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Abstract: We summarize our results on the generation of temporal laser cavity-solitons in a system
comprising an optical micro-cavity nested in a fiber laser. We will discuss their features, region of
existence, potential and challenges ahead. © 2020 The Author(s)

Dissipative solitons are self-confined pulses which appear in driven and lossy systems when the phase dispersion is
balanced by the nonlinear phase-shift. Ultrashort pulses generated by passive mode-locking lasers are a very
important example of temporal dissipative solitons in optics. Temporal cavity-solitons [1,2,3] also belong to this
class of pulses and have been instrumental in the development of optical frequency combs in nonlinear micro-
cavities, or “micro-combs” [1].

Temporal cavity-solitons have been largely studied in a ‘driven’ configuration, where an external pumping
source is resonantly coupled in the nonlinear micro-resonator to sustain and excite the solitary pulses. More
recently, we demonstrated that it is possible to generate localised pulses in a configuration where the micro-cavity
is inserted in a fiber laser loop, as described in Figure 1.

In particular, we reported the observation of laser cavity-solitons [4], which have previously attracted large
attention especially in spatial configurations, such as in semiconductor lasers [5]. By merging their properties with
the physics of both micro-resonators and multi-mode systems, this scheme represents a fundamentally new
paradigm for the generation, stabilisation and control of solitary optical pulses in micro-cavities.
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Fig. 1. Scheme of the nested, travelling-wave cavities configuration: a Kerr micro-resonator (green loop) is nested in an amplifying fibre-loop
(black). The amplifying cavity comprises a gain fibre (erbium-ytterbium doped amplifier, EYDFA), a tuneable delay line with optical couplers
(OC), polarising beam splitter (PBS), polarisation control and a band-pass filter (BPF). The output of the laser is monitored with an optical
spectrum analyser (OSA), a second-harmonic non-collinear autocorrelator and an oscilloscope to measure the radio-frequency noise of the
system.
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In general, laser cavity-solitons are a highly efficient class of cavity-solitons because they are intrinsically
background-free. This is in stark contrast to cavity-solitons obtained in nonlinear Kerr cavity driven by an external
source and described by the well-known Lugiato-Lefever equation [2,3]. Currently, these self-localised waves
form on top of a strong background of radiation, usually containing 95% of the total power for bright
configurations [6].

Our laser cavity-solitons cover a spectral bandwidth exceeding 50 nm and are induced with average powers more
than one order of magnitude lower than those typically used in state-of-the-art soliton micro-combs [1]. Very
importantly, in stark contrast to temporal cavity-solitons based Lugiato-Lefever systems, our bright laser cavity-
solitons are background-free, and we achieve a mode-efficiency [4] above 75%, compared to typical 1% - 5% for
bright solitons realised with standard approaches. Moreover, we can affect the soliton repetition-rate with a simple
approach. The free-spectral range of the fiber cavity can be affected by a delay line that modifies the fibre cavity
length and, hence, the mode-spacing. In turn this tunes the position of the mode of the system and the repetition
rate of the micro-comb.

In this presentation, we will discuss the possible type of pulses that can be observed in our system [4,7], with a
particular attention to both localised and periodical solutions. We will discuss the range of existence of Turing
patterns and solitons and possible approaches to their generation and control.
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Fig. 2. a. Theoretical comparison of the propagation a laser cavity-soliton and a Lugiato-Lefever cavity-soliton in the same type of micro-
resonator. b. Map of existence of the laser cavity solitons for different fiber cavity gain. The cavity gain parameter g is normalized to the total
losses of the system and can vary from 0 to 1. The frequency detuning is normalized with respect to the free-spectral range of the micro-cavity, in
this graph, positive values of A correspond to red detuned frequencies. ¢ Experimental (blue) and theoretical (red-dashed) spectrum of a laser
cavity-soliton. The inset reports the autocorrelation.

References

[1] A. Pasquazi, et al. Micro-combs: A novel generation of optical sources. Phys. Rep. 729, 1 (2017).

2] F. Leo, et al. Temporal cavity-solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 4,471 (2010).
3] T. Herr, et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145 (2013).

4] H. Bao, et al. Laser Cavity-Soliton Microcombs. Nat. Photonics 13, 384 (2019).

5] A. J. Scroggie, W.J. Firth, and G.-L.Oppo, Cavity-soliton laser with frequency selective feedback. Phys. Rev. A 80, 013829 (2009).
6] X. Xue, et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev. 11, 1600276 (2017).

7] H. Bao, et al. Type-1I Micro-comb generation in a filter-driven four-wave mixing laser. Photonics Res. 6, B67 (2018).



