effective
vertical stress gradient (∇P ′y/∇σ0). For the low acceler-
ation simulation (Γ = 0.1), with the exception of the few
first cycles, ∇P ′y is close to zero (Fig. 8 (a)). When the
acceleration is high (Γ = 0.25 > Γc), the gradients of the
dynamic pore pressure rise until they become compara-
ble to the static effective vertical stress (∇P ′y/∇σ0 ≈ 1,
white zone bordered by a black line). This high pres-
sure gradient zone progressively shrinks with time until
it disappears. In the simulation presented in Fig. 8, the
zone disappears after about five seconds from the onset
of shaking. This transient zone of high pressure gradient
correlates spatially and temporally with the high verti-
cal grain velocity episode observed in Fig. 6 (d) and with
the zero horizontal grain velocity depicted in Fig. 6 (b).
Outside of this zone, the mean value of ∇P ′y decreases
towards zero, although the instantaneous values are fluc-
tuating and episodically may reach ∇P ′y/∇σ0 ≈ 1. The
same behavior is observed in Fig. 9, where the dynamic
pore pressure (P ′) is plotted vs. time at three different
depths in the layer. Upon shaking initiation, the pressure
at each depth (solid curves) rises towards the static nor-
mal effective solid stress value (dashed lines), and then
it decreases back to zero. The closer the point is to the
surface, the longer is the duration of the elevated pore
pressure. This observed trend in pore fluid pressure evo-
lution is in an excellent agreement with the numerical
study of [8].

V. DISCUSSION

Three important outcomes arise from our theoretical
analysis and simulation results. The outcomes apply
specifically to the dynamics of a saturated grain layer
that is cyclically sheared in the horizontal direction, when
fluid can freely drain from the layer during the time scale
set by the shearing periodicity, i.e., where De� 1.

First, we find an acceleration-controlled transition at
Γc ≈ 0.15, between a non-compactive and compactive
behaviors, in both HPP and in DPP simulations. A
similar acceleration-dependent threshold that separates
rigid from liquid-like behavior was observed previously by
Clément et al. [66] in DEM simulations, using a different
code that implements only HPP conditions. They identi-
fied a threshold that corresponds to Γc = µa(ρs−ρf )/ρs,
where µa is the macroscopic apparent friction coefficient,
above which grains slide past each other, and initiate
grain re-arrangement. In DEM simulations, µa is smaller
than the assigned surface grain friction, and in our case
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FIG. 5. Horizontally averaged solid grain velocity as function of depth (y) and time (t) for a low acceleration simulations
(Γ = 0.1, A = 0.0431 cm). The bottom wall is at y = −28 cm where the horizontal displacement is imposed, and y = 0 cm is
the free surface. The top panels show the horizontal grain velocity (usx) in a hydrostatic pore pressure (HPP) simulation (a)
and a dynamic pore pressure (DPP) simulation (b). The grain layers move as a rigid body following the imposed velocity at
the bottom, as shown by the inset in (a) that focuses on several cycles. The bottom panels show the vertical velocity (usy)
in the hydrostatic pore pressure (HPP) (c) and the dynamic pore pressure (DPP) (d) simulations. Minor fluctuations occur
during the first second, and afterwards the grains are stagnant in the vertical direction (orange color).

µ = 0.5 and µa ≈ 0.25 [68]. The acceleration thresh-
old for compaction of grains arises from a force balance
between friction (when the normal force is modified by
buoyancy) and imposed inertia. Our simulations show
that the same criterion and threshold are applicable also
in DPP simulations, where dynamic pore pressure gra-
dients develop. This occurs because at the beginning of
a DPP simulation, before any dynamic pore pressure or
fluid flow evolves, the system is similar to a HPP system,
in which the pressure gradient drag force is neglected.
Hence, the initiation of compaction by sliding obeys the
same threshold acceleration predicted for a HPP setting.
We note that close to the critical acceleration, the behav-
ior can be more complex. Particularly, our simulations
show that the shearing amplitude may control the spe-
cific dynamics when Γ = Γc (see Fig. 3 (b) black curves).

The second important conclusion, is that fluid pres-
sure evolution is controlled by, and coupled to, the com-
paction dynamics of grains. Compaction generates high
pore pressure, high pressure gradients, and as an out-
come, fluid outflow. At the same time, pressure gra-
dients weaken (and even completely diminish) the solid
contacts in between the grains, which facilitates grain re-
arrangement in the form of compaction. We find that
despite the drained conditions, which are achieved since
the layer can drain at the time scale of a single cycle of
shaking (De � 1), pore pressure rises for a substantial

duration to a value that is equal to the lithostatic stress.
The physics of this pressure rise, and its coupling to com-
paction, is concluded from simulations, and also from the
following theoretical analysis.

Assuming that significant pressure gradients develop
only in the vertical direction, and applying the bound-
ary condition of a vertical stationary and impermeable
bottom boundary wall, Eq. (16) reduces to:

usy =
κ0

η

∂P ′

∂y
. (20)

This relation is depicted in Fig. 10 where the two sides
of Eq. (20) are plotted for a high acceleration DPP sim-
ulation, normalized by their theoretical maximum val-
ues. A linear relation with a close-to-unity slope emerges
even for the raw fluctuating data (Fig. 10 (a)). When
the fluctuations are filtered (Fig. 10 (b)), an additional
trend appears, where at the beginning of the simulation
(blue markers), the values are close to their expected
maximum, at the end of the simulation they are equal
zero (yellow markers) and the transition between these
extreme values is continuous in time. The agreement be-
tween the numerical results that are based on the full
three-terms fluid equation (13) and the theoretical pre-
diction, equation (20) that neglects the time-dependent
term when De � 1, confirms that the non-dimensional
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FIG. 6. Horizontally averaged solid grain velocity as function of depth (y) and time (t) for high acceleration simulations
(Γ = 0.25, A = 0.0431 cm) under both HPP and DPP conditions. The top panels depict the horizontal velocity (usx). (a)
In a hydrostatic pore pressure (HPP) simulation, internal strain is observed, where the shear is transmitted from the bottom
wall upward, as shown by the inset that focuses on several cycles. (b) In a dynamic pore pressure (DPP) simulation, a similar
internal strain is observed, yet it is limited to a lower zone, overlain by an upper stagnant domain of nearly zero horizontal
velocity (orange). The bold black line marks the border between the straining, oscillating domain, and the stagnant domain,
and its slope is approximated by Eq. (24). This line depicts an upward propagating front that swipes through the DPP system,
separating two dynamical regimes. The bottom panels show the vertical velocity (usy). (c) In a hydrostatic pore pressure
(HPP) simulation, we observe oscillatory change in velocity with positive and negative values (i.e., upward and downward,
respectively) that continues throughout the simulation. (d) In a dynamic pore pressure (DPP) simulation, the same upward
propagating front (bold line) is observed. The front separates a domain with sustained rapid downward velocity (dark red)
from an underlying stagnant layer that is not compacting anymore.

Deborah number, De, controls the dominant coupled dy-
namics of the system. More specifically, for drained con-
ditions, the dynamic pressure gradient is exactly propor-
tional to the grain velocity.

With the specified bottom boundary conditions, the
vertical solid grain velocity is directly related to the com-
paction rate (see Appendix B for a detailed derivation):

usy =
∂〈φ(y, t)〉

∂t

H

(1− φ0)
, (21)

where φ0 is the initial porosity and ∂〈φ(y,t)〉
∂t =

1
H

∫H
0

∂φ(y,t)
∂t dy is the depth averaged compaction rate

over a sub-layer that extends from the bottom wall to
height H above the bottom (0 < H ≤| h |).

Equations (20) and (21) reveal that the source for
elevated pore pressure in a drained layer is the verti-
cal velocity of the solid grains, which is proportional to
the rate of compaction. The vertical velocity in turn,
is set by a volume conservation consideration, which re-
quires that grain compaction rate must be balanced by
the rate of fluid expulsion. The expulsion rate is con-
trolled by the fluid viscosity, the layer permeability, and

the evolving pressure gradients. More specifically, when
the system compacts, the pore pressure rises, with gradi-
ents exceeding hydrostatic values. When the lithostatic
limit for pressure gradient, ∇P ′y = ∇σ0, is reached, the
solid stresses completely vanish and the net force on the
grains is zero. At this point, the grains will maintain a
constant downward velocity of

usy ≈ (κ0/η)∇σ0. (22)

This steady-state compaction and pressurization phase
ends when the porosity reaches some lower critical value.
In our simulations, we find that this critical value cor-
responds to φc = 0.429 ± (9.5 · 10−4) which is higher
than the reported 3D random close packing of spheres
φ3D
RCP = 0.36± 0.02 [69]. This higher value probably re-

flects our choice to measure the porosity as a 3D property
over a mono-layer of spheres. The abrupt reduction in
compaction rate once a lower critical porosity is reached,
agrees with [38], who studied vertical shaking.

Equation (20) also indicates that at any point in
time, the pore pressure gradient is independent of the
former porosity and state of pressure, and instead is sen-
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FIG. 7. Snapshots of granular dynamics during a high acceleration simulation (Γ = 0.25) with dynamic pore pressure (DPP).
The colors of the grains indicate their relative solid normal contact force (normalized to the maximum normal force in each
frame, (a) 3.5 N (b) 0.7 N (c) 7.5 N (d) 1.7 N (e) 2.6 N and (f) 1.0 N). The black arrows depict the solid grain velocity.
The blue arrow at the base indicates the imposed bottom wall velocity, exaggerated by a factor of 5 with respect to the black
arrows. The dashed black line shows the position of the fluid top surface. (a) Before the initiation of shear, the layer is at rest.
(b) When the imposed shaking starts, the grain skeleton behaves in a solid manner, with percolating stress chains capable of
transmitting the shear waves from the bottom wall. (c) Some of the motion occurs via transient granular vortexes. (d) After a
few cycles, the stress chains almost vanish and shear is not transmitted through the upper parts of the layer. (e) The thickness
of the bottom sheared zone gradually increases. (f) The whole layer is sheared as in the very beginning. See also a movie in
the supplementary material [URL will be inserted by publisher].

sitive only to the instantaneous rate of skeleton com-
paction/dilation. At the same time, equations (20) -
(22) reveal that the rate of compaction is controlled by
the permeability and is independent of the imposed shear
parameters. The higher the permeability of the layer, the
faster the grains compact.

These insights about the dependency between the rate
of compaction, the pressure gradient, and the permeabil-
ity for a fully drained system, when De � 1, are well
demonstrated in our simulation results. Specifically, a
clear distinction can be made between HPP and DPP
simulations. In HPP simulations with high accelerations,
the grains remain in contact with each other during the
whole simulation, as witnessed by their ability to trans-
mit the shear waves from the bottom wall (Fig. 6 (a)

and (c)). In contrast, in DPP simulations of high ac-
celerations, after a few shaking cycles, the dynamic pore
pressure gradient becomes equal to the static effective
stress gradient (|∇P ′y/∇σ0| ≈ 1, Fig. 8 (b)). The solid
grain velocity is then maximal and proportional to the
dynamic pore pressure gradient and to the permeability,
as shown in Fig. 4. At this stage, the fluid pressure is
equal to the lithostatic stress within the compacting zone
which means that the fluid (and not the grains) carries
the load, solid stress chains vanish, and shear waves are
not transmitted (see Fig. 6 (b) and Fig. 7 (d)).

The last important finding of this work is the identifica-
tion of an upward moving front, that separates an upper
pressurized compacting region from a lower, fully com-
pacted zone. This front arises because the downwards
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FIG. 8. Dynamic vertical pore pressure gradient (∇P ′y) nor-
malized by the gradient of the effective static normal stress
(∇σ0) for a low amplitude simulations (A = 0.0431 cm). This
ratio is expected to be unity when∇P ′y = ∇σ0 (white), zero in
the hydrostatic case (orange) and negative when the pressure
is below hydrostatic value (dark red). (a) At low acceleration
(Γ = 0.1), after some initial fluctuations, the pore pressure
gradients vanish. (b) at high acceleration (Γ = 0.25), a do-
main where ∇P ′y = ∇σ0 develops after several cycles. The
thickness of this domain decreases with time (white region).
The domain is bordered by a bold black line whose slope is
given by Eq. (24). This line represents an upward moving
front, separating a high pressure-gradient zone from a zone of
hydrostatic pressure gradient on average. The high pressure
gradient zone is temporally and spatially correlated with the
high vertical velocity zone of Fig. 6 (d) and with the vanish-
ingly small horizontal velocity zone in Fig. 6 (b).

grain movement is restricted by the vertical stationarity
of the bottom wall, which means that once grains near
the bottom reach a higher packing density, the rate of
compaction decreases. Since compaction is the driver for
pressurization, when compaction stops, the pressure gra-
dient in this fully-compacted layer drops to a hydrostatic
value. The pressurized layer is thus restricted to an upper
layer, above the fully compacted region and its thickness
reduces over time. The rate at which the pressurized
layer thickness decreases is dictated by the velocity of
the ”compaction front” that transmits upward the infor-
mation about the stationary bottom wall. To find this
velocity, we express the compaction front as a disconti-
nuity and write the grain’s mass conservation over the
front, in the front’s frame of reference:

ρs(1−φ0)(u0
s,y−ufront) = ρs(1−φc)(ucs,y−ufront), (23)

FIG. 9. Dynamic pore pressure (P ′) vs. time during a high
acceleration simulation (Γ = 0.25 and A = 0.0431 cm) at
three depths in the layer. The data is smoothed over a win-
dow of eight cycles. The dynamic pressure increases after a
few cycles towards the effective static normal stress (depicted
by the horizontal portions of the dashed lines) and than grad-
ually decreases to zero. This high pressure episode, whose ap-
proximated start and end points are depicted by black arrows,
is sustained longer at shallower depths, as predicted by the
compaction front model (Eqs. (20) and (24), dashed lines).

where ufront is the front’s velocity, φ0 and u0
s,y are the

porosity and grain velocity before the front arrives, re-
spectively, and φc and ucs,y are the porosity and grain ve-
locity after the front arrives, respectively. Since ucs,y ≈ 0
the velocity of the front is:

ufront =
φ0 − 1

φ0 − φc
u0
s,y. (24)

Evaluating ufront in Eq. (24) with u0
s,y = (κ0/η)∇σ0 =

(κ0/η)(1 − φ0)(ρs − ρf )g as the solid vertical velocity
during the full pressurization stage (Eq. (22)), leads to:

ufront =
φ0 − 1

φ0 − φc
κ0

η
∇σ0, (25)

which provides a good prediction for the front velocity in
our simulations. The front velocity dictates the slope of
the bottom boundary of the nearly zero horizontal grain
velocity domain in Fig. 6 (b), the maximum vertical grain
velocity domain in Fig. 6 (d) and the pressurized do-
main in Fig. 8 (b) (all marked with a black line). The
compaction front model, expressed by Eqs. (24), (25)
and (20), predicts the dynamic pressure profiles in the
layer over time. We express the front position as:

yfront = y0 + ufront · t, (26)
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FIG. 10. Average vertical velocity of the solid grains, normal-
ized by (κ0/η)∇σ0, vs. vertical gradients of average dynamic
pore pressure (normalized by ∇σ0) from high acceleration,
DPP simulation (Γ = 0.25; A = 0.0431 cm). The markers
color represents time in the simulation: blue is the beginning
of the simulation and yellow is the end. The data shows that
in well-drained systems, Eq. (20) captures the coupled grain
compaction and fluid pressurization dynamics, both for the
instantaneous response as seen in the original data, panel (a),
and when the data is smoothed over a window of eight cycles,
panel (b). The numerical data fits well a line with a slope of
one (black line, c0 is the intersection and c1 the slope).

where y0 is negative and indicates the depth at which
the front first appears, and yfront = 0 means that the
front has propagated all the way to the surface. With
this definition, the pressure profile is made of two linear
segments:

P ′(y, t) =

{
σ0(y) for y ≥ yfront

σ0(yfront) for y < yfront
(27)

This means that at the upper part of the layer, before
the front passes (y > yfront), the slope of the pressure
profile is expected to be equal to the slope of the effective
static normal stress. At the lower part of the layer, after
the front has passed (y < yfront), we expect a zero slope,
i.e. constant pressure with depth. The predicted pro-
files at different times during the simulation (Eqs. (26)
and (27)) are presented in Fig. 11 as dashed lines, and
compared to the numerical profiles (solid lines). The pre-
dicted and observed profiles overall agree, and deviations
may arise from (1) the finite thickness of the compaction
front, that is not accounted for in the theory of equa-
tion (24), (2) the bottom sub-layer instantaneous com-
paction/dilatation around an average vertical stationar-
ity, and (3) the instantaneous grain velocity oscillations
around the predicted compaction velocity. The overall
physical picture of the compaction front with the distinct
zones that it forms is summarized in Fig. 12.

As an implication, one can attempt to compare our
modeling predictions to observations in earthquakes. Our
simulated layer models a fully saturated soil layer that is
shaken by seismic waves. An upward propagating com-
paction front is predicted. Within the pressurized com-
pacting sub-layer, before the arrival of the compaction
front, contact stresses between grains vanish and shear
waves cannot be transmitted. We predict that this sub-
layer, which exhibits the properties of liquefaction [7],
will become thinner with time, and progressively con-
fined to the shallower depths. This prediction is sup-
ported by field observation from Holzer et al [70], who
measured fluid pressure directly in the ground, during
an earthquake. They find that high pore pressure and
liquefaction decay from the bottom upward. Our results
have another important implication for soil liquefaction
that relates to the drainage conditions. Most commonly,
liquefaction is assumed to initiate under undrained con-
ditions [40, 71], since it is believed that fluid flow relaxes
the pore pressure. Our simulations and theory show that
liquefaction can initiate under well-drained conditions, in
support of recent experiments [39]. This has critical im-
plications for geophysical earthquake hazard assessment.

VI. SUMMARY

In the current work, we explore theoretically and nu-
merically the coupled grain - interstitial pore fluid dy-
namics of a saturated granular layer, subject to low over-
burden stresses and to cyclic horizontal displacements.
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FIG. 11. Profiles of dynamic pore pressure (P ′) at dif-
ferent times (t1 = 0.65 s; t2 = 1.97 s; t3 = 3.29 s; t4 =
4.62 s; t5 = 9.47 s) during a high acceleration DPP simu-
lation with Γ = 0.25 (A = 0.0431 cm). The bold line shows
the effective static normal stress. The dashed curves depict
the dynamic pore pressure profiles, as predicted by the com-
paction front model (Eqs. (24)-(27)). The thin solid curves
are the numerically derived dynamic pore pressure profiles.
The simulations and the model show good agreement. See
text for sources of deviations.

Targeting specifically a setting representative of an up-
per soil layer responding to an earthquake seismic exci-
tation, our study focuses on the layer compaction, pore
fluid pressurization and fluid flow under well-drained con-
ditions, whereby the pore fluid can flow out of the grain
layer during the shaking period. A non-dimensional anal-
ysis reveals that the drainage conditions is a function of
the non-dimensional De number, which, in the current
setting, is the ratio between the time scale of pore pres-
sure diffusion and the shaking periodicity. It was previ-
ously thought that when fluid can easily flow out of the
system (De� 1 conditions), fluid pressure does not rise
significantly and does not play a significant role in the
dynamics of the system. By contrast, this work shows
analytically and numerically that even when De � 1,
fluid pressure rises dramatically and the dynamics of the
grains is significantly altered.

We identify two end-member behaviors, with a transi-
tion controlled by the shaking acceleration. At low ac-
celerations, below a critical value, the system behaves
rigidly, compaction is negligible and fluid pressure re-
mains hydrostatic. At high accelerations, albeit still at a
fraction of the gravitational acceleration, significant com-
paction occurs, coupled to high fluid-pressure gradients
that support the grains. Here, the compaction is ini-

FIG. 12. Schematic cartoon that summarizes the evolution of
the coupled grain-fluid dynamics. (a) Initially, the layer has
a porosity φ0 and the grains move horizontally with a veloc-
ity usx, imposed by the cyclic shear of the bottom wall. The
pore pressure is hydrostatic. (b) After a few shaking cycles,
the grain layer is divided into two sub-layers by a compaction
front that moves upward at a rate ufront. The grains at the
top sub-layer are settling at a velocity of u0

sy, their horizontal
velocity is vanishingly small, and the pore pressure is elevated
to the value of the initial total stress. The bottom sub-layer
has compacted to a porosity of φc, the grains move following
the cyclical horizontal shear and the pressure gradient is hy-
drostatic, although the pressure itself is elevated and set by
the value of the pressure at the compaction front. (c) At a
later time, The compaction front has progressed upward and
with it, the depth at which the pressure gradient becomes
hydrostatic. (d) After some time (which depends on the com-
paction front velocity and the layer height), the compaction
front has already passed, and the whole layer has a φc poros-
ity. The whole layer follows the imposed cyclic shear at the
bottom.

tially rapid and linear in time, and we find that the com-
paction rate is governed by the rate of fluid drainage,
which in itself is a function of the layer permeability and
the fluid viscosity. This constant compaction rate is in-
dependent of the shaking forcing. The duration and lo-
cation of the pressurization event is well described as a
compaction front (Fig. 12), that propagates up from the
base of the layer. Before the arrival of the front, the in-
terstitial fluid is over-pressurized to the level of the effec-
tive static normal stress, it flows upward fully supporting
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the grains weight, which allows the grains to compact
at a constant rate. After the front passage, grains are
compacted and the fluid pressure gradient is hydrostatic.
The good agreement between the numerical simulations
and the compaction front model suggests that our the-
ory can serve as a predictive tool to evaluate pressur-
ization episodes in compacting, well-drained, grain-fluid
systems.

Specifically, our results indicate that compaction, fluid
flow, and pressurization are interdependent in horizon-
tally shaken granular layers under drained conditions,
with potential implications for earthquake-induced soil-
liquefaction.
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Appendix A: Parameter scaling in the coupled
grain-fluid model

The time step of the numerical solver was chosen to be
small enough to resolve a single undissipated elastic col-
lision between two grains, which lasts for tcol =

√
m/kn,

where m is average grain mass and kn is grain normal
stiffness (i.e., the spring constant used to compute the
normal forces between grains in contact, using a linear
displacement/force interaction model). We choose the
time step to be ∆t = 0.1 · tmincol , where tmincol is the colli-
sion time associated with the smallest grain in our sys-
tem. Using our model parameters, this restriction yields
∆t ≈ O(10−7) s. The periodicity of the imposed hori-
zontal shaking in our simulations is within the range of
T ≈ O(10−2) − O(10−1) s. This means that the simu-
lation time step is sufficiently small to fully resolve this
external forcing.

The dependency between the time step and grain size
means that natural grain sizes could not be modeled in
a reasonable simulation time. To overcome this limita-
tion, we model grains that are larger than those found
in nature. Since we are interested in the dynamics
that occur within the natural range of permeabilities, we
must decouple the permeability value from the modeled

grain size. We do so by modeling the permeability as,
κ = κ1κ

′(x, y, t) (Eq. (19)), where κ1 = α < r >2 is
a constant in each simulation, and κ′ = r′2φ3/(1 − φ)2

varies in space and time (through changes in φ, and to a
lesser extent, changes in r′2). Under the effect of a pore
pressure field and intergranular contact forces, grains are
set in relative motion, which induces deformation and
changes the porosity field φ (and possibly r′2). We as-
sume that this changes κ′, without perturbing κ1. By
varying α in Eq. (19) we directly control the order of mag-
nitude of the permeability between different simulations,
independent of the grain size. This decoupling approach
was proposed and successfully compared to experiments
in [50–53, 56]. The ”decoupled model” correctly cap-
tures the relevant dynamics because grain size does not
dominate the physics. Instead, changes in the porosity
and the order of magnitude of the permeability control
the system behavior (Eqs. (21) and (22)). The excellent
agreement between theory and simulations further shows
that grain size does not affect the pore pressure evolution
and the compaction rate, as predicted in Eqs. (22)-(26)
and shown in Figures 9-11.

The small time step places a restriction on the per-
meability of the granular skeleton. To correctly resolve
the fluid pressure diffusion equation (13) on the super-
imposed grid, we use the Courant–Friedrichs–Lewy con-
dition ∆t < 0.5 · ∆x2/D. In our simulations, ∆x =
4 · r̄, where 2 · r̄ is the mean grain diameter, and
D = (κ0)/(βηφ) is the pore pressure diffusion coefficient.
This restriction means that the permeability should be
κ < 10−10 m2, and to ensure that, we set the α parameter
in Eq. (19) to be α < 10−5.

Appendix B:

Reorganization of Eq. (3) shows that the divergence of
the solid grain velocity can be related to the temporal
and spatial change of porosity:

∇ · us =
1

1− φ
(
∂φ

∂t
+ us ·∇φ). (B1)

Since we do not expect large spatial gradients in porosity
we neglect the last term of Eq. (B1) and by reducing it
to the vertical dimension we get:

∂usy(y, t)

∂y
≈ 1

1− φ(y, t)

∂φ(y, t)

∂t
. (B2)
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Integration of Eq. (B2) from the bottom (y = 0) to an
arbitrary height (y = H) gives:∫ H

0

∂usy
∂y

dy =

=

∫ H

0

1

1− φ(y, t)

∂φ(y, t)

∂t
dy

= −
∫ H

0

∂

∂t
[ln(1− φ(y, t))]dy

= −
∫ H

0

∂

∂t
[ln(1− φ0 − δφ(y, t))]dy

= −
∫ H

0

∂

∂t
[ln
(

(1− φ0)(1− δφ(y, t)/(1− φ0))
)

]dy

= −
∫ H

0

∂

∂t
[ln(1− φ0) + ln(1− δφ(y, t)/(1− φ0))]dy,

(B3)

where δφ is a small change from the initial porosity.
Since δφ(y, t)/(1 − φ0) � 1 we can expand a se-

ries ln
(

1 − δφ(y, t)/(1 − φ0)
)
≈ −δφ(y, t)/(1 − φ0) −

δφ2(y, t)/2(1− φ0)2 +O(δφ3). Neglecting the high order

terms of the expansion, Eq. (B3) becomes:

usy(H, t)− usy(0, t) ≈

−
∫ H

0

∂[ln(1− φ0)− δφ(y, t)/(1− φ0)]

∂t
dy

=
1

1− φ0

∫ H

0

[δφ(y, t)]

∂t
dy

=
1

1− φ0

∫ H

0

∂[φ(y, t)− φ0]

∂t
dy

=
∂〈φ(y, t)〉

∂t

H

1− φ0
, (B4)

where ∂〈φ(y,t)〉
∂t = 1

H

∫H
0

∂φ(y,t)
∂t dy is the spatial average

compaction rate over a layer that extends from the bot-
tom wall to height H. Applying the boundary condition
of usy(0, t) = 0 to Eq. (B4):

usy(y, t) =
∂〈φ(y, t)〉

∂t

H

1− φ0
, (B5)

which correlates the solid grains flux over a surface to the
change in porosity in a total medium volume.
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