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2Laboratoire de Physique et Mécanique des Milieux Hétérogènes, UMR7636 CNRS, UMPC, ESPCI,

10 rue Vauquelin, 75005 Paris, France
3Physical Acoustics Group, Instituto de F́ısica, Universidade Federal de Alagoas, Maceió, AL 57072-
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We theoretically investigate how the acoustic radiation force and torque arise on a small
spheroidal particle immersed in a nonviscous fluid inside an ideal cylindrical chamber. The
ideal chamber comprises a hard top and bottom (rigid boundary condition), and a soft or
hard lateral wall. By assuming the particle is much smaller than the acoustic wavelength, we
present analytical expressions of the radiation force and torque caused by an acoustic wave
of arbitrary shape. Unlike previous results, these expressions are given relative to a fixed
laboratory frame. Our model is showcased for analyzing the behavior of an elongated metallic
microspheroid (with a 10 : 1 aspect ratio) in a half-wavelength acoustofluidic chamber with
a few millimeters diameter. The results show the radiation torque aligns the microspheroid
along the nodal plane, and the radiation force causes a translational motion with a speed
of up to one body length per second. At last, we discuss the implications of this study to
propelled nanorods by ultrasound.
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I. INTRODUCTION

Techniques for particle manipulation in acoustoflu-
idic chambers (acoustic resonators at millimeter-scale
and smaller) have been extensively used in cell separa-
tion and sorting,1 microparticle patterning,2 and vesicle
deformation.3,4 At the core of these methods is the radi-
ation force of acoustic waves. This phenomenon is a sta-
tionary force caused by the linear-momentum flux change
during the scattering of an incoming acoustic wave by
a particle.5,6 Another related effect is the acoustic ra-
diation torque caused by the angular-momentum flux
change due to the presence of an anisotropic or absorp-
tive particle.7–12

Computing the radiation force and torque in
acoustofluidic settings is essential to developing applica-
tions for cell analysis and analytical chemistry.13 On that
matter, the forces and torques caused by a standing-wave
field have been investigated considering spherical parti-
cles only.14–21 There is an increasing interest in studying
the behavior of elongated particles in acoustofluidic res-
onators such as fibers,22,23 microrods,24,25 nanorods,26,27

C. elegans,28 and E. coli.29

Geometrically speaking, an elongated particle can be
modeled as a prolate spheroid with a high aspect ra-
tio. The analytical solution of the radiation force and
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torque exerted on a prolate spheroid by a standing plane
wave has been recently derived.30–33 In that sense, the
effects of particle compressibility and density have been
accounted for by using a method based on the Born
approximation.34,35 Also, the acoustic spin-torque trans-
fer to a spheroid has also been studied.36 Another re-
sort to compute acoustic forces and torques on complex-
shaped particles rely on numerical methods.37–39 It is
worth mentioning that the well-known T -matrix ap-
proach has also been applied to compute these fields.40,41

In this article, we present a theoretical model to cal-
culate the radiation force and torque on spheroidal parti-
cles in an ideal acoustic chamber filled with a nonviscous
fluid. Our approach is based on the exact expressions
of these fields to the dipole approximation as obtained
in Ref. 42. We transform the radiation force and torque
expressions to a fixed laborat ory frame in which the
particle dynamics can be analyzed. Thus, we focus our
investigation on a chamber that produces a single levita-
tion plane (half-wavelength trapping device) with radi-
ally symmetric modes. This appears to be more suitable
for studying living matter29 and developing techniques of
cell culture.43

We apply the developed model to study artificial mi-
croswimmers (micro/nanorods) propelled by ultrasound
within a cylindrical chamber. The synthetic microswim-
mers have attracted attention due to their potential use
for drug delivery44 and activation inside living cells.45

However, the propulsion mechanism of microswimmers

J. Acoust. Soc. Am. / 21 September 2020 Radiation force and torque in a cylindrical chamber 1

ar
X

iv
:2

00
9.

08
80

8v
1 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  1

8 
Se

p 
20

20

https://doi.org(DOI number)
mailto:gtomaz@fis.ufal.br


propelled by ultrasound is still a matter of debate. Nadal
and Lauga46 proposed an acoustic streaming model based
on the asymmetry of a near-spherical particle that is vi-
brating at the wave frequency. Collins et al.47 included
density asymmetry to this model. However, a recent
article questioned the validity of the acoustic stream-
ing model for a vibrating near-sphere at low Reynolds
number.48 In our model, we consider an artificial mi-
croswimmer as a slender microspheroid. We predict the
microswimmer is trapped in a levitation plane, not nec-
essarily a nodal plane, due to the axial radiation force.
When the levitation and nodal planes coincide, the ra-
diation torque aligns the microspheroid perpendicularly
to the chamber’s principal axis. The radial radiation
force causes an in-plane particle movement with a speed
of about one body length per second (BL s−1). This
suggests the radiation force minimally contributes to
the observed fast speeds of microswimmers, e.g., up to
70 BL s−1.26 Although our model does not explain mi-
croswimmers’ propulsion mechanism, it presents some
useful insights into the dynamics of these objects in a
cylindrical chamber.

II. PHYSICAL MODEL

A. Acoustic equations

The interaction between an acoustic wave and a par-
ticle takes place inside a cylindrical chamber filled with a
liquid of density ρ0, adiabatic speed of sound c0, and com-
pressibility β0 = 1/ρ0c

2
0. The chamber has radius R and

height H. The acoustic excitation has angular frequency
ω, with corresponding wavenumber k = ω/c0 = 2π/λ,
where λ is the acoustic wavelength. We use the complex-
phase representation to express the acoustic pressure and
fluid velocity, p(r, t) = p(r)e−iωt and v(r, t) = v(r)e−iωt,
respectively. Here i is the imaginary unit, r is position
vector, and t is time.

The wave dynamics in a nonviscous fluid is described
by the well-known acoustic equations(

∇2 + k2
)
p = 0, (1a)

v =
∇p

iρ0c0k
. (1b)

The term e−iωt is omitted for readability. The acoustic
equations are complemented by boundary condition at
the top, bottom, and walls of the cavity.

B. Prolate spheroidal particle

We assume the interacting particle with the acoustic
wave is a prolate spheroid, which is generated by rotating
an ellipse around its major axis. Let us define the particle
frame of reference as a right-handed systemOp(xp, yp, zp)
placed in the geometric center of the spheroid. The cor-
responding unit vectors of the system are exp , eyp , and
ezp . The spheroid foci are at (0, 0,±d/2), with r1 and
r2 being the distance from the foci to a field point–see
Fig. 1. The prolate spheroidal coordinates (ξp, ηp, ϕp)

FIG. 1. (a) The cylindrical acoustic chamber with a (yel-

low) spheroid located at r0 regarding the laboratory frame

O in the center of the chamber’s bottom. (b) The prolate

spheroid with major and minor semiaxis denoted by a and

b, respectively. The interfocal distance is d. The quantities

r1 and r2 are the distance from the foci to a field point. (c)

The rotational transformations through the Euler angles α

and β, which take the laboratory (x, y, z) to particle frame

(xp, yp, zp).

are defined by

ξp =
r1 + r2
d

, ξp ≥ 1, (2a)

ηp =
r1 − r2
d

, −1 ≤ ηp ≤ 1, (2b)

ϕp = tan−1
(
yp
xp

)
, 0 ≤ ϕp < 2π, (2c)

with the isosurface

ξp = ξ0 =
1√

1− ( ba )2
(3)

corresponding to the particle surface. Also, the parti-
cle major and minor axis are denoted by 2a and 2b,
respectively. While the interfocal distance and particle
volume are given, respectively, by d = 2

√
a2 − b2 and

Vp = 4πab2/3. The spheroid orientation in the particle
frame coincides to the zp axis, dp = dezp .

Note that a sphere of radius a is recovered by setting
d → 0, ξ0 → ∞, and ξ0d/2 → a. Whereas, a slender
spheroid corresponds to the limit ξ0 → 1 with a constant
d. In contrast, a slender spheroid results from ξ0 ∼ 1.

C. Particle versus laboratory frame of reference

It is convenient to describe the wave-particle inter-
action in an inertial frame O(x, y, z) referred to as the
laboratory system. In Fig. 1(a), we see the origin of the
laboratory frame is positioned at the center of the cham-
ber’s bottom. And the particle position is denoted by
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vector r0. Since the spheroidal particle is invariant un-
der rotations around its major axis, we need only two
Euler angles (α, β) to transform one frame to the other–
see Fig. 1(c). The transformation from the laboratory
to particle frame is constructed as follows. A positive
rotation of an azimuthal angle α around the zp axis is
followed by a rotation of a polar angle β about the new
yp axis. By a positive rotation we mean a counterclock-
wise rotation as seen from the top of the rotation axis.
The particle orientation in the laboratory frame is then
given by

d = R(α, β)dp

= d (cosα sinβ ex + sinα sinβ ey + cosβ ez) ,
(4a)

R(α, β) =

 cosα cosβ − sinα cosα sinβ

sinα cosβ cosα sinα sinβ

− sinβ 0 cosβ

 , (4b)

with 0 ≤ α < 2π and 0 ≤ β ≤ π. It is worth noticing the
gradient operator is transformed as,

∇ = R(α, β)∇p|rp=r, ∇p = R−1(α, β)∇|r=rp
, (5)

where R−1 represents the transformation from the labo-
ratory to the particle frame.

D. Acoustic modes in a cylindrical cavity

The acoustic modes allowed inside the cavity are the
solutions of Eq. (1a) in cylindrical coordinates r(%, ϕ, z).
Accordingly, the pressure inside the chamber is14

p(r) = p0Jn(k%%) cos(nϕ+ ϕ0) cos kzz, (6)

where p0 is the pressure magnitude, Jn is the nth-order
Bessel function, k% and kz are the radial and axial wave
numbers, and ϕ0 is an arbitrary constant.

The radial, angular, and axial modes are determined
from boundary conditions. We consider hard boundaries
at the bottom (z = 0) and top (z = H) of the cham-
ber. While for the lateral wall (% = R), a hard or soft
boundary is assumed. Accordingly, the fluid velocity and
pressure satisfy

vz(%, ϕ, 0) = 0, vz(%, ϕ,H) = 0, (7a)

v%(R,ϕ, z) = 0 (hard), p(R,ϕ, z) = 0, (soft). (7b)

Since we do not have a tangential boundary condition,
the phase ϕ0 can be arbitrarily set to zero. The condi-
tions in (7) imply

sin (kzH) = 0, (8a)

J ′n(k%R) = 0 (hard), Jn(k%R) = 0 (soft). (8b)

Here the primed symbol denotes ordinary differentiation.
The solutions of these equations yield the axial and radial
dispersion relations,

kz = kl =
lπ

H
, (9a)

k% = knm =
jnm
R

(soft),
j′nm
R

(hard), (9b)

TABLE I. The first five zeros of the zeroth- and first-order

Bessel functions.49

m 1 2 3 4 5

j0,m 2.4048 5.5201 8.6537 11.7915 14.9309

j1,m 3.8317 7.0156 10.1735 13.3237 16.4706

with n = 0, 1, 2, . . . ; l,m = 1, 2, 3, . . . . The mth positive
zero of the nth Bessel function and its derivative are jnm
and j′nm, respectively. The total wave number is given
by

k =
√
k2l + k2nm. (10)

We see the angular frequency ω = kc0 is quantized.
In what follows, we analyze radially-symmetric

acoustic modes that forms a half-wavelength acoustoflu-
idic chamber, (nml) = (0m1). Hence, the wave numbers
turn to

k1 =
π

H
, k0m =

j0,m
R

(soft), k0m =
j1,m
R

(hard). (11)

We have used the relation between the zeros of the Bessel
functions j′0,m = j1,m. In Table I, we list the first five
zeros of the zeroth- and first-order Bessel functions for
reference.

We now express the pressure of the radially-
symmetric modes,

p0m1 = p0J0(k0m%) cos(k1z). (12)

Substituting this equation into Eq. (1b) yields the radial
and axial components of the fluid velocity

v% =
iv0k0m
k

J1(k0m%) cos(k1z), (13a)

vz =
iv0k1
k

J0(k0m%) sin(k1z), (13b)

where v0 = p0/ρ0c0 is the peak velocity. Note we have
used J ′0(x) = −J1(x).

E. Scale analysis

We assume that the particle is a subwavelength
spheroid much smaller than the wavelength, which cor-
responds to the so-called Rayleigh scattering limit. The
particle smallness is quantified through the size factor

ka =
2πa

λ
� 1. (14)

Clearly, the minor semiaxis b also satisfies this condition.
We also restrict our analysis to particles much smaller to
the chamber, a, b� H,R.

Another effect that may appear in an acoustoflu-
idic chamber is the acoustic streaming, which appear
near boundaries. Acoustic streaming close to the cham-
ber walls produces causes a drag force on the particle,
while near the particle surface, it can alter the radiation
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force50–52 and produce a viscous torque.53 As a diffusive
process, streaming has a characteristic length known as
the viscous boundary layer, δ = (2µ0/ρ0ω)1/2, with µ0

being the dynamic viscosity of the fluid. To avoid stream-
ing effects, we should consider particles much larger than
this parameter, δ � a, b. For example, an acoustic wave
of a frequency greater than 1 MHz (a typical lower limit
for acoustofluidic devices) in water generates a viscous
boundary layer δ < 0.84 µm.

III. WAVE-PARTICLE NONLINEAR INTERACTION

A. Acoustic radiation force

The radiation force imparted on a subwavelength
spheroidal particle by a stationary wave is expressed by42

F rad
p (0) = −∇pUp(0), (15a)

Up = πa3[
β0f00

3
|p|2 − ρ0

2

(
f11
2

(|vxp
|2 + |vyp |2) + f10|vzp |2

)]
,

(15b)

where E0 = β0p
2
0/2 is the characteristic energy density,

and vp = (vxp , vyp , vzp) is the fluid velocity in the par-
ticle frame. Considering a rigid particle, the scattering
amplitudes of the monopole f00, axial f10 and transverse
f11 dipole modes are given by42

f00 = 1− ξ−20 , (16a)

f10 =
2

3ξ30

[
ξ0

ξ20 − 1
− ln

(
ξ0 + 1√
ξ20 − 1

)]−1
, (16b)

f11 =
8

3ξ30

[
2− ξ20

ξ0(ξ20 − 1)
+ ln

(
ξ0 + 1√
ξ20 − 1

)]−1
. (16c)

These factors depend on the particle aspect ratio a/b
through the parameter ξ0 introduced in Eq. (3). After

inspecting (16), we find the following inequalities

0 < f00 < f11 < 2, 0 < 2f10 < f11 < 2. (17)

As the particle geometry becomes spherical, the dipole
factors turn into f11 → 2f10. Whereas, slender particles
scatter much less acoustic waves,

f00, f10, f11 → 0 as ξ0 → 1. (18)

It is more convenient to analyze the radiation force
on the particle in the laboratory frame. To this end, we
have to express the acoustic fields of Eq. (15b) in the
laboratory frame. By inserting the velocity components
of (A2) into (15b), we obtain the radiation force potential
in this frame as

U =πa3
[
β0f00

3
|p|2 − ρ0

2

(
f10|(vx cosα+ vy sinα) sinβ

+ vz cosβ|2 +
1

2
f11
[
|vx sinα− vy cosα|2

+ |vx cosα cosβ + vy sinα cosβ − vz sinβ|2
])]

.

(19)

To find the potential in cylindrical coordinates, we use
vx = v% cosϕ, vy = v% sinϕ. Thus, we have

U =πa3
[
β0f00

3
|p|2 − ρ0

2

(
f10|v% sinβ cos(α− ϕ)

+ vz cosβ|2 +
f11
2

[
|v% cosβ cos(α− ϕ)

− vz sinβ|2 + |v%|2 sin2(α− ϕ)
])]

. (20)

Now, substituting the pressure and fluid velocity compo-
nents given in Eqs. (12) and (13) into Eq. (20), we obtain
the potential of the radially-symmetric acoustic modes,

U0m1 = U0

{
2f00

3
cos2(k1z)J

2
0 (k0m%)− f10

[
k1
k

sin(k1z)J0(k0m%) cosβ +
k0m
k

cos(k1z)J1(k0m%) cos(α− ϕ) sinβ

]2
− f11

2

[(
k1
k

sin(k1z)J0(k0m%) sinβ − k0m
k

cos(k1z)J1(k0m%) cosβ cos(α− ϕ)

)2

+

(
k0m
k

)2

cos2(k1z)J
2
1 (k0m%)

sin2(α− ϕ)

]}
, (21)

where U0 = πa3E0 is the peak potential. For simplic-
ity, we drop the sub-index 0 of the particle position in
cylindrical coordinates, r0 = (%, ϕ, z).

By fixing the height and diameter of the chamber,
the normalized potential Ũ0m1 = U0m1/U0 depends only

on the particle aspect ratio a/b through the scattering
factors f00, f10, and f11. The potential also depends on
the orientation angles α and β, and to the azimuthal an-
gle ϕ, albeit the (0m1) acoustic mode in Eq. (12) has
circular symmetry. As the particle becomes spherical

4 J. Acoust. Soc. Am. / 21 September 2020 Radiation force and torque in a cylindrical chamber



(f11 → 2f10), Eq. (21) reduces to the radiation poten-
tial of a spherical particle as given in Ref. 14, Eq. 1, with
m = 0 in the reference’s notation.

Having discussed how the potential function is ob-
tained, we are able to derive the radiation force in the lab-
oratory frame. From Eqs. (4b) and (5), we find this force
as minus the gradient of the potential given in Eq. (21),

F rad = R−1(α, β)F rad
p = −R−1(α, β)∇pUp(0)

= −∇U(r0). (22)

Thus far, we derived the exact solution of the radia-
tion force problem for the particle placed anywhere inside
the chamber. We can distill this solution for two particu-
lar cases, namely, along the chamber’s axis of symmetry
and at the nodal plane. For the first case, the potential
and radiation force are derived using Eqs. (12) and (13)
into Eq. (21) and setting % = 0. The obtained result is
used in Eq. (22). Accordingly, we arrive at

U0m1 =
U0

6

[
4f00 cos2(k1z)− 3

(
k1
k

)2

sin2(k1z)

(2f10 cos2 β + f11 sin2 β)

]
, (23a)

F rad
z = F0,zΦa sin(2k1z), (23b)

Φa =
2f00

3
+

(
k1
k

)2(
f10 cos2 β +

f11
2

sin2 β

)
,

(23c)

with F0,z = k1U0 being the axial force magnitude. The
function Φa is the axial acoustophoretic factor which de-
pends on the scattering modes and orientation angle β.
Referring to the inequalities in (17), we conclude that
Φa > 0. When effects of gravity can be neglected, the
rigid spheroidal particle is trapped in the pressure node,
zeq = H/2. Note the maximum axial force corresponds
to Fz,max = F0,zΦa at z = H/4, 3H/4.

To obtain the radiation force potential in the nodal
plane zeq = H/2, we see from (13) the pressure and the
radial component of the fluid velocity vanish, p0m1 = 0
and v% = 0. From Eq. (20), we find

U0m1 = −πa3Φr(β)
ρ0|vz|2

2
, (24a)

Φr(β) = f10 cos2 β +
f11
2

sin2 β. (24b)

The radiation force potential is a function of the ax-
ial component of the kinetic energy density. Besides,
the acoustophoretic factor Φr does not depend on the
monopole scattering mode f00. This happens because
the pressure vanishes at the nodal plane and so does the
monopole term in Eq. (21). After substituting Eq. (13b)
into Eq. (24a) and replacing the result into Eq. (22), we

obtain the potential and radial radiation force as

U0m1 = −
(
k1
k

)2

U0Φr(β)J2
0 (k0,m%), (25a)

F rad
% = −F0,%Φr(β)J0(k0m%)J1(k0m%), (25b)

F0,% = 2

(
k1
k

)2

k0mU0, (25c)

with F0,% being the force magnitude. The radial acous-
tic traps correspond to the the minima of the potential
function, while the largest force occurs at k0m% = 1.081,
with corresponding magnitude of F rad

%,max = 0.338F0,%Φr.
For a rigid particle, the radial acoustophoretic factor is
positive and the potential minima are obtained by solv-

ing the equation J2
0
′
(k0m%) = 0. This corresponds to

find the zeros of the first-order Bessel function. Hence,
the position of the ith radial trapping point is at

%i,m =
j1,i−1
j0,m

R (soft),
j1,i−1
j1,m

R (hard), m = 1, 2, . . .

(26)
Here we consider j1,0 = 0. The primary trap corresponds
to %1,m = 0 regardless the lateral boundary condition,
e.g., soft or hard wall. To determine the second trap
position, we refer to Table I, %2,1 = 0.63R (soft wall) and
%2,1 = R (hard wall). We see soft walled chambers are
able to produce only a middle trap. Whereas, the second
trap of a hard walled chamber is located at the lateral
wall.

B. Acoustic radiation torque

The acoustic radiation torque exerted on the
spheroidal particle by the acoustic mode described in
Eq. (12), is given in the particle frame by42

τ rad
p = −πa3χ

(
ezp ×Pp · ezp

)
rp=0

, (27a)

Pp =
ρ0
2

Re[vpv
∗
p] =

ρ0
2

Re
[
viv
∗
jeiej

]
, i, j = xp, yp, zp,

(27b)

where χ = f11 − 2f10 > 0 is the gyroacoustic factor and
Pp is the time-average of the linear momentum flux (a
second-rank tensor) relative to the particle frame. We
express the projection of the linear momentum flux onto
the axial direction as Pp · ezp = (ρ0/2) Re[v∗zpvp]. Car-
rying on the calculations, we arrive at

τ rad
p =

πa3

2
χρ0 Re

[
vypv

∗
zpexp

− vxp
v∗zpeyp

]
. (28)

To find the radiation torque in the laboratory frame, we
apply the rotation matrix R into Eq. (28),

τ rad = R(α, β)τ rad
p

=
πa3

2
χρ0 Re

[
(vypv

∗
zp cosα cosβ + vxp

v∗zp sinα)ex

+ (vypv
∗
zp sinα cosβ − vxp

v∗zp cosα)ey

− vypv∗zp sinβ ez
]
. (29)
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Substituting the fluid velocity components given in
Eq. (13) into Eq. (A3) and replacing the result into
Eq. (29), we obtain

τx = −πa
3χE0

2

[(
k1
k

)2

sin 2β sinα sin2(k1z) J
2
0 (k0m%) +

k1k0m
k2

sin(2k1z) J0(k0m%)J1(k0m%)

[sin2 β sinα cos(α− ϕ) + cos2 β sinϕ]−
(
k0m
k

)2

sin 2β cos2(k1z) sinϕ J2
1 (k0m%) cos(α− ϕ)

]
, (30a)

τy =
πa3χE0

2

[(
k1
k

)2

sin 2β cosα sin2(k1z) J
2
0 (k0m%) +

k1k0m
k2

sin(2k1z) J0(k0m%)J1(k0m%)

[sin2 β cosα cos(α− ϕ)− cos2 β cosϕ]−
(
k0m
k

)2

sin(2β) cos2(k1z) J
2
1 (k0m%) cos(α− ϕ) cosϕ

]
, (30b)

τz =
πa3χE0

2

[
k1k0m

2k2
sin 2β sin(α− ϕ) sin(2k1z)J0(k0m%)J1(k0m%) +

(
k0m
k

)2

sin2 β cos2(k1z) sin[2(α− ϕ)]

J2
1 (k0m%)

]
. (30c)

When the particle is trapped at zeq = H/2, we see
from (13) that the radial component of the fluid velocity
vanishes v% = 0. Hence, referring to Eqs. (A3) and (29),
the radiation torque reduces to

τ rad = πa3χ sin 2β
ρ0|vz|2

4
eα. (31)

The unit vector eα = cosα ey−sinα ex lies along the mi-
nor semiaxis pointing to the counterclockwise direction
in the xy plane. The radiation torque is proportional to
the axial component of the kinetic energy density aver-
aged in time ρ0|vz|2/4. It also depends on the orientation
factor sin 2β. The particle is set to rotate around the mi-
nor axis, since eα ·ez = 0. Now we replace vz in Eq. (31)
by Eq. (13b) to encounter

τ rad(β) = τ0χJ
2
0 (k0m%) sin 2β eα, (32)

where τ0 = πa3E0k
2
1/2k

2 is the characteristic torque.
The maximum torque τ radmax = τ0χ, which occurs at
β = π/4 and % = 0. The equilibrium angular position
corresponds to β = π/2.

C. Effects of gravity

An actual particle of density ρp is subjected to effects
of gravity, which changes its axial equilibrium position.
The new position can be determined from the force equi-
librium equation F rad(0, zeq)− (ρp − ρ0)Vpg = 0, with g
being the gravity acceleration. Thus from Eq. (23b), the
axial equilibrium position is

zeq =
H

2
− H

2π
arcsin

[
4(ρp − ρ0)gH

3πΦaE0

(
b

a

)2
]
. (33)

To bring the particle close to the nodal plane, we need
to increase the acoustic energy density. From Eq. (33),
we see the energy density needed to keep the particle in
equilibrium is

E0 =
4(ρp − ρ0)gH

3πΦa sin(2πzeq/H)

(
b

a

)2

. (34)

We see that slender particles with a � b require less
energy to be axially trapped.

D. Translational and angular velocity of the particle

Here we obtain the stationary translational and an-
gular velocity achieved by the particle at the nodal plane
zeq = H/2. This analysis is restricted to particles at
microscale in an aqueous solution.

To determine the translational velocity, we assume
the particle is at (%, ϕ,H/2) and aligned to the radial
direction, β = π/2 and α = ϕ. Hence the velocity is
denoted by %̇, with dot notation meaning time deriva-
tive. As the particle moves, a drag force counteracts the
radiation force,54

F drag = −8πaµ0gf%̇ e%, (35a)

gf =
1

ξ0[(ξ20 + 1) arccoth ξ0 − ξ0]
. (35b)

The geometric factor gf becomes 3/4 for a spherical par-
ticle (ξ0 → ∞), which leads to the well-known Stoke’s

law, F drag
sphere = −6πµ0a%̇.

Using Eq. (25b), we find the equation of motion of a
particle moving along its major axis as

%̈+
8πaµ0gf
M

%̇ = −F0,%Φr

M
J0(k0m%)J1(k0m%). (36)
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TABLE II. The physical and geometric parameters of the

microswimmer in a submillimeter cylindrical chamber at room

temperature and pressure.

Parameter Value

Microspheroid (Au)

Major semiaxis (a) 10 µm

Minor semiaxis (b) 1 µm

Aspect ratio (a/b) 10:1

Radial parameter (ξ0) 1.0050

Volume (Vp) 41.9 µm3

Density (ρp) 19 300 kg m−3

Moment of inertia (I) 16.3 ng µm2

Monopole mode (f00) 0.01

Axial dipole mode (f10) 0.0068

Transverse dipole mode (f11) 0.0261

Water

Density (ρ0) 1000 kg m−3

Speed of sound (c0) 1492 m s−1

Cylindrical chamber26

Height (H) 180 µm

Radius (R) 2.5 mm

Levitation plane (zeq) 76.5 µm

Energy density (E0) 15.3 J m−3

TABLE III. The theoretical predictions of the microspheroid

at the nodal plane considering the parameters of Table II.

Acoustic modes

Feature Soft Hard

(011) (021) (011) (021)

Frequency [MHz] 4.150 4.177 4.160 4.197

Radial force, F rad
%,max [pN] 0.407 0.921 0.645 1.160

Translational velocity, %̇ [µm s−1] 8.185 18.55 12.98 23.35

Trap time, t% [s] 43.05 8.277 17.04 5.174

Radiation torque, τ radmax [nN µm] 0.299 0.296 0.298 0.293

Angular velocity, β̇ [rad s−1] 23.62 23.02 23.40 22.58

Reorientation time, tβ [ms] 31.44 32.26 31.73 32.89

where M is the particle’s mass. Considering a
micrometer-sized particle in water, we see the viscous
contribution overcomes inertia by far. So the inertial
term in Eq. (36) can be neglected. The equation of mo-
tion then becomes

%̇ = −
(
k1
k

)2
k0ma

2Φr

4gf

E0

µ0
J0(k0m%)J1(k0m%). (37)

We conclude the translational speed increases with the
particle length squared. We find the solution of Eq. (37)

for a particle in the vicinity of % = 0 with the initial
position at %(0) = %0,

%(t) = %0 e−t/t% , (38a)

t% =

(
2k

k1k0ma

)2
gfµ0

ΦrE0
. (38b)

Importantly, the characteristic trapping time t% is of the
order of seconds.

Turning now to the angular velocity induced by the
radiation torque of Eq. (32) on a particle at (%, ϕ,H/2).
As the radiation torque depends only on the orientation
angle β, the angular velocity corresponds to the rate
change of the orientation, β̇. Moreover, a drag torque
arises on the particle,33

τ drag = −8πa3µ0gtβ̇ eα, (39a)

gt =
4

3ξ30

1− 2ξ20

2ξ0 − (1 + ξ20) ln
(
ξ0+1
ξ0−1

) . (39b)

The well-known result of the drag torque for a sphere,
τdrag = −8πa3µ0β̇, is obtained by setting ξ0 →∞.

The rotational particle dynamics is described by the
differential equation

β̈ +
8πa3µ0gt

I
β̇ =

τ0χJ
2
0 (k0m%)

I
sin 2β, (40)

with I = M(a2 + b2)/5 being the particle moment of in-
ertia relative to the minor axis. Again the viscous effects
overcome inertia. So the rotational equation of motion
becomes

β̇ =
τ0χJ

2
0 (k0m%) sin 2β

8πa3µ0gt
, (41)

which can be solved by the method of separation of vari-
ables. Let β0 be the initial particle orientation. Using
the expression

∫
sin−1 2β dβ = ln(tanβ)/2, we find

β(t) = arccot

[
exp

(
− t

tβJ2
0 (k0m%)

)
cotβ0

]
, (42a)

tβ =

(
4k

k1

)2
gtµ0

χE0
. (42b)

The orientation angle asymptotically approaches β =
π/2 (aligned with the nodal plane) as t → ∞. Slender
particles χ→ 0 need more time to reach equilibrium, as
well as particles far from the center. The characteristic
reorientation time tβ is of the order of milliseconds.

The rotational-to-translational characteristic time
ratio is about

tβ
t%
∼ (k0ma)2. (43)

This ratio is about 10−3 for typical acoustofluidic set-
tings.
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FIG. 2. The radiation force fields (red arrows) of the mi-

crospheroid aligned to the x axis. The force is generated by

the (011) acoustic mode with (a) soft and (b) hard lateral

walls. The background contours illustrate the potential func-

tion U011, given by Eq. (21), normalized to U0 = 48.07 fJ.

The force fields are evaluated in the laboratory frame at the

axial position zeq = 0.85H/2. The physical parameters used

here are listed in Table II. The bluish regions correspond to

the middle trap, while the dotted-purple circle in panel (b) is

the annular trap.

IV. CASE STUDY: AU MICRORODS

Now, we use the theory to analyze the radiation force
and torque fields in a acoustofluidic chamber wherein the
particles are trapped as described in Ref. 26. In this ref-
erence, the chamber operates at nearly 4 MHz, and the
particles are metallic (Au) nanorods with length of few
micrometers and hundreds of nanometers wide. These
objects can be geometrically modeled as microspheroids
with a slender shape. As the particle width is of the
order of the viscous boundary layer, we cannot applied
our method directly to these nanorods. Nevertheless, the
theory can be used to explain the behavior of wider par-
ticles with the same aspect ratio (10 : 1) of the nanorods.
In doing so, the physical parameters of our analysis are
summarized in Table II. Finally, our choice of the levi-
tation plane position at zeq = 0.85H/2 is arbitrary, but
compatible with the previous reported levitation height
of Au particles55, 0.41H/2 < zeq < H/2. Hence, accord-
ing to Eq. (34), the corresponding energy density for the
chosen height of the levitation plane is E0 = 15.3 J m−3.

With all model parameters in place, we can compute
some features of the microspheroid behavior at the nodal
plane for the (011) and (021) acoustic modes. The results
are summarized in Table III. The characteristic trap time
is of the order of seconds, and the reorientation time is
about 31 ms. Besides, the microspheroid can be as fast
as one body length per second. Note also the rigid walled
chamber yields the largest radiation forces. In contrast,
the radiation torque does not change with the chamber
boundary conditions at all.

In Fig. 2, we show the radiation force field (red ar-
rows) acting on the microspheroid aligned with the x
axis as a function of the scaled coordinates x/R and
y/R. The background contour plots corresponds to the
force potential U011, which appears radially symmetric at
zeq = 0.85H/2. Panels (a) and (b) display the results for
soft and hard lateral boundary conditions, respectively.
The bluish region corresponds to the middle trap, while
the dotted-purple circle at %/R = 1 in panel (b) illus-
trates the annular trap.

In Fig. 3, we show the radiation torque field (red
arrows) on the microspheroid as a function of the scaled
Cartesian coordinates. Both soft and hard wall chambers
are considered with the (011) acoustic mode. The back-
ground contour plot is the radiation torque amplitude
normalized to the characteristic torque τ0 = 48.07 pN µm.
The microspheroid position is at (%, ϕ, 0.85H/2), with
orientation along the radial direction α = ϕ and β = π/4.
We note the radiation torque has radial symmetry and
points to the tangential direction eϕ–see the inset in
panel (b). Also, a larger radiation torque is achieved in
the middle area with nearly the same amplitude in both
chambers. Though the soft chamber develops a more ho-
mogeneous torque around the central area of the levita-
tion plane. The principal effect of the radiation torque is
to reorient the particle to the angular position β = π/2.
In Table III, we see the reorientation characteristic time
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FIG. 3. The radiation torque fields (red arrows) in the

levitation plane at zeq = 0.85H/2 produced by the (011)

acoustic mode for (a) a soft and (b) hard lateral wall. The

background contours illustrate the radiation torque amplitude

from Eq. (32) and normalized to τ0 = 23.9 nN µm. The inset

of panel (b) shows the microspheroid (in yellow) at the po-

sition (%, ϕ), aligned with the radial direction (α = ϕ), and

with β = π/4. The radiation torque is always perpendicular

to the particle orientation. The physical parameters used here

are listed in Table II.

is about tβ = 30 ms. Moreover, it is independent of the
lateral boundary conditions.

The particle reorientation effect was observed in
millimeter-sized paper fibers caused by a standing plane
wave at 72 kHz in water.22 A similar conclusion was
achieved for polystyrene fibers with one-fourth of the
wavelength in an acoustic resonator filled with water.23

Nonetheless, an intriguing experimental observation in
microgravity shows that a cluster of trapped 3 µm-long
nanorods in water are aligned perpendicularly to the
nodal plane inside a cylindrical chamber.56 On this mat-
ter, we offer the following explanation for this effect.
Firstly, the fluid viscosity may play a significant role in
the radiation torque changing the orientation equilibrium
position. Secondly, with the inter-particle distances be-
ing about the particle dimensions, the secondary radi-
ation force becomes dominant.57,58 So one may expect
the rise of secondary radiation torques. In turn, the sec-
ondary interaction torques are likely to change the par-
ticle orientation equilibrium. Thirdly, both density and
geometric asymmetries seem to have a markedly influ-
ence on the nanorods behavior.28 None of these features
are taken into account by our approach.

V. CONCLUDING REMARKS

In this study, we present analytical results of the
acoustic radiation force and torque developed on a rigid
(prolate) spheroidal particle inside an ideal cylindrical
chamber. The particle is considered far smaller than the
acoustic wavelength and much larger than viscous bound-
ary layers. The ideal chamber comprises a rigid bottom
and top, with hard or soft lateral walls. The radiation
force and torque expressions are given in the laboratory
frame, paving the way to investigating the particle behav-
ior through equations of motion. This approach can also
be used for an incident wave of arbitrary shape, as long
as the beam is expressed (analytically or numerically) in
Cartesian or cylindrical coordinates.

The theory is applied to calculate the radiation forces
and torques acting on a microspheroid. The model pa-
rameters are chosen to mimic the experimental setup of
nanorods propelled by ultrasound.26 As the nonviscous
approximation is assumed, we could not apply theory di-
rectly to the nanorods. Notwithstanding, we keep the
same aspect ratio of the nanorods (10 : 1) but consider
a microspheroid with a diameter of 2 µm which is larger
than the boundary layer depth. We obtain the character-
istic radiation force and torque, and the particle transla-
tional and angular velocities of the first acoustic modes
of the chamber. Furthermore, the particles in the nodal
plane are reoriented to the same direction of this plane
by means of the radiation torque. The reorientation time
is of the order of milliseconds. Whereas, the radial trap
occurs after several seconds passed.

Our model also predicts translational speeds of up
to one body lengths per second (BL s−1). The speed
increases with the particle length squared. Should we
applied the theory to the nanorods of Ref. 26, the speed
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would be at least ten times smaller. This hints that the
radial radiation force does not significantly impact the
nanorods’ propulsion mechanism.

The present analysis is a solid step toward under-
standing the physics behind trapping elongated particles
in acoustofluidic settings. It offers results that can be
verified experimentally for systems whose boundary con-
ditions can be approximated to ideal conditions (hard
or soft walls). Adding thermoviscous properties of the
surrounding fluid to the model is the next level to be
attained in future publications.
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APPENDIX A:

Going back to the transformation in Eq. (4b), we see
the relation between the fluid velocity in the particle and
laboratory frame is expressed as

vp(0) = R−1(α, β)v(r0). (A1)

Thus, we have in Cartesian coordinates,

vxp
= vx cosα cosβ + vy sinα cosβ − vz sinβ, (A2a)

vyp = vy cosα− vx sinα, (A2b)

vzp = vx cosα sinβ + vy sinα sinβ + vz cosβ. (A2c)

The corresponding components in to cylindrical coordi-
nates are obtained using vx = v% cosϕ, vy = v% sinϕ,

vxp
= v% cosβ cos(α− ϕ)− vz sinβ, (A3a)

vyp = −v% sin(α− ϕ), (A3b)

vzp = v% cos(α− ϕ) sinβ + vz cosβ. (A3c)
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8A. Anhäuser, R. Wunenburger, and E. Brasselet, “Acoustic rota-
tional manipulation using orbital angular momentum transfer,”
Phys. Rev. Lett. 109, 034301 (2012).

9L. Zhang and P. L. Marston, “Angular momentum flux of non-
paraxial acoustic vortex beams and torques on axisymmetric ob-
jects,” Phys. Rev. E 84(6), 065601 (2011).

10G. T. Silva, T. P. Lobo, and F. G. Mitri, “Radiation torque
produced by an arbitrary acoustic wave,” Europhys. Lett. 97,
54003 (2012).

11G. T. Silva, “Acoustic radiation force and torque on an absorbing
compressible particle in an inviscid fluid,” J. Acoust. Soc. Am.
136, 2405–2413 (2014).

12I. D. Toftul, K. Y. Bliokh, M. I. Petrov, and F. Nori, “Acoustic
radiation force and torque on small particles as measures of the
canonical momentum and spin densities,” Phys. Rev. Lett. 123,
183901 (2019).

13M. Baudoin and J.-L. Thomas, “Acoustic tweezers for particle
and fluid micromanipulation,” Annu. Rev. Fluid Mech. 52, 205–
234 (2019).

14M. Barmatz and P. Collas, “Acoustic radiation potential on a
sphere in plane, cylindrical, and spherical standing wave fields,”
J. Acoust. Soc. Am. 77, 928–945 (1985).
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