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Dissipative solitons are self-confined pulses which appear in driven and lossy systems when the phase dispersion is balanced by the nonlinear phase-shift. Ultrashort pulses generated by passive mode-locking lasers are a very important example of temporal dissipative solitons in optics. Temporal cavity-solitons [START_REF] Pasquazi | Micro-combs: A novel generation of optical sources[END_REF][START_REF] Leo | Temporal cavity-solitons in one-dimensional Kerr media as bits in an all-optical buffer[END_REF][START_REF] Herr | Temporal solitons in optical microresonators[END_REF]] also belong to this class of pulses and have been instrumental in the development of optical frequency combs in nonlinear microcavities, or "micro-combs" [START_REF] Pasquazi | Micro-combs: A novel generation of optical sources[END_REF].

Temporal cavity-solitons have been largely studied in a 'driven' configuration, where an external pumping source is resonantly coupled in the nonlinear micro-resonator to sustain and excite the solitary pulses. More recently, we demonstrated that it is possible to generate localised pulses in a configuration where the micro-cavity is inserted in a fiber laser loop, as described in Figure 1.

In particular, we reported the observation of laser cavity-solitons [START_REF] Bao | Laser Cavity-Soliton Microcombs[END_REF], which have previously attracted large attention especially in spatial configurations, such as in semiconductor lasers [START_REF] Scroggie | Cavity-soliton laser with frequency selective feedback[END_REF]. By merging their properties with the physics of both micro-resonators and multi-mode systems, this scheme represents a fundamentally new paradigm for the generation, stabilisation and control of solitary optical pulses in micro-cavities. In general, laser cavity-solitons are a highly efficient class of cavity-solitons because they are intrinsically background-free. This is in stark contrast to cavity-solitons obtained in nonlinear Kerr cavity driven by an external source and described by the well-known Lugiato-Lefever equation [START_REF] Leo | Temporal cavity-solitons in one-dimensional Kerr media as bits in an all-optical buffer[END_REF][START_REF] Herr | Temporal solitons in optical microresonators[END_REF]. Currently, these self-localised waves form on top of a strong background of radiation, usually containing 95% of the total power for bright configurations [START_REF] Xue | Microresonator Kerr frequency combs with high conversion efficiency[END_REF].

Our laser cavity-solitons cover a spectral bandwidth exceeding 50 nm and are induced with average powers more than one order of magnitude lower than those typically used in state-of-the-art soliton micro-combs [START_REF] Pasquazi | Micro-combs: A novel generation of optical sources[END_REF]. Very importantly, in stark contrast to temporal cavity-solitons based Lugiato-Lefever systems, our bright laser cavitysolitons are background-free, and we achieve a mode-efficiency [START_REF] Bao | Laser Cavity-Soliton Microcombs[END_REF] above 75%, compared to typical 1% -5% for bright solitons realised with standard approaches. Moreover, we can affect the soliton repetition-rate with a simple approach. The free-spectral range of the fiber cavity can be affected by a delay line that modifies the fibre cavity length and, hence, the mode-spacing. In turn this tunes the position of the mode of the system and the repetition rate of the micro-comb.

In this presentation, we will discuss the possible type of pulses that can be observed in our system [START_REF] Bao | Laser Cavity-Soliton Microcombs[END_REF][START_REF] Bao | Type-II Micro-comb generation in a filter-driven four-wave mixing laser[END_REF], with a particular attention to both localised and periodical solutions. We will discuss the range of existence of Turing patterns and solitons and possible approaches to their generation and control. 
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 1 Fig.1. Scheme of the nested, travelling-wave cavities configuration: a Kerr micro-resonator (green loop) is nested in an amplifying fibre-loop (black). The amplifying cavity comprises a gain fibre (erbium-ytterbium doped amplifier, EYDFA), a tuneable delay line with optical couplers (OC), polarising beam splitter (PBS), polarisation control and a band-pass filter (BPF). The output of the laser is monitored with an optical spectrum analyser (OSA), a second-harmonic non-collinear autocorrelator and an oscilloscope to measure the radio-frequency noise of the system.
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 2 Fig. 2. a. Theoretical comparison of the propagation a laser cavity-soliton and a Lugiato-Lefever cavity-soliton in the same type of microresonator. b. Map of existence of the laser cavity solitons for different fiber cavity gain. The cavity gain parameter g is normalized to the total losses of the system and can vary from 0 to 1. The frequency detuning is normalized with respect to the free-spectral range of the micro-cavity, in this graph, positive values of Δ correspond to red detuned frequencies. c Experimental (blue) and theoretical (red-dashed) spectrum of a laser cavity-soliton. The inset reports the autocorrelation.