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Abstract 21 

Aims: Assessing climate change impacts on biodiversity is a main scientific challenge, 22 

especially in the tropics, therefore, we predicted the future of plant species and communities 23 

on the unique páramo sky islands. We implemented the Spatially Explicit Species 24 

Assemblage Modelling framework, by i) calculating species’ maximum dispersal distance, 25 

ii) modelling species distributions at present up to 2100, iii) assembling models into 26 

communities. Finally, we assessed the vulnerability of sky islands based on richness and 27 

composition changes.  28 

Location: Ecuadorian super-páramo (>4200 m)  29 

Methods: Using species trait data, the maximum dispersal distance of 435 species was 30 

calculated. Species distribution models (SDM) were fitted to obtain current and future 31 

distribution predictions based on dispersal and bioclimatic factors. The final assemblages 32 

for present and 2100 were achieved by stacking all probabilistic SDMs and applying the 33 

probability ranking rule. The vulnerability of each sky island was evaluated by quantifying 34 

richness and composition changes.  35 

Results: Maximum dispersal distances ranged between 0.008-6027 m/year, and across all 36 

scenarios, 70% of models showed a net loss in species distribution while 9% of all species 37 

were predicted to undergo extinction by 2100. Local richness was estimated to decrease by 38 

56.63% on average, and composition changes in each sky island suggested a mean loss of 39 

64.74% of their original species pool against a 12.97% gain. Finally, 5% of the sky island 40 

floras reconverted from high-elevation to low-elevation species. These numbers were 41 

usually more important for high-elevation species and the mountains Pichincha, Ilinizas and 42 

Antisana.  43 

Conclusions: Our study is methodologically pioneer and provides novel insight on the future 44 

of páramo biodiversity. Significant losses in species distribution and changes in community 45 

richness and composition suggest drastic impacts and call for further study considering 46 

additional factors, such as land-use. Finally, we recommend focusing monitoring and 47 

conservation strategies on the northern sky islands in priority.   48 
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Introduction 53 

The climatically-driven redistribution of life on Earth is one of the most challenging 54 

environmental threat humanity faces today (Pecl et al. 2017; Diaz et al. 2019). It is widely 55 

accepted that the current climate change is human-induced (Team et al. 2014) and that its 56 

main impacts on biodiversity include: shifts in phenology (Visser, & Both, 2005); changes 57 

in population densities (Graae et al. 2018), local extinctions (Panetta, Stanton, & Harte, 58 

2018), species range shifts (Lenoir, & Svenning 2015), and accelerated changes in species 59 

richness and assemblages (Bertrand et al. 2011; Steinbauer et al. 2018). Because biodiversity 60 

redistribution implies important changes in ecosystem functioning, human well-being and 61 

climate change itself (Pecl et al. 2017), there is an urgent need to increase our knowledge on 62 

the complex interplay between climate change and biodiversity and implement integrative 63 

scientifically-supported strategies to adapt and mitigate climate change (Diaz et al. 2019).  64 

The high-elevation ecosystems in the northern Andes belong to the páramo 65 

biogeographical province, a tropical biodiversity hotspot critically threatened by climate 66 

change (Tovar, Arnillas, Cuesta, & Buytaert, 2013; Cuesta et al. 2019). The páramo is the 67 

youngest biodiversity hotspot and the richest tropical alpine province on Earth, totaling 15 68 

different phytogeographical units and around 5000 plant species, of which 60-80% are 69 

endemic (Sklenář, Hedberg, & Cleef, 2014; Peyre, Balslev, & Font, 2018). It can be 70 

altitudinally divided at present into three main elevation belts: i) the sub-páramo (⁓ 3000-71 

3500 m) or lower tree or shrub-dominated ecotone with Andean forests; ii) the mid-páramo 72 

(⁓ 3500-4200 m), or páramo proper, including vast grasslands and giant rosette 73 

communities; and iii) the super-páramo (> 4200 m), with gradually scattering vegetation 74 

(Cuatrecasas, 1958). Contrarily to the sub-páramo and mid-páramo, which show certain 75 

spatial connectivity and are strongly shaped by human activities, the super-páramo is, 76 

hitherto, geographically isolated and above the current agriculture frontier (⁓ 4200m). The 77 

super-páramo hence represents the iconic sky islands of the northern Andes and hosts a very 78 

rare and endemic biodiversity with little species migration capacity on mountain tops.  79 

Recent estimations predicted a temperature rise of 3ºC (± 1.5) across the páramo by 80 

the end of the century, accompanied by a general increase up to + 300 mm in vertical 81 

precipitation (rain), however highly variable depending on geography and topography 82 

(Urrutia, & Vuille, 2009; Anderson et al. 2011; Buytaert, Cuesta-Camacho, & Tobón, 2011). 83 

Although there is a general consensus on the need to increase our knowledge on the climate 84 

change impacts on the páramo biota and ecosystems, studies remain very scarce to date 85 

(Tovar et al. 2013; Feeley, Stroud, & Perez, 2017; Anthelme, & Lavergne, 2018; Anthelme, 86 
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& Peyre, 2019). For instance, Anderson et al. (2011) predicted a general upslope migration 87 

of 600 m for species to track the isotherms throughout the Tropical Andes by 2100. Other 88 

studies have also predicted up to a 50-60% increase in threats and local extinction risks by 89 

the second half of the century in the region (Ramírez-Villegas et al. 2014). At the ecosystem 90 

level, changes in structure and functions are suggested for the Tropical Andes (e.g. Tovar et 91 

al. 2013; Cuesta et al. 2019) but lack proper quantification for the páramo alone, and the 92 

consequent impacts on species assemblages and ecosystem services remain unclear 93 

(Buytaert et al. 2011). In order to fill the important knowledge gap on species redistribution 94 

under anthropogenic climate change and the subsequent structural re-organisation of plant 95 

assemblages in the páramo, new endeavors such as the Institute von Humboldt’s Biomodels 96 

(http://biomodelos.humboldt.org.co) or the Pontificia Catolica Universidad del Ecuador’s 97 

Bioweb (https://bioweb.bio), as well as individual research initiatives (e.g. Ramírez-Villegas 98 

et al. 2014), looking to model the potential distribution of páramo species under climate 99 

change using species distribution models (SDMs) fitted on bioclimatic data are increasing.  100 

Dispersal is key in enabling species to track climate change, essentially through  the 101 

mechanisms of seed production, migration over certain dispersal distance and along suitable 102 

habitat routes, germination and establishment (Kammer, Schöb, & Choler, 2007; Vittoz, & 103 

Engler, 2007; Lenoir, & Svenning, 2015). This factor prevails in alpine areas where plants 104 

face many challenges to disperse upslope or across mountains, this due to i) often reduced-105 

dispersal capacity (Vittoz, Dussex, Wassef, & Guisan, 2009; Morgan, & Venn, 2017), ii) the 106 

presence of biogeographic barriers such as forests and valleys, and iii) steep gradients 107 

favouring certain dispersal paths (Dirnböck & Dullinger 2004; Engler, Hordijk, & Guisan, 108 

2012). Accounting for dispersal when studying changes in species distribution in tropical 109 

mountains over time is crucial, because in comparation to higher latitudes, plants’ dispersal 110 

capacities tend to be greater and more diverse (Chen, Tamme, Thomson, & Moles, 2019) 111 

while spatial climatic variations are less pronounced. At the community level, the resulting 112 

persistence vs. migration mismatch between local species, competitive regional pool and 113 

newcomers, such as invasive species, translates in important restructuration and composition 114 

changes (Singer et al. 2016; Alexander et al. 2018). Despite the general agreement on the 115 

need to include dispersal capacity in SDMs to improve current and future species distribution 116 

predictions (Araújo, & Guisan, 2006; Thuiller et al. 2008; Dullinger et al. 2012; Hattab et 117 

al. 2017), this factor remains overlooked today. Moreover, when accounted for, it usually 118 

takes the form of an “all or nothing” parameter, i.e. no dispersal or full dispersal (Guisan, & 119 
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Thuiller, 2005; Araújo et al.  2006; Holloway et al. 2016), albeit partial dispersal scenarios 120 

based on mean and/or maximum dispersal distance often are more reliable (Dullinger et al., 121 

2012; Engler et al. 2012; Bateman, Murphy, Reside, Mokany, & VanDerWal, 2013). 122 

Nevertheless, partial dispersal approaches are increasing thanks to new techniques allowing 123 

to calculate significant approximations of dispersal distances based on a suite of plant trait 124 

data (Vittoz & Engler, 2007; Thomson, Moles, Auld, & Kingsford, 2011; Tamme et al. 2014; 125 

Bullock et al. 2017). Among the most dependable traits used to date is plant height, assuming 126 

that a tall plant disperses further than a short one (Muller-Landau, Wright, Calderón, Condit, 127 

& Hubbell, 2008; Thomson et al. 2011). Seed mass has also been evaluated as a significant 128 

trait, generally suggesting that light seeds disperse further than heavy ones (Parolo, & Rossi, 129 

2008), even though this pattern can be significantly influenced by the correlation between 130 

plant height and seed mass (Moles, Falster, Leishman, & Westoby, 2004; Thomson et al. 131 

2011). Finally, dispersal syndrome is usually considered important as, for instance flight-132 

enhancing structures may increase anemochorous dispersal, and fruit characteristics can 133 

influence zoochorous dispersal (Vittoz, & Engler, 2007; Tamme et al. 2014; Thomson, 134 

Letten, Tamme, Edwards, & Moles, 2017).  135 

Yet, to go beyond individual species predictions from SDMs, recent scientific 136 

advances in ecology propose to model entire biotic communities, relying on species 137 

distributions and adding a frame of abiotic and biotic factors such as historical-dispersal 138 

constraints, ecosystem richness capacity and biotic interactions among species (Guisan, & 139 

Rahbek, 2011; Wisz et al. 2013; Mod, le Roux, Guisan, & Luoto, 2015). In this context, the 140 

Spatially Explicit Species Assemblage Modelling framework (SESAM; Guisan, & Rahbek, 141 

2011) has been extensively used to predict species assemblages on a wide range of 142 

taxonomic groups, from insects to plants, and for several habitats, from forests to grasslands 143 

(e.g. D’Amen, Pradervand, & Guisan, 2015a; D’Amen et al. 2015b; Mod et al. 2015; 144 

D'Amen, Rahbek, Zimmermann, & Guisan, 2017; Mateo, Mokany, & Guisan, 2017). A 145 

wealth of research efforts has focused on improving the different aspects of SESAM, either 146 

regarding the macroecological constraints that represent the carrying capacity of 147 

communities (D’Amen et al. 2015a; Mateo et al. 2017), or the assembly rules that prioritize 148 

certain species co-occurrences (Wisz et al. 2013; D’Amen et al. 2015b). However, the 149 

historical-dispersal constraints remain overlooked to date and the need persists to improve 150 

techniques and launch more integrative models to refine community modelling at present 151 

and under climate change scenarios (D'Amen et al. 2017; Guisan et al. 2019).  152 
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The present study aims at implementing the SESAM framework, accounting for 153 

dispersal constraints for the first time, to predict changes in plant distributions and 154 

assemblages of the páramo sky islands during the 21st century. First, maximum dispersal 155 

distances were calculated and compared for mid-páramo and super-páramo species. It was 156 

expected that tall species such as shrubs that present either light seeds and dispersal-157 

enhancing structures, e.g. wings, or heavy seeds with fruits dispersed by efficient zoochory, 158 

e.g. by birds, would be the best dispersing species. Second, the current and future 159 

distributions of each species up to the year 2100 were modelled based on bioclimatic 160 

variables while accounting for dispersal constraints to explore migration and extinction rates 161 

in the páramo. It was assumed that mid-páramo species would migrate further and faster 162 

than super-páramo species, which would in turn present greater extinction risks. Third, 163 

current and future plant communities were assembled on the sky islands by stacking all 164 

previous probabilistic models and applying richness constraints and assembly rules. The 165 

vulnerability of the network of sky islands was assessed based on the magnitude of changes 166 

in species richness and species composition in terms of species numbers and ratio of mid-167 

páramo and super-páramo species, expecting that locally diverse areas today (Peyre, Balslev, 168 

Font, & Tello, 2019) would suffer faster and more drastic changes.  169 

Methods 170 

Study area 171 

Ecuador was set as study case as a model representant of páramo countries due to its 172 

abundance of páramos and equatorial geolocation. The most representative mountains 173 

carrying the super-páramo belt, or sky islands, in Ecuador are from North to South: 174 

Cayambe, Antisana, Pichincha, Ilinizas, Cotopaxi, Chimborazo, Tungurahua, Sangay and 175 

Cajas (Fig. 1A). The super-páramo is usually found between 4200-4800 m a.s.l, although its 176 

lower and upper limits as well as main vegetation strongly depend on local topography and 177 

topoclimate. For example, low shrublands and cushion communities can be found at lower 178 

elevations under a dense upper cloud elevation zone, while meadows, deserts with shrubs 179 

and periglacial deserts are most likely to occur in the higher areas shaped by volcanic activity 180 

and/or glacier melting (Fig. 1B; Sklenář, & Ramsay, 2001). To conduct the following 181 

modelling analyses, the 4200 m isohypse and mountain tops were assumed as the lower and 182 

upper limits of the actual super-páramo belt respectively. Similarly, the 3000 m isohypse 183 

was set to delimit the broader páramo province (mid-páramo plus super-páramo), in order to 184 
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consider upward migration of plant species from the mid-páramo to the super-páramo as 185 

climate will warm under future scenarios.  186 

Vegetation data 187 

All vegetation plots corresponding to the Ecuadorian páramo were downloaded from 188 

VegParamo, an open access database for floristic and vegetation páramo data, compiling 189 

information from 40 data sources (www.vegparamo.com; Peyre et al. 2015). Because 190 

VegParamo comprises the original authors’ classification of the plots into sub-páramo, mid-191 

páramo, super-páramo and azonal vegetation, i.e. Polylepis forests, bogs and marshes and 192 

rupicolous vegetation, only the plots belonging to the zonal mid-páramo and super-páramo 193 

elevational belts were retained. Plots located outside the study area, e.g. on Amazonian 194 

mountains, were also removed, as well as plots with a coarse georeferencing precision 195 

superior to 1km in the UTM system. The final plots, all sampled according to the 196 

phytosociological method (Braun-Blanquet, 1964), were rescaled into presence/absence 197 

data.  198 

The floristic contents of the plots were checked, and the following groups were 199 

eliminated from the dataset: pteridophytes, bryophytes, lichens and vascular plants 200 

determined at the genus level or higher. When a taxon was determined at the infra-specific 201 

level, such as varieties and subspecies, it was aggregated at the species level. Taxonomic 202 

synonymy was checked using the Plant List (www.plantlist.com) and Tropicos 203 

(www.tropicos.org). Because the consequent vegetation dataset showed an important 204 

imbalance of species presences versus absences, additional occurrence data was 205 

complemented for these species from biological and herbarium databases consulted online, 206 

including Tropicos, Aarhus University Herbarium (www.aubot.dk) and GBIF 207 

(www.gbif.org). The additional occurrence data was revised to remove outlier points and 208 

check duplicates between occurrence data and vegetation plots (based on UTM coordinates). 209 

Decimal spatial coordinates were then obtained for all plots, using the centroid of the 210 

corresponding UTM cell, as well as for the new added occurrence data, relying on the 211 

original georeferencing. Species that still presented less than 6 occurrences were removed 212 

and the complete dataset includes 642 vegetation plots from VegParamo (157 UTM) and 213 

2095 additional occurrences for 435 vascular plant species (Fig. S1; Table S1, S2; Peyre, 214 

2020). Finally, species were classified into super-páramo and mid-páramo species, when at 215 

least 50% of their occurrence data occurred above and below the 4200 m isohypse, 216 

respectively, resulting in 84 super-páramo species and 351 mid-páramo species. 217 

http://www.vegparamo.com/
http://www.plantlist.com/
http://www.tropicos.org/
http://www.aubot.dk/
http://www.gbif.org/
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Bioclimatic data 218 

19 bioclimatic variables were downloaded from the CHELSA V1.2 database (www.chelsa-219 

climate-org; Karger et al. 2017) and adjusted to the study area. All variables were obtained 220 

for the period 1979-2013 and averaged across this time interval, considered as the current 221 

conditions (year 2000), which fitted the occurrence and vegetation data (1976-2014). 222 

Multicollinearity between variables was evaluated using a variance inflation factor 223 

correlation analysis (vif function, usdm R package; Naimi et al. 2014), and all variables 224 

below a threshold value of 0.7 for the Pearson correlation coefficient were retained 225 

(Dormann et al. 2012), resulting in the following selection: mean diurnal temperature range 226 

(bio2); temperature seasonality (bio4); mean temperature of the wettest quarter (bio8); 227 

precipitation seasonality (bio15); and precipitation of the coldest quarter (bio19). This set of 228 

predictor was not fitted per species (D’Amen et al. 2015a; Araújo et al. 2019) but was 229 

considered appropriate for the study area as a whole because of its certain focus on 230 

precipitation-related factors and seasonality, which usually prevail as drivers of plant 231 

diversity variation in tropical mountain areas (Peyre et al. 2019). To represent future 232 

scenarios and in order to encompass sufficient variance while reducing uncertainty in 233 

predictions (Thuiller, Guéguen, Renaud, Karger, & Zimmermann, 2019), a total of 8 climate 234 

change scenarios were selected, based on two representative concentration pathways 235 

(RCPs): CIMC5-RCP45 and CIMC5-RCP85, as well as four global circulation models 236 

(GCMs): bbc-csm1-1, CESM1-BGC, HadGEM2-AO and MRI-CGCM3. These GCMs were 237 

privileged based on their dissimilarity, according to the distance matrix calculated for all 238 

available GCMs presented in Sanderson, Knutti, & Caldwell (2015). Future bioclimatic 239 

predictions for each variable of interest were then downloaded from CHELSA V1.2 for 240 

every scenario at two dates, 2050 and 2070, and later cropped to fit the study area. Because 241 

dispersal is considered here as a key factor to constrain future species distributions, the 242 

bioclimatic data was interpolated by decade to provide frequent steps to include dispersal 243 

limitations (Engler et al. 2012). To do so, simple linear regressions were used to obtain for 244 

each bioclimatic variables the 2010, 2020, 2030 and 2040 values using a coefficient 245 

calculated for the 2000-2050 period following a similar procedure to the one employed by 246 

Adhikari et al. (2018). The same procedure was applied for 2060 based on the 2050-2070 247 

period, and for decades 2080, 2090 and 2100, values by extrapolating the 2050-2070 248 

regression coefficient into the future. All statistical analyses were conductet in R 4.3.1 (R 249 

Core Team, 2019).  250 

http://www.chelsa-climate-org/
http://www.chelsa-climate-org/
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Dispersal capacity 251 

The widely-used dispeRsal function developed by Tamme et al. (2014) was chosen to 252 

estimate dispersal capacity in form of maximum dispersal distance, which is usually more 253 

suitable to include in SDMs than mean distance (Vittoz, & Engler, 2007; Thomson et al. 254 

2011). Beforehand, a basic trait database including plant height, vegetation stratum, main 255 

dispersion mode and seed mass was compiled for the 435 species. For plant height and 256 

vegetation stratum, information at the species level was retrieved from online herbarium 257 

material, such as the Field Museum (https://plantidtools.fieldmuseum.org), COL herbarium 258 

(www.biovirtual.unal.edu.co) and Plant JSTOR (https://plants.jstor.org), directly measured 259 

and averaged using at least four specimens per species when available. Dispersion mode and 260 

seed mass data at the species level were usually unavailable and therefore, information 261 

provided at the genus level from the Kew Botanical Garden seed collection initiative 262 

(http://data.kew.org/sid), and specific páramo literature were used (Frantzen, & Bouman, 263 

1989; Melcher, Bouman, & Cleef, 2000, 2004). Assuming for simplicity reasons that species 264 

would disperse only once yearly, the dispeRsal function was run as a kernel-shape 265 

probability density function of dispersal distances to calculate maximum dispersal distances 266 

(in m/yr) (Tamme et al. 2014; Bullock et al. 2017). The raw results were then upscaled to 267 

km per decade to fit the future bioclimatic predictions. Finally, dispersal capacity of mid-268 

páramo and super-páramo species were sommely compared by means of a t-Student test.     269 

Species distribution models 270 

The current distribution of each species was modelled based on actual environmental 271 

conditions, represented by the 5 bioclimatic variables selected, and dispersal capacity. The 272 

latter factor was introduced as a new variable, set by log-transforming the species maximum 273 

dispersal distance previously computed from plant traits and scaling the obtained values 274 

between 0 and 1 to rank species from bad to good dispersers (function iForce, iSDM 275 

package; Hattab et al. 2017). SDMs were then run using two different families of algorithms 276 

fitted for presence-absence data: i) generalized linear models (GLMs), which explore the 277 

linear relationship between explanatory and explained variables through a flexible Gaussian-278 

identity distribution-link approach and were fitted using second degree polynomial curves 279 

and ii) random forests (RFs) that integrate the data through an ensemble learning, coupling 280 

decision trees with classification and regression settings/approaches (biomod2 package; 281 

Thuiller et al. 2016). For each species, the data was divided into a 75% training dataset and 282 

a 25% testing dataset, and run with 50 models per algorithm. The true skill statistic (TSS) 283 

https://plantidtools.fieldmuseum.org/
http://www.biovirtual.unal.edu.co/
https://plants.jstor.org/
http://data.kew.org/sid
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value was computed for each model to evaluate SDMs’ performances and all models with a 284 

TSS value greater than 0.6, either obtained with the GLM or RF algorithms, were retained 285 

(Allouche, Tsoar, & Kadmon, 2006). The final models were then ensembled to obtain the 286 

final probabilistic preditions (Araújo, & New, 2007; Marmion, Parviainen, Luoto, 287 

Heikkinen, & Thuiller, 2009), which were finally transformed into binary values using a 288 

threshold approach that equalizes the sensitivity and specificity metrics (optimal.threshold 289 

function; ecospat package; Liu, Berry, Dawson, & Pearson, 2005; Di Cola et al. 2017).  290 

The calibrated current models were then used to project species’ distributions into 291 

the future per decade and under each of the 8 different climate-change scenarios. To do so, 292 

the previoulsy-used dispersal covariate was set to 0 and future distributions were projected 293 

against bioclimatic predictors only, in order to alleviate the static species-specific dispersal 294 

constraint. As formerly done, the probabilistic projections for each decade were then 295 

transformed into binary values and constrained in temporal order by the species maximum 296 

dispersal distance (Engler et al. 2012), hence allowing to track progressive changes in 297 

species distributions depending on available bioclimatic conditions and capacity to disperse 298 

from the previous distribution. Additional biogeographical barriers represented by the 299 

Andean forest and anthropogenic activities from the lowlands were also considered by using 300 

a raster mask at each time step that assumed that all pixels below the 3000 m isohypse were 301 

unsuitable. Thus, a species could only cross the matrix of unsuitable conditions in a time-302 

step if its maximum dispersal distance was greater than the distance separating two suitable 303 

pixels. The set of decadal binary maps obtained for each species separately offered time 304 

series of species redistribution that can be used to assess the species-specific proportion of 305 

areas that were lost, gained or that remained occupied by the focal species between present 306 

and 2100 (functions migclim.distance and migclim.plot, migclim package; Engler et al. 307 

2012). Finally, the 2100 binary prediction was used to fit the 2100 probabilistic prediction 308 

for richness capacity (see below).  309 

Changes in species distribution for the 21st century were evaluated as a binary result, 310 

net loss or net gain, by comparing and quantifying the number of pixels belonging to the 311 

2000 and 2100 distributions. Finally, extinction risk was considered when a species had at 312 

least one scenario predicting its complete extinction (i.e. the species completely disappeared 313 

from the studied area) by 2100. The severity of the risk was evaluated based on the number 314 

of scenarios predicting extinction by 2100, i) low risk (1-2 scenarios), ii) intermediate risk 315 

(3-4 scenarios), high risk (5-6 scenarios) and extinct (7-8 scenarios). 316 

 317 
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Model richness and assemblages 318 

The SESAM framework relies on the predict first assemble later principle (Guisan, & 319 

Rahbek, 2011), meaning that final community predictions are achieved after applying an 320 

assembly procedure that consists in selecting species from the predicted pool until reaching 321 

the carrying capacity of a community defined as potential richness (Guisan, & Rahbek, 2011; 322 

Mateo et al. 2017). This local carrying capacity (at pixel level) is often estimated by either 323 

stacking the probabilities predicted by the SDMs or by using macroecological models 324 

(D’Amen et al. 2015a; Mateo et al. 2017) but the former has the advantage of being 325 

embedded within a same S-SDM framework and allowing for a varying timeline, so that we 326 

used it here. All SDMs in their probabilistic form were stacked in 2000 and 2100 for each 327 

scenario to evaluate richness. Net richness change at the pixel level was assessed as a 328 

percentage of the current (2000) richness, with positive and negative values meaning a net 329 

gain and loss, respectively, in potential species richness.    330 

 Finally, species composition at the pixel level was predicted through the probability 331 

ranking rule (PRR; D’Amen et al. 2015b), which consists in selecting species from the 332 

predicted pool in decreasing order of their SDM probability of occurrence until reaching the 333 

previously predicted potential richness. The PRR was applied to the stacks of SDM 334 

predictions for 2000 and 2100 using the prr.ecospat function of the ecospat package (Di 335 

Cola et al. 2017). Changes in composition, expressed as numbers of species gained and lost, 336 

as well as ratio of mid-páramo and super-páramo species to emulate upward migration and 337 

high-elevation competition, were evaluated for the 10 main páramo sky islands. Lastly, 338 

based on the estimated changes in richness and composition, local vulnerability to climate 339 

change was assessed. 340 

Results 341 

Species varied greatly in terms of their maximum dispersal distance, ranging from 0.008 to 342 

6027 m/yr in a negative exponential manner with a mean of 193 m/yr (± 647) (Fig. S2; Table 343 

S2). Mid-páramo and super-páramo species showed significantly different maximum 344 

dispersal distances (t-test: 4.2972, df: 423.26, p-value: 2.148e-05), with mid-páramo species 345 

dispersing relatively well in average at 227.14 m/yr (± 714), while super-páramo species 346 

showed shorter dispersal distances at 51.39 m/yr (± 136). Long dispersal distances were 347 

usually associated with shrub genera with relatively heavy seeds (10-100 mg) and using 348 

zoochory or assisted anemochory, such as Monnina (Polygalaceae) and Gaiadendron 349 



13 
 

(Loranthaceae), whereas short dispersal distances was common in small herbaceous plants 350 

with lightweight seeds (0.0001-0.001 mg) and using unassisted anemochory or autochory as 351 

principal dispersal mode, as seen in Aa (Orchidaceae) and Ourisia (Plantaginaceae). 352 

The performance of SDMs varied between species, and the average values were 353 

considered acceptable overall (across models: mean TSS = 0.614, Sensitivity = 79.835, 354 

Specificity = 78.952; Table 1). In general, the RF algorithm performed better than the GLM 355 

algorithm, and more of its models were retained, approximately 29% across all species. 356 

About 70% of the SDMs across all scenarios predicted a net loss in species’ spatial 357 

distribution and only 30% predicted a net gain (Fig. 2). A total of 65 species (15% of all 358 

species) presented a degree of extinction risk under at least one scenario by the end of the 359 

century, 18 of which as a low risk, eight as an intermediate risk, 15 as a high risk and finally 360 

39 were predicted to become totally extinct from the studied area by 2100. The most 361 

endangered genera encountered in numbers were Cerastium (3 species), Draba (3 species), 362 

Gentianella (4 species) and Viola (3 species). In addition, 22 of the 65 species were super-363 

páramo species, 5 of which are known endemics at the national scale: Aetheolaena 364 

involucrata, Bartsia pumila, Festuca chimborazensis, Loricaria antisanensis and Viola 365 

polycephala. Finally, of the 39 species with the highest extinction risk, 10 were super-366 

páramo species known as páramo endemics, for example Cerastium candicans, Draba 367 

depressa, Lachemilla tanacetifolia, Lupinus alopecuroides and Xenophyllum crassum. 368 

Regarding net richness changes in the páramo sky islands, the general trend at pixel 369 

level (alpha diversity) was a loss of 56.63 % (± 20.83) of the original species richness 370 

between the present and 2100 (Fig. 3). The most affected areas were the northern mountains 371 

of Pichincha and Ilinizas with an average loss of 82.64 (± 2.15) and 77.24% (± 3.95) 372 

respectively. Contrarily, the least affected areas were the central mountains of Tungurahua 373 

and Altar with an average loss of 13.52 % (± 11.12) and 31.90 % (± 6.52) respectively, and 374 

punctual pixels with positive values hence gaining species, up to 18.73 % on the 375 

Chimborazo.  376 

At the sky island level, important significant composition changes in the final plant 377 

communities were observed (Fig. 3; Fig S3; Table S3). Sky islands lost an average 64.74% 378 

(± 14.12) of their original species pool (gamma diversity), Pichincha and Ilinizas being the 379 

most significantly affected with losses of 85.68% (± 5.70) and 74.73% (± 5.12) respectively. 380 

By contrast, Altar and Tungurahua were the least affected, losing 46.49 (± 10.76) and 381 
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50.00% (± 9.74) respectively. Gains at this scale did not compensate losses, with the average 382 

gain reaching 12.97 % (± 11.41), some páramos gaining more species such as Tungurahua 383 

and Altar with 39.21% (± 5.03) and 20.86% (± 6.31), while others gained less, such as 384 

Cayambe and Antisana with 7.17 % (± 3.02) and 7.47 % (± 3.05). The most drastic changes 385 

were therefore observed for the northern mountains of Cayambe and Pichincha.  386 

On average in 2000, the ratio between mid-páramo and super-páramo species in the 387 

páramo sky islands reached 68.79 / 31.21 (± 6.09), and changed across all scenarios in 2100 388 

to 73.61 / 26.39 (± 4.46), meaning that approximately 4.82% of super-páramo species were 389 

replaced with mid-páramo ones (Table 2). The most drastic tendencies were observed for 390 

Ilinizas and Antisana, losing 9.76 and 8.01% of their super-páramo species respectively, 391 

while the least affected sky islands were Cayambe, which gained 0.78% of super-paramo 392 

species, and Sangay that lost 0.48% of super-paramo species. Based on richness at pixel and 393 

sky island level and composition changes, Ilinizas, Pichincha and in lesser means Antisana 394 

were therefore considered as most threatened by climate change.  395 

Discussion 396 

Mountains are particularly sensitive to climate change because they are often prone to 397 

accelerated changes and more rapid responses of biota in comparison with lowlands 398 

(Bertrand et al. 2011; Smith, Edmonds, Hartin, Mundra, & Calvin, 2015; Steinbauer et al. 399 

2018). Neotropical mountains in particular are classified as highly vulnerable to climate 400 

change (Team et al. 2014) and are expected to suffer drastic changes in biodiversity and its 401 

associated ecosystem services that will affect millions of people on the short to mid-term 402 

(Buytaert et al. 2011; Tovar et al. 2013; Anthelme, & Lavergne, 2018). In addition, the fast 403 

and important changes in rural occupation and land uses that are occurring due to improving 404 

socio-economic conditions and the subsequent population growth, contribute greatly to the 405 

extent and intensity of environmental degradation (Hofstede, Segarra, & Vásconez, 2003). 406 

It is also in this region that predicting the impacts of future global changes becomes 407 

particularly challenging, due to data availability and the lack of knowledge on biodiversity, 408 

climatic variations, anthropogenic dynamics and the responses of biodiversity to these 409 

drivers (Anderson et al. 2011; Ramírez-Villegas et al. 2014; Lenoir, & Svenning 2015; 410 

Feeley et al.  2017).  411 

Dispersal capacity 412 
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To date, trait data and functional analyses for the páramo remain scarce, especially regarding 413 

non-leaf characteristics (e.g. Sánchez et al. 2014), and so far few works have focused on 414 

seed-related traits and characterized the dispersal modes of páramo species (Frantzen, & 415 

Bouman, 1989; Melcher et al. 2000; Melcher et al. 2004). Our estimates of species maximum 416 

dispersal distances based on plant dispersal traits highlighted that páramo species disperse 417 

on the lower end of the terrestrial angiosperm dispersal spectrum (Kinlan, & Gaines, 2003) 418 

and in general similarly to other alpine floras (Vittoz, & Engler, 2007; Morgan, & Venn, 419 

2017). Our result showed some support for the hypothesis that low-elevation shrubs, 420 

characterized by heavy seeds and usually using either zoochory (e.g. Ericaceae) or assisted 421 

anemochory (e.g. Asteraceae), disperse best. Indeed, the correlation favouring plant height 422 

over seed mass seemed particularly advantageous for these shrub species, at least at the 423 

landscape level (Parolo, & Rossi, 2008; Thomson et al. 2011, 17), whereas within a same 424 

dispersal syndrome or vegetation type, light-seed species that disperse anemochorously are 425 

usually considered as more efficient (Muller-Landau et al. 2008). Our best dispersers were 426 

often zoochorous and presenting relatively large fruits visible to vertebrate animals, such as 427 

birds, which undoubtley enhanced local dispersal (Thomson et al. 2011; Tamme et al. 2014) 428 

and also increased frequency of long-distance dispersal events, for example between 429 

mountain tops (Vittoz et al. 2009). Consequently, an upcoming challenge for these plant 430 

species in the future is facing their own responses to climate change but also those of their 431 

animal disperser (Travis et al. 2013). With increasing elevation and distance from the 432 

treeline, Poaceae become progressively dominant in the páramo ecosystems, ensuing a larger 433 

proportion of anemochorous species that often present disperal-enhancing structures, i.e. 434 

wings or pappi. Such structures are also crucial in helping plants overcome the long-distance 435 

dispersal limitations they face in alpine areas (Vittoz et al. 2009; Morgan, & Venn, 2017; 436 

Thomson et al. 2017). In the super-páramo belt, small characteristic plants such as 437 

Nototriche, Draba and Ourisia (Peyre et al. 2018) are often featuring perreniality, small 438 

light-seeds, high autogamy rate and little seed productivity, which might explain the short-439 

distance dispersal tendency observed. In addition, the yet unhospitable environment and 440 

unavailability of efficient animal dispersers on these sky-islands often forces plant species 441 

to recur to vegetative (clonal) reproduction in priority and limit their sexual reproduction 442 

(Vittoz et al. 2009). Accounting for establishment capacity, the availability of microsites, 443 

good microclimatic and edaphic conditions, and strong species interactions, such as 444 

facilitation of assisted dispersal, is therefore key to finally assess the migration capacity of 445 

these species (Scherrer, & Körner, 2011; Anthelme, Cavieres, & Dangles, 2014; Hupp, 446 
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Llambí, Ramírez, & Callaway, 2017; Alexander et al. 2018). Finally, considering the 447 

competitiveness of super-páramo species against advantaged shrub and herbaceous species 448 

from lower elevations, including opportunistic and exotic species, is necessary to evaluate 449 

the intensity of the threat (Pauchard et al. 2009; Llambí, Hupp, Saez, & Callaway, 2018).  450 

The importance of dispersal capacity in shaping a species distribution has long been 451 

acknowledged and increasingly included to improve SDM performances in the last decade 452 

(Thuiller et al. 2008; Dullinger et al. 2012; Bateman et al. 2013; Hattab et al. 2017). 453 

Community modelling has been considerably improving in parallel, with considerable 454 

efforts being put on better accounting for community assembly processes, including the 455 

carrying capacity of communities and assembly rules (D’Amen et al. 2017; Mateo et al. 456 

2017), nonetheless, dispersal constraints had remained mostly overlooked in community 457 

modelling (D’Amen et al. 2017; Guisan et al. 2019). This study supports that dispersal is a 458 

key factor in defining the future distribution of species and their assemblages, as illustrated 459 

in Fig. 2 by the overall overprediction of potential versus realized distributions quantified as 460 

the suitable but unoccupied area. Our finding is therefore in agreement with previous works 461 

maintaining that dispersal capacity is particularly important in tropical mountains, where 462 

climate has had an important but not exclusively prevailing influence on biota distribution 463 

(e.g. Flantua, O'dea, Onstein, Giraldo, & Hooghiemstra, 2019). Our results also suggest that 464 

super-páramo plants might not be able to migrate altitudinally along the same mountain but 465 

also be prevented in their attempts to colonize new mountain ranges, sustaining the key role 466 

of topographic distance and isolation (Sklenář, & Jørgensen, 1999; Flantua et al. 2019). 467 

Distribution responses of plant species 468 

Of all species, 70% were predicted to show a significant distribution loss by 2100, which 469 

complements previous findings in which 50-60% of tropical Andean species reduced their 470 

distribution in the second half of the 21st century (Ramírez-Villegas et al. 2014). Even more 471 

concerning is that 15% of all páramo species showed a significant extinction risk by 2100, 472 

and 25% of all super-páramo species, supporting our hypothesis that super-páramo species 473 

are generally more at risk than mid-páramo ones. Among the vulnerable super-páramo 474 

species are several diagnostic species of super-páramo phytogeographical units, for example 475 

Ourisia muscosa of the Upper humid super-páramo and Draba depressa of the Upper dry 476 

super-páramo (Peyre et al. 2018). Furthermore, our results posed as threatened many super-477 

páramo species that are páramo endemics such as Cerastium candicans, Draba depressa and 478 

Xenophyllum crassum or even national páramo endemics, for example Bartsia pumila, 479 
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Loricaria antisanensis and Viola polycephala. Our study alerts of maximum extinction risk 480 

for 9% of all studied species, some of which were already classified following the IUCN 481 

system as threatened, for example Bartsia pumila (VU) and Gentianella hirculus (EN), but 482 

also some considered as not threatened, such as Gentianella limoselloides (LC) and Halenia 483 

taruga-gasso (NT) (León-Yánez, 2012). Because SDMs can be a useful complement to 484 

further conduct UICN evaluations (Breiner, Guisan, Nobis, & Bergamini, 2017; but see 485 

Akcakaya, Butchart, Mace, Stuart, & Hilton-Taylor, 2006), we therefore urge, based on the 486 

SDM results to focus further study on these predicted-extinct species, especially regarding 487 

population health and individual fitness, and encourage ex-situ conservation efforts such as 488 

seed banks to preserve this unique biodiversity.  489 

Changes in richness and plant assemblages  490 

Local richness at the pixel level has been found to significantly decrease in most sky islands, 491 

even accounting for potential colonization from lower elevations. The northern sky islands 492 

of Ilinizas and Pichincha were the most affected, which contradicts previous findings stating 493 

richness stability in this region (Ramírez-Villegas et al. 2014), and exceptions to the rule 494 

included few central mountains such as Tungurahua and Altar where richnesst would remain 495 

stable or even increase slightly. As a result, these last sky islands might be experiencing the 496 

worldwide-observed accelerated colonization process on mountains (Steinbauer et al. 497 

2018), but buffered by specific environmental conditions and a particularly vulnerable 498 

species pool. Overall, we found no support for the negative relationship hypothesis between 499 

actual richness and future richness changes, as the more diverse (at the local scale, or plot 500 

scale) eastern mountains suffered less drastic changes than the less diverse northern 501 

mountains (Peyre et al. 2019), Because this finding plausibly supposes that the communities’ 502 

richness capacity is not reached on these sky islands, we recommend further scientific focus 503 

on that particular macroecological hypothesis. 504 

Composition changes were also predicted as very abrupt in the region, estimating 505 

important species losses and little gains at the sky island level (gamma diversity). Northern 506 

mountains were predicted to lose substantial amounts of species as much as 85% in 507 

Pichincha and gain very few species overall. By contrast, central mountains saw moderate 508 

losses and in the case of Tungurahua, a potential even loss and gain, depending on the 509 

climate change scenario considered. Several complementary hypotheses to climate change 510 

might be advanced to explain such a pattern, for example the geographic isolation and 511 

elevation of the massif, which could either facilitate or constrain dispersal and migration 512 
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(Sklenář, & Jørgensen, 1999). Finally, the ratio of super-páramo vs. mid-páramo species 513 

decreased by 2100, especially in northern mountains, sky islands generally losing 5% of 514 

their super-páramo species to mid-páramo ones. Our results therefore support previous 515 

findings that mid-páramo species are moving upslope and competing with super-páramo 516 

species, although the role of adaptation, microenvironmental refugia and biotic interactions 517 

remain to be considered for more refined plant responses.  518 

Our results evidenced that sky islands from northern Ecuador, including Pichincha 519 

and Ilinizas, were evaluated as the most vulnerable to future climate change. These páramos 520 

are located along the inter-Andean valley where an important population resides, i.e. Quito 521 

and Latacunga, making the anthropogenic change expected for the end of the century in the 522 

form of fast and intense land-use changes an even bigger threat than climate change 523 

(Hofstede et al. 2003). Because the agricultural frontier could move upslope too when soil 524 

develops sufficiently at high altitude, entire super-páramo ecosystems could suffer drastic 525 

changes in their structure and functions. Therefore, the predictions provided here, based on 526 

climate-change solely, should be considered as conservative scenarios and even more 527 

forceful impacts should be expected under a global change scenario. In addition, exotic and 528 

efficiently dispersed opportunistic species could take advantage of the anthropogenic change 529 

to migrate and invade the sky islands, competing directly with local species and forming no-530 

analog communities with little ecological value (Le Roux, & McGeoch, 2008; Anthelme, & 531 

Peyre, 2019). Precise monitoring should therefore be tracking the anthropogenic changes 532 

associated to climate change on these sky islands in priority so to prevent a critical threat to 533 

the sky islands of the northern Andes currently holding the reservoir or museum of super-534 

páramo species.  535 

Study limitations and future recommendations 536 

Regarding dispersal estimates, we consider that even though trait-based dispersal distance 537 

methods such as Tamme et al. (2014) are very useful and give reasonable predictions, the 538 

fact that they have been shown to underestimate distances for wind-dispersed species, an 539 

important proportion of our species pool (Herrmann et al. 2016, Morgan, & Venn, 2017), 540 

would support the use of more detailed techniques in the future, for example mechanistic 541 

models that acknowledge wind velocities and dispersal pathways (Skarpaas et al. 2004; 542 

Holloway et al. 2016). Moreover, we did not account for certain crucial variation such as i) 543 

potential changes in biogeographical barriers with climate change such as glacier retreat or 544 
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forest expansion, which might affect the dispersal reach of species (Caplat et al. 2016), nor 545 

did we consider ii) that specific dispersal distances might change over time (Travis et al. 546 

2013) or iii) the importance of long dispersal events promoted by climate change 547 

consequences such as the frecuency and intensity of storms (Hellmann, Byers, Bierwagen, 548 

& Dukes, 2008). Another limitation regards data availability and coverage, a commonly 549 

encountered issue in tropical research. In fact, the species list was recovered from 550 

VegParamo, which is a pioneer database with important representativity of the páramo taxa, 551 

although it still accounts for certain geographic and taxonomic knowledge gaps (Peyre et al. 552 

2015; Bottin et al. 2019). Finally, climatic interpolations in tropical mountain areas that are 553 

topographically and environmentally complex are particularly challenging to obtain, 554 

especially for a broad study area and future climatic scenarios, and more fitted climatic data 555 

with a finer resolution could have improved the models performance and predictions.  556 

Future recommendations include complementing the trait data with observed data and 557 

calculate distance on site to provide better estimates of dispersal capacity of plants in the 558 

region. To improve the models’ accuracy and ecological meaning, it would be useful to 559 

account for different dynamic factors unavailable at the time (Anthelme et al. 2014; Graae 560 

et al. 2018), for example: i) additional abiotic variables at the macroscale, such as horizontal 561 

precipitation that represents an important water intake for plants, but also meso and 562 

microscale, for example local night freezing, that could balance macroeffects (Scherrer, & 563 

Körner, 2011; Mod et al. 2015), ii) fine biotic interactions to incorporate into the assembly 564 

rules, competition but also facilitation to dispersal or establishment (Llambí et al. 2018), and 565 

iii) land-use changes, whose intensity and expansion might increase under future climate 566 

change (Hofstede et al. 2003; Anderson et al. 2011).   567 
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Tables 880 

Table 1: Evaluation metrics and their standard deviation (in parenthesis) showing the overall 881 

performance of the GLM and RF models for 435 plant species as well as their comparison 882 

between algorithm according to a paired t-student test.  883 

 TSS Sensitivity Specificity Percentage of models kept  

(over 50 runs) 

GLM 0.574 

(0.17) 

79.483 (11.85) 81.520 (13.03) 23.171 (15.79) 

RF 0.652 

(0.16) 

82.171 (10.40) 80.477 (10.40) 28.891 (15.73) 

Significant 

differences 

between 

algorithms  

SI 

(t = -14.487, 

df = 432, p-

value < 

2.2e-16) 

SI 

(t = -4.1044, df = 

432, p-value = 

4.846e-05) 

NO 

(t = 1.6303, df = 432, 

p-value = 0.1038) 

SI 

(t = -11.812, df = 432, p-value < 2.2e-16) 

  884 
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Table 2: Composition changes (in %) in terms of proportions of mid-páramo and super-885 

páramo species at the sky island level between 2000 and 2100. The final super-páramo 886 

balance shows net gain (in green) or loss (in red) of super-páramo species, expressed as a 887 

percentage.  888 

 2000 2100 Final super-

páramo balance Mid-páramo 

species 

Super-paramo 

species 

Mid-páramo 

species 

Super-páramo 

species 

Standard 

deviation 

Altar 66.91 33.09 74.54 25.46 4.15 -7.63 

Antisana 67.30 32.70 75.30 27.70  6.67 -8.01 

Cajas 81.82 18.18 84.21 15.79 6.10 -2.39 

Cayambe 69.33 30.67 68.56 31.44 4.16 +0.78 

Chimborazo 64.47 35.53 71.15 28.85 2.40 -6.68 

Cotopaxi 67.11 32.89 71.16 28.84 1.72 -4.04 

Ilinizas 59.78 40.22 69.55 30.45 7.35 -9.76 

Pichincha 69.90 30.10 73.77 26.23 13.44 -3.87 

Sangay 75.51 24.49 75.99 24.01 5.33 -0.48 

Tungurahua 65.75 34.25 71.92 28.08 6.99 -6.17 

 889 

  890 
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Figure captions  891 

Figure 1: Current potential distribution of the páramo in Ecuador (A): in dark gray, mid-892 

páramo (3000-4200 m) and in red, super-páramo (> 4200 m); and characteristic super-893 

páramo vegetation (B), from bottom to top, increasing with elevation. 894 

Figure 2: Examples of distribution responses of páramo species to climate change by 2100, 895 

according to the CIMC5-RCP45-CESM1-BGC scenario: A) a mid-páramo species 896 

colonizing higher elevations (Vicia andicola) and B) a super-páramo species reducing its 897 

distribution (Astragalus geminiflorus).  898 

Figure 3: Net richness changes at the pixel level (1 km2) between 2000 and 2100 in the 10 899 

páramo sky islands above 4200 m (named in bold). Between parenthesis, balance of gained 900 

and lost species between the present and 2100 (in percentage of the original richness at the 901 

sky island level).  902 
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Figures 903 

Figure 1 904 
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Figure 2 906 
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Figure 3 908 
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Supplementary materials  910 

Table S1: vegetation and occurrence data used in this study (Peyre, 2020) 911 

Table S2: List of species included in the analysis, including their representation in the final 912 

dataset, mid-páramo versus super-páramo status and calculated maximum dispersal distance 913 

(in m/yr). 914 

Tabla S3: Species composition of the Ecuadorian sky islands for 2000 and 2100 according 915 

to the modelling analyses and under the different climate change scenarios.  916 



36 
 

Figure S1: Distribution of the VegParamo plots (yellow) and additional data points (in blue) 917 

across the study area. 918 

 919 

  920 



37 
 

Figure S2: Density plot of the dispersal capacity, as maximum dispersal distance, of the 921 

páramo species (m/yr), differentiating the mid-páramo and super-páramo species. 922 

 923 
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 Figure S3: Balance of gained and lost species on the Ecuadorian sky islands between the 925 

present and 2100 (in percentage of the original richness at the sky island level). Dark colours 926 

represent lost species and light colours gained species.  927 

 928 


