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1 Introduction

Technically more approachable, but not less physically interesting than their higher-
dimensional counterparts, AdS3/CFT2 dualities provide a hospitable environment for find-
ing answers to questions on both sides of the holographic correspondence. Conformal field
theories in two dimensions, which underlie string theory and are key tools in the description
of critical phenomena, feature a highly-constraining infinite-dimensional algebra of confor-
mal transformations that often allows for their exact solution. Gravity in three-dimensional
asymptotically anti-de Sitter spacetime provides a toy model for quantum gravity. There
is thus a clear motivation for the study of AdS3 backgrounds of string theory.

Owing to the high dimensionality of the internal space, the problem of exploring the
space of AdS3 backgrounds is challenging. A way forward is to impose a symmetry on the
background, in the form of supersymmetry or isometry, at the expense of the size of the
subspace of backgrounds one can access, depending on the degree of the symmetry. In the
present work we impose the minimal amount of supersymmetry, aiming for a more com-
prehensive scan of supersymmetric AdS3 backgrounds of Type II supergravity. We classify
warped AdS3 ×w M7 backgrounds with non-constant dilaton, generic RR fluxes and mag-
netic NSNS flux. Minimal supersymmetry equips the internal manifold M7 with a dynamic
SU(3)-structure, due to the existence of two Majorana spinors on M7. In the limiting case
where the spinors are parallel to each other, the dynamic SU(3)-structure corresponds to
a G2-structure. We translate the necessary and sufficient conditions for supersymmetry to
restrictions on the torsion classes of the SU(3)-structure, and obtain expressions for the
supergravity fields in terms of the geometric data. We illustrate our results by recovering
several AdS3 solutions with various amounts of supersymmetry. In Type IIB supergravity
we take a closer look at the G2-structure limiting case, show that it is integrable, and
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reduce the problem of finding a solution to not only the supersymmetry equations but also
the equations of motion, to a single geometric equation. Generically, the dual supercon-
formal field theories in two dimensions preserve N = (0, 1) supersymmetry, and include
well-studied families of theories with higher supersymmetry such as those arising from
D3-branes wrapped on Riemann surfaces [1–3], whose duals appear in section 5.1.

The rest of this paper is organized as follows. In section 2, we present the supersym-
metry equations as a set of equations for a pair of polyforms on M7. In section 3, we review
G2- and SU(3)-structures in seven dimensions, and parameterize the polyforms in terms of
the latter. Sections 4 and 5 contain our results for Type IIA and Type IIB supergravity
respectively.

2 Supersymmetry equations

We consider bosonic backgrounds of Type II supergravity whose spacetime is a warped
product AdS3 ×w M7, where M7 is a seven-dimensional Riemannian manifold. The ten-
dimensional metric reads:

ds2
10 = e2Ads2(AdS3) + ds2(M7) , (2.1)

where A is a function on M7. Preserving the symmetries of AdS3, the NSNS field-strength
H10d, and the sum of the RR field-strengths F10d in the democratic formulation of Type II
supergravity [4], are decomposed as

H10d = κvol(AdS3) +H , F10d = e3Avol(AdS3) ∧ ?7λ(F ) + F . (2.2)

The magnetic fluxes H, and

Type IIA: F =
∑

p=0,2,4,6
Fp , Type IIB: F =

∑
p=1,3,5,7

Fp (2.3)

are forms on M7. The operator λ acts on a p-form Fp as λ(Fp) = (−1)bp/2cFp. The RR
field-strengths satisfy dH10d

F10d = 0, which decomposes as

dH(e3A ?7 λ(F )) + κF = 0 , dHF = 0 , (2.4)

where dH ≡ d−H∧. The first set of equations act as equations of motion for F , and the
second one as Bianchi identities.

We also decompose the ten-dimensional supersymmetry parameters, ε1 and ε2, under
Spin(1, 2)× Spin(7) ⊂ Spin(1, 9):

ε1 = ζ ⊗ χ1 ⊗
(

1
−i

)
, ε2 = ζ ⊗ χ2 ⊗

(
1
±i

)
. (2.5)

The upper sign in ε2 corresponds to Type IIA, and the lower sign to Type IIB. χ1 and
χ2 are Majorana Spin(7) spinors; ζ is a Majorana Spin(1, 2) spinor that solves the Killing
equation

∇µζ = 1
2mγµζ , (2.6)

where the real constant parameter m is related to the AdS3 radius LAdS3 as L2
AdS3

= 1/m2.
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The Cliff(1, 9) gamma matrices are decomposed as

Γµ = eAγ(3)
µ ⊗ I⊗ σ3 , Γm = I⊗ γm ⊗ σ1 , (2.7)

where γ(3)
µ are Cliff(1, 2) gamma matrices, γm are Cliff(7) gamma matrices and µ,m are

spacetime indices. We choose γ(3)
µ to be real, and γm imaginary and antisymmetric. For

more details see the appendix of [5].
Necessary and sufficient conditions for supersymmetry are generally given in terms of

a set of Killing spinor equations. For AdS3 backgrounds, these can be rewritten in terms
of a pair of bispinors ψ± defined by

χ1 ⊗ χt2 ≡ ψ+ + iψ− . (2.8)

Taking into account the Fierz expansion of χ1⊗χt2, and by mapping anti-symmetric prod-
ucts of gamma matrices to forms, ψ+ and ψ− can be treated as polyforms on M7, of even
and odd degree respectively. The necessary and sufficient conditions for supersymmetry in
terms of differential constraints on these polyforms were derived in [6] for Type IIA, and
in [5] for Type IIB.

Supersymmetry imposes
2mc− = −c+κ , (2.9)

where c± are constants defined by

c± ≡ e∓A(||χ1||2 ± ||χ2||2) . (2.10)

In what follows we will consider backgrounds with zero electric component for H10d, κ = 0,
and thus ||χ1||2 = ||χ2||2. In Type IIB, κ = 0 can be set to zero by applying an SL(2,R)
duality transformation.1 In Type IIA, as shown in [6], κ 6= 0 leads to zero Romans
mass; such AdS3 backgrounds can thus be studied in M-theory, see [7–9]. Without loss of
generality, we set c+ = 2, that is

||χ1||2 = ||χ2||2 = eA . (2.11)

Given the above choices, the system of supersymmetry equations then reads:

dH(eA−φψ∓) = 0 , (2.12a)

dH(e2A−φψ±)∓ 2meA−φψ∓ = 1
8e

3A ?7 λ(F ) , (2.12b)

(ψ∓, F )7 = ∓m2 e
−φvol7 . (2.12c)

Here, an upper sign applies to Type IIA and a lower one to Type IIB; (ψ∓, F )7 ≡ (ψ∓ ∧
λ(F ))7, with (·)7 denoting the projection to the seven-form component.

We can decompose χ2 in terms of χ1 as follows:

χ2 = sin θχ1 − i cos θvmγmχ1 , (2.13)
1We thank N. Macpherson for this observation.
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where without loss of generality, we take v to be a real one-form of unit norm and restrict
θ ∈ [0, π/2]. At the boundary value θ = 0, χ1 and χ2 are orthogonal and define a “strict”
SU(3)-structure on TM7. At the other boundary value θ = π/2, χ1 and χ2 are parallel and
define a G2-structure. At intermediate values of θ, the pair (χ1, χ2) define a “dynamic”
SU(3)-structure on TM7, or alternatively a G2 ×G2-structure on the generalized tangent
bundle TM7 ⊕ T ∗M7.

In the next section we review G2- and SU(3)-structures in seven dimensions, and
parameterize ψ± in terms of the latter.

3 G2- and SU(3)-structures in seven dimensions

We briefly summarize the mathematical formalism for G2- and SU(3)-structures on seven-
dimensional Riemannian manifolds that we will use in analyzing the supersymmetry
equations (2.12).

A G2-structure on a seven-dimensional Riemannian manifold M7 is defined by a
nowhere-vanishing, globally defined three-form ϕ. Equivalently, a G2-structure is defined
by a nowhere-vanishing, globally defined Majorana spinor. The three-form ϕ is constructed
as a bilinear of the Majorana spinor as

ϕmnp = −iχtγmnpχ , (3.1)

where χ is taken to have unit norm. The three-form ϕ is normalized so that

ϕ ∧ ?7ϕ = 7vol7 . (3.2)

In the presence of a G2-structure, the differential forms on M7 can be decomposed
into irreducible representations of G2. In particular, this may be applied to the exterior
derivative of the three-form ϕ and its Hodge dual ?7ϕ:

dϕ = τ0 ?7 ϕ+ 3τ1 ∧ ϕ+ ?7τ3 , (3.3a)
d ?7 ϕ = 4τ1 ∧ ?7ϕ+ ?7τ2 . (3.3b)

The k-forms τk are the torsion classes of the G2-structure. τ0 transforms in the 1 repre-
sentation of G2, τ1 in the 7, τ2 in the 14, and τ3 in the 27.

An SU(3)-structure on a seven-dimensional Riemannian manifold M7 is defined by a
nowhere-vanishing, globally defined triplet comprising a real one-form v, a real two-form
J , and a complex decomposable three-form Ω, subject to the following defining relations:2

vyJ = vyΩ = 0 , Ω ∧ J = 0 , i

8Ω ∧ Ω = 1
3!J ∧ J ∧ J . (3.4)

2In terms of local coordinates,

Xyω(k) ≡
1

k − 1!X
nωnm1...mk−1 dxm1 ∧ . . . ∧ dxmk−1 .
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Equivalently, an SU(3)-structure is defined by a pair of non-parallel Majorana spinors; see
the appendix of [5]. The one-form v foliates M7 with leaves M6. The metric on M7 is then
locally decomposed as

ds2(M7) = v2 + ds2(M6) , (3.5)

with an accompanying volume form vol7 ≡ 1
3!v ∧ J ∧ J ∧ J . The exterior derivative can be

decomposed as
d = v ∧ vyd+ d6 , (3.6)

where d6 is the exterior derivative on M6. k-forms orthogonal to v can be decomposed into
primitive (p, q)-forms with respect to J .

The intrinsic torsion of an SU(3)-structure splits into torsion classes, which trans-
form in irreducible representations of SU(3). They parameterize the exterior derivatives of
(v, J,Ω) as:

dv = RJ + T1 + Re(V1yΩ) + v ∧W0 , (3.7a)

dJ = 3
2 Im(W1Ω) +W3 +W4 ∧ J + v ∧

(2
3ReEJ + T2 + Re(V2yΩ)

)
, (3.7b)

dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω + v ∧ (EΩ− 2V2 ∧ J + S) . (3.7c)

R is a real scalar, E and W1 are complex scalars, V1, V2 and W5 are complex (1, 0)-forms,
W0 and W4 are real one-forms, T1 and T2 are real primitive (1, 1)-forms, W2 is a complex
primitive (1, 1)-form,W3 is a real primitive (2, 1)+(1, 2)-form, and S is a complex primitive
(2, 1)-form. R, E and W1 transform in the 1 representation of SU(3), V1, V2 and W5 in
the 3, W0 and W4 in the 3 + 3, T1, T2 and W2 in the 8, W3 in the 6 + 6, and S in the 6.

As detailed in [5], the polyforms ψ± are parameterized in terms of the SU(3)-structure
as

ψ+ = 1
8e

A
[
Im(eiθeiJ) + v ∧ Re(eiθΩ)

]
,

ψ− = 1
8e

A
[
v ∧ Re(eiθeiJ) + Im(eiθΩ)

]
,

(3.8)

where θ is the angle appearing in (2.13). When θ = π/2, the one-form v drops out of the
decomposition (2.13) of χ2, the spinors (χ1, χ2) become parallel, and thus define merely
a G2-structure rather than an SU(3)-structure. Nevertheless, the above decomposition is
still valid: it can be shown that for compact M7, existence of a Spin(7) structure implies
existence of an SU(3)-structure [10]. Hence, we may decompose the three-form ϕ defined
by the spinor χ1 = χ2 in terms of an SU(3)-structure (v, J,Ω), leading to the above result
even in this limiting case. The phase eiθ multiplying Ω can be “absorbed” by a redefinition
eiθΩ→ Ω, and we will apply this redefinition in the following sections.

4 Type IIA

In this section we analyze the Type IIA supersymmetry equations (2.12) (upper sign): by
substituting (3.8) in (2.12) (redefining eiθΩ → Ω), the necessary and sufficient conditions
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for supersymmetry translate to restrictions on the torsion classes of the SU(3)-structure
defined by (χ1, χ2) on M7. Furthermore, the RR and NSNS field-strengths are expressed
in terms of the SU(3)-structure data.

The geometry of M7 and the NSNS field-strength are constrained by equation (2.12a),
which yields:3

d
(
e2A−φ cos θv

)
= 0 , (4.1a)

d
(
e2A−φ (− sin θv ∧ J + ImΩ)

)
− e2A−φ cos θH ∧ v = 0 , (4.1b)

d
(
e2A−φ cos θv ∧ J2

)
+ 2e2A−φH ∧ (− sin θv ∧ J + ImΩ) = 0 . (4.1c)

The RR field-strengths are derived from (2.12b), corresponding to

e3A ?7 F6 = −d
(
e3A−φ sin θ

)
+ 2me2A−φ cos θv , (4.2a)

e3A ?7 F4 = d
(
e3A−φ cos θJ

)
− e3A−φ sin θH − 2me2A−φImΩ

+ 2me2A−φ sin θv ∧ J , (4.2b)

e3A ?7 F2 = −d
(
e3A−φ

(
v ∧ ReΩ− sin θ1

2J
2
))

+ e3A−φ cos θH ∧ J

−me2A−φ cos θv ∧ J2 , (4.2c)

e3A ?7 F0 = −d
(
e3A−φ cos θ 1

3!J
3
)
− e3A−φH ∧

(
v ∧ ReΩ− sin θ1

2J
2
)

−me2A−φ sin θv ∧ 1
3J

3 . (4.2d)

From (4.1), using (3.7), we obtain the following relations for the torsion classes of the
SU(3)-structure:

0 = R = V1 = T1 = ImW1 = ImW2 = ImE , (4.3a)

0 = d6(2A− φ)(1,0) +W5 , (4.3b)
0 = cos θd6(2A− φ)− sin θd6θ − cos θW0 . (4.3c)

Furthermore, using the decomposition of the NSNS field-strength H with respect to the
SU(3)-structure

H = HRReΩ +HIImΩ +
(
H(1,0) +H(0,1)

)
∧ J +H(2,1) +H(1,2)

+ v ∧
(
H(1,1)
v +H0

vJ +H(0,1)
v yΩ +H(1,0)

v yΩ
)
,

(4.4)

3J2 ≡ J ∧ J and J3 ≡ J ∧ J ∧ J .
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where H(2,1) and H(1,1)
v are primitive, we obtain

2 cos θRe(H(2,1)) = −ImS − sin θW3 , (4.5a)

2 cos θRe(H(1,0)) = sin θ [−W4 +W0 − d6(2A− φ)]
+ 2ImV2 − cos θd6θ , (4.5b)

cos θHI = −ReE − 2Ȧ+ φ̇− 3
2 sin θReW1 , (4.5c)

HR = 0 , (4.5d)

2 sin θRe(H(1,0)) + 4Im(H(1,0)
v ) = cos θW4 . (4.5e)

Here we have introduced the notation ḟ ≡ vydf for any function f . Using (4.3) and (4.5),
as well as the identities in the appendix of [5] to Hodge dualize, we derive the following
expressions for the RR field-strengths:

eφF0 = − cos θ(3Ȧ− φ̇+ 2ReE) + sin θ(3H0
v + θ̇ − 2me−A)− 4HI , (4.6a)

eφF2 = X2yImΩ− sin θT2 − cos θH(1,1)
v − ReW2 − 2v ∧ Im(Y (1,0)

2 )

+
[
2ReW1 + cos θ(2H0

v + θ̇ − 2me−A) + sin θ
(

3Ȧ− φ̇+ 4
3ReE

)]
J , (4.6b)

eφF4 = v ∧ 2Im(cos θW (2,1)
3 − sin θH(2,1))− v ∧X4yJ ∧ J

+
(3

2 cos θReW1 − 2me−A − sin θHI
)
v ∧ ReΩ

+
[
cos θ(3Ȧ− φ̇+ 2

3ReE) + sin θ(2me−A − θ̇ −H0
v )
] 1

2J
2

− (cos θT2 − sin θH(1,1)
v ) ∧ J + Im

[
(cos θV2 − 2 sin θH(0,1)

v ) ∧ Ω
]

(4.6c)

eφF6 =
[
cos θ(2me−A − θ̇)− sin θ(3Ȧ− φ̇)

] 1
3!J

3 + v ∧ J2 ∧ Im(X(1,0)
6 ) , (4.6d)

where

X2 ≡ −d6(3A− φ) +W0 −W5 −W5 , (4.7a)

Y2 ≡ sin θ [d6(3A− φ) + 2W4] + cos θd6θ + 2 cos θ(H(1,0) +H(0,1)) , (4.7b)

X4 ≡ cos θ(d6A+W0 +W4)− sin θ(H(1,0) +H(0,1)) , (4.7c)
X6 ≡ sin θd6(3A− φ) + cos θd6θ . (4.7d)

Substituting the above expressions in the pairing equation (2.12c) yields the additional
scalar constraint:

3H0
v − 6me−A + 2θ̇ + 6 cos θReW1 − 4 sin θHI = 0 . (4.8)

Equations (4.3), (4.5), (4.6), and (4.8) constitute necessary and sufficient conditions
for the preservation of supersymmetry.
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4.1 Solutions

We now look at solutions of the supersymmetry conditions we have derived. In particular
we will recover the N = 8 supersymmetric AdS3 × S6 solution of [6] (realizing the F (4)
superalgebra), and the N = (4, 0) supersymmetric AdS3 × S3 × S3 × S1 solution of [11].
In addition to the supersymmetry equations, the equations of motion are solved provided
that the fluxes satisfy the Bianchi identities (see for example [12]), and this is the case for
the solutions below.

AdS3 × S6 with N = 8 supersymmetry. The angle θ, the warp factor A, and the
dilaton φ satisfy

d6θ = 0 , d6A = 0 , d6φ = 0 . (4.9)

The one-form v is closed — see (4.1a) given (4.9) — and locally a coordinate z can be
introduced such that

v = ξ(z)dz , (4.10)

for a function ξ(z) which can be fixed by a change of coordinate. Following [6], it is fixed to

ξ(z) = −2
3

(
q

p

)1/3
e−A(z) , p, q = constants . (4.11)

Accordingly, the metric on M7 (3.5) reads

ds2(M7) = 4
9

(
q

p

)2/3
e−2A(z)dz2 + ds2(M6) , (4.12)

and the metric on M6 is taken to be conformal to the round metric on the six-sphere S6:

ds2(M6) = e2Q(z)ds2(S6) . (4.13)

The non-zero torsion classes of the SU(3)-structure are

ReW1 = 2e−Q , ReE = −9
2

(
q

p

)−1/3
eA
dQ

dz
. (4.14)

It follows that Ĵ ≡ e−2QJ and Ω̂ ≡ e−3QΩ define a nearly-Kähler structure on S6:

dĴ = 3ImΩ̂ , dΩ̂ = 2Ĵ ∧ Ĵ . (4.15)

Setting m = 1 as in [6] the solution is determined by

e2Q =
(
q

p

)1/3 1√
z
, e2A = 4

9

(
q

p

)1/3 1 + z3
√
z

, eφ = q−1/6p−5/6z−5/4 , (4.16)

and
cos θ = 2

3e
Q−A . (4.17)

The only non-zero fluxes are F0 and F6 = 5qvol(S6).
This solution arises as a near-horizon limit of a D2-O8 configuration. The internal

space is non-compact, with z ∈ [0,∞]. Near z = 0, there is an O8-plane singularity, and at
z →∞ a type of D2-brane singularity; see [6] for more details. Flux quantization imposes
2πF0 ∈ Z, and q/(6π2) ∈ Z.
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AdS3 × S3 × S3 × S1 with N = (4, 0) supersymmetry. The AdS3 × S3 × S3 × S1

solution of [11, section 4.1] belongs to the class of solutions with strict SU(3)-structure, i.e.
θ = 0. The warp factor A, and the dilaton φ satisfy

d6A = 0 , d6φ = 0 . (4.18)

The one-form v is closed and locally is set to v = eφ0e3A(ρ)dρ, where φ0 is a constant. The
metric on M7 reads

ds2(M7) = e2φ0e6A(ρ)dρ2 + e2A(ρ)d̂s2(M6) . (4.19)

Furthermore, the torsion classes of the SU(3)-structure are restricted so that

d6Ĵ = 3
2mImΩ̂ + Ŵ3 , (4.20a)

d6Ω̂ = mĴ ∧ Ĵ , (4.20b)

where Ĵ ≡ e−2AJ , Ω̂ ≡ e−3AΩ, and Ŵ3 ≡ e−2AW3. The dilaton φ and the warp factor A
are given by:

eφ = eφ0e5A , e−8A = 2F0e
2φ0ρ+ ` , (4.21)

where ` is a constant. The only non-zero fluxes are F0 and

F4 = dρ ∧
(

2Im(Ŵ (2,1)
3 )− 1

2mReΩ̂
)
, (4.22a)

F6 = 2
3!me

−φ0 Ĵ3 . (4.22b)

The Bianchi identity to be satisfied is that of F4, dF4 = 0, which yields

dIm(Ŵ (2,1)
3 )− m2

4 Ĵ ∧ Ĵ = 0 . (4.23)

Thus, what remains to be done in order to solve the equations of motion is to find a suitable
manifold M6 admitting an SU(3)-structure with the right torsion classes. On S3 ' SU(2),
a set of left-invariant forms (σ1, σ2, σ3) can be found such that

dσj = 1
2εjklσ

k ∧ σl , (4.24)

where j, k, l ∈ {1, 2, 3}, and εjkl is the Levi-Civita symbol. Let σja be the left-invariant
forms on S3

a, a ∈ {1, 2}, and let

ζj ≡ 1√
2m

(σj2 + iσj1)

Ĵ = i

2δijζ
i ∧ ζ̄j , Ω̂ = 1

3!
√

2
(1 + i)εjklζj ∧ ζk ∧ ζ l .

(4.25)

Then (Ĵ , Ω̂) form an SU(3)-structure on S3
1 × S3

2 , with corresponding metric

d̂s2(M6) = 2
m2

(
ds2(S3

1) + ds2(S3
2)
)
, (4.26)
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where ds2(S3
a) = 1

4
∑
j(σja)2. Making use of (4.24), the non-vanishing torsion classes are

determined to be

Ŵ1 = m, Ŵ
(2,1)
3 = −m1 + i

4!
√

2
εijkζ

i ∧ ζj ∧ ζ̄k , (4.27)

with Ŵ (2,1)
3 satisfying

dŴ
(2,1)
3 = m2

4 iĴ ∧ Ĵ . (4.28)

as desired. The fluxes now read:

F4 = 4
m2

(
vol(S3

1) + vol(S3
2)
)
∧ dρ , (4.29a)

F6 = 16
m5 e

−φ0vol(S3
1) ∧ vol(S3

2) . (4.29b)

The coordinate ρ here is related to the coordinate r in [11] via

(2F0e
2φ0ρ+ `)1/2 = 1

L4 (F0νr + c) , (4.30)

and also e−φ0 = qL5, where (L, ν = ±1, c, q) are constant parameters in [11].

5 Type IIB

In this section we analyze the Type IIB supersymmetry equations (2.12) (lower sign) in
a way similar to that of the analysis of the Type IIA supersymmetry equations in the
previous section.

The NSNS sector is constrained by (2.12a), which yields:

d
(
e2A−φ sin θ

)
= 0 , (5.1a)

d
(
e2A−φ cos θJ

)
− e2A−φ sin θH = 0 , (5.1b)

d

(
e2A−φ

(
v ∧ ReΩ− sin θ1

2J
2
))
− e2A−φ cos θH ∧ J = 0 , (5.1c)

d
(
e2A−φ cos θJ3

)
+ 3! e2A−φH ∧

(
v ∧ ReΩ− sin θ1

2J
2
)

= 0 . (5.1d)

The RR field-strengths are derived from (2.12b), corresponding to

e3A ?7 F7 = −2me2A−φ sin θ , (5.2a)

e3A ?7 F5 = d
(
e3A−φ cos θv

)
+ 2me2A−φ cos θJ , (5.2b)

e3A ?7 F3 = d
(
e3A−φ (sin θv ∧ J − ImΩ)

)
+ e3A−φ cos θH ∧ v

− 2me2A−φ
(
v ∧ ReΩ− sin θ1

2J
2
)
, (5.2c)

e3A ?7 F1 = −d
(
e3A−φ cos θv ∧ 1

2J
2
)

+ e3A−φH ∧ (sin θv ∧ J − ImΩ)

−me2A−φ cos θ1
3J

3 . (5.2d)
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From (5.1), in addition to e2A−φ sin θ being constant we obtain

sinθH = 3
2 cosθIm(W1Ω)+[cosθd6(2A−φ)−sinθd6θ+cosθW4]∧J+cosθW3

+v∧
[
cosθT2+

(2
3 cosθReE+cosθ(2Ȧ−φ̇)−sinθθ̇

)
J+cosθRe(V2yΩ)

]
, (5.3a)

cosθH = cosθHRReΩ+cosθHIImΩ+(2ReV1−sinθW4)∧J+2cosθRe(H(2,1))

+v∧
[
−ReW2−sinθT2−

(2
3 sinθReE+ReW1

)
J

]
+v∧Im

[
(d6(2A−φ)−W0+W5)yΩ

]
−sinθv∧Re(V2yΩ) , (5.3b)

2HI = cosθ(2Ȧ−φ̇)−sinθθ̇ . (5.3c)

From (5.2), making use of (5.3) and the identities in the appendix of [5] to Hodge dualize,
we derive the following expressions for the magnetic RR field-strengths:

eφF1 = −
(
2 cos θme−A + 4HR + 3 cos θR

)
v + 2Im(X(1,0)

1 ) , (5.4a)

eφF3 =
(
−2me−A − cos θHR − ImE + 3

2 sin θImW1

)
ImΩ

+
[
−2ImV1 − 2ReV2 + 2 sin θIm(W (1,0)

0 − dA(1,0))
]
∧ J

+ v ∧ (ImW2 − sin θT1)− 2
[
ImW1 − sin θ(R+me−A)

]
v ∧ J

+ 2 cos θIm(H(2,1)) + 2 sin θIm(W (2,1)
3 )− ReS +X3y(v ∧ ReΩ) , (5.4b)

eφF5 = cos θ
(
R+ 2me−A

)
v ∧ 1

2J
2 − Im(X(1,0)

5 ) ∧ J2

− cos θv ∧ J ∧ T1 + 2 cos θv ∧ ReV1 ∧ ImΩ , (5.4c)
eφF7 = −2me−A sin θvol7 , (5.4d)

where

X1 ≡ − cos θd6(A− φ) + sin θd6θ − cos θW0 − 8Im(H(1,0)
v ) , (5.5a)

X3 ≡ dA+ d6(2A− φ) +W5 +W5 − 2 sin θReV1 , (5.5b)
X5 ≡ cos θd6(3A− φ)− cos θW0 − sin θd6θ . (5.5c)

Substituting the above expressions in the pairing equation (2.12c) yields the scalar con-
straint

3R+ 6me−A + 4 cos θHR + 2ImE − 6 sin θImW1 = 0 . (5.6)

Equations (5.1a), (5.3), (5.4), and (5.6) constitute necessary and sufficient conditions
for the preservation of supersymmetry.

5.1 Solutions

A family of solutions for the limiting case θ = 0, that is the strict SU(3)-structure case, were
examined in [5, section 5]: the internal manifold M7 is a U(1) fibration over a conformally
Kähler base, and they feature a varying axio-dilaton, a primitive (2, 1)-form flux H+ieφF3,
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and five-form flux F5. The solutions of [1–3, 13, 14], withN = (2, 0) supersymmetry, belong
in this family.

Here, we will examine the other limiting case: G2-structure solutions, i.e., solutions
with θ = π/2. Although equivalent, it turns out to be more convenient to work directly
with the G2-structure rather than to use the θ = π/2 limit of the supersymmetry conditions
derived above.

The polyforms ψ± are parameterized in terms of the G2-structure, defined by the
three-form ϕ, as

ψ+ = 1
8e

A (1− ?7ϕ) , ψ− = 1
8e

A (−ϕ+ vol7) . (5.7)

Plugging these expressions into the supersymmetry equations (2.12), and making use
of (3.3) leads to the following constraints for the torsion classes

τ1 = τ2 = 0 , τ0 = −12
7 me

−A . (5.8)

Vanishing of the τ2 torsion class means that the G2-structure is integrable, meaning one
can introduce a G2 Dolbeault cohomology [15]. Furthermore, we obtain

d(2A− φ) = 0 , H = 0 , (5.9)

and

eφF3 = dAy ?7 ϕ+ 2
7me

−Aϕ+ τ3 ,

eφF7 = −2meAvol7 ,
(5.10)

while F1 = F5 = 0.
Next, we examine the Bianchi identities, which reduce to dF3 = 0. Imposing the

Bianchi identities in addition to the supersymmetry conditions yields a solution to the
equations of motion. We will work with a rescaled G2-structure ϕ̂ = e−3Aϕ and corre-
sponding metric d̂s2(M7) = e−2Ads2(M7). The rescaled torsion classes are given by

τ̂0 = eAτ0 = −12
7 m, τ̂1 = τ1 − dA = −dA , τ̂2 = e−Aτ2 = 0 , τ̂3 = e−2Aτ3 . (5.11)

Using these, the Bianchi identities read

d

(
τ̂3 −

1
6 τ̂0ϕ̂− τ̂1y?̂7ϕ̂

)
= 0 . (5.12)

Thus, the problem of finding a solution to the equations of motion is reduced to this purely
geometric condition. Note that (up to constant prefactors), the same condition appears for
heterotic backgrounds on G2-structure spaces [16, eq. (2.13)].

– 12 –



J
H
E
P
0
8
(
2
0
2
1
)
1
6
8

5.1.1 Examples

Let us now give several examples of solutions to the Bianchi identities, which have been
reduced to the constraint (5.12).

First, we consider M7 = S3 × M4, with standard G2-structure, trivial warp factor
A = 0, and where M4 is any hyper-Kähler manifold [17]. This recovers the near-horizon
limit of D1- and D5-branes, with N = (4, 4) supersymmetry [18]. Let (σ1, σ2, σ3) be
the left-invariant one-forms on S3 satisfying dσj = 1

2ε
jklσk ∧ σl and (ω1, ω2, ω3) be the

hyper-Kähler structure on M4 satisfying

dωj = 0 , 1
2ωi ∧ ωj = δijvol(M4) . (5.13)

Then the G2-structure

8m3ϕ̂ = −vol(S3)− 1
2
√

2
δijω

i ∧ σj

16m4?̂7ϕ̂ = vol(M4) + 1
8
√

2
εjklω

j ∧ σk ∧ σl
(5.14)

has

τ̂0 = −12
7 m, 4m2τ̂3 = −6

7vol(S3) + 1
14
√

2
ωj ∧ σj , (5.15)

and τ̂1 = τ̂2 = 0, which satisfy (5.12).
The next two examples are solutions in the presence of spacetime-filling O5-plane and

D5-brane sources, which wrap calibrated three-cycles inside M7. The presence of these
lead to a source term in the Bianchi identity, dF3 = J4. This thus modifies the right-hand
side of (5.12) such that the sourced Bianchi identities instead reduce to

d

(
τ̂3 −

1
6 τ̂0ϕ̂− τ̂1y?̂7ϕ̂

)
= J4 . (5.16)

The first sourced example is given by the twisted toroidal orbifold M7 = T 7/(Z2×Z2×
Z2): we refer the reader to [19] which we follow closely, as well as [20] for details. Given a
set of coordinates ym on M7, we may introduce a twisted frame {em(y)}. In terms of this
frame, the three-form determining the G2-structure can then be defined as

ϕ = e127 − e347 − e567 + e136 − e235 + e145 + e246

?ϕ = e3456 − e1256 − e1234 + e2457 − e1467 + e2367 + e1357 .
(5.17)

Generically, the frame satisfies

dem = 1
2τ

m
npe

n ∧ ep . (5.18)

This twisting breaks the G2-holonomy of the toroidal orbifold by introducing non-vanishing
torsion classes τ0, τ3, such that ϕ is co-closed, but no longer closed. The representation
of the Z2-involutions on the coordinates ym of M7, as well as the consistency constraint
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d2em = 0, restrict the possible values τmnp can take. We will restrict our attention to τmnp
being the structure constants of SO(p, q)×U(1) with p+ q = 4: this comes down to setting τ

1
45 τ2

46 τ1
36 −τ2

35
τ3

25 −τ3
16 −τ4

26 −τ4
15

τ6
24 τ5

14 −τ5
23 τ6

13

 =

 a4
a1
a2

a5
a1
a3
−a6

a1
a2
a1

a4 −a5
a2
a3

a6 a2
−a4

a3
a2

a5 −a6
a3
a2
a3

 , (5.19)

with ai constant and all other τmnp vanishing. Neither τ0 nor τ3 vanishes generically, with

τ0 = −2
7

(
−a1 − a2 + a3 + a4 + a5 − a6 + a1a4

a2
− a1a6

a2
− a3a6

a2
+ a1a5

a3
− a2a4

a3
+ a2a5

a3

)
.

(5.20)

As discussed in [20], setting A = 0 leads to solutions with source term J4 given by

J4 = km(ai)ψm , (5.21)

with ψm ∈ {e3456, e1256, e1234, e2457, e1467, e2367, e1357} and km(ai) dependent on the twisting
parameters. Note that the AdS3 radius is proportional to the torsion class τ0(ai), and hence
the twisting parameters ai are restricted such that τ0 6= 0.

The second example of a sourced solution can be obtained by taking M7 = H(3, 1), the
generalized Heisenberg group, as discussed in [21] and recently investigated in the context
of three-dimensional heterotic Minkowski backgrounds [22]. Geometrically, H(3, 1) is a
nilmanifold, for which a frame can be found satisfying

dem =
{

0 m 6= 7
ae12 + be34 + ce56 m = 7

, (5.22)

with a, b, c non-zero parameters. Again expressing the three-form ϕ in terms of the frame
{em} as in (5.17), it follows that τ1 = τ2 = 0 and

τ0 = 2
7(a+ b+ c) , (5.23)

which restricts the parameters to satisfy a+ b+ c 6= 0 in order to find AdS3 backgrounds.4

Setting A = 0, one finds (5.16) is satisfied with calibrated source term J4 given by

J4 = k1e
1234 + k2e

3456 + k3e
1256 (5.24)

with k1 = (a+ b)2 + (ab+ bc+ ca) and (a, b, c) cyclically permuted for k2, k3.
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