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Abstract
Purpose – This study aims to reduce carbon emissions and costs in an automobile production plant by improving
the operationalmanagement efficiency of a serial assembly line assisted by a feeding electric tow vehicle (ETV).

Design/methodology/approach – A multi-objective function is formulated to minimize the energy
consumption of the ETV from which emissions and costs are measured. First, a mixed-integer linear
programming model is used to solve the feeding problem for different sizes of the assembly line. Second, a bi-
objective optimization (HBOO) model is used to simultaneously minimize the most eco-efficient objectives: the
number of completed runs (tours) by the ETV along the assembly line, and the number of visits (stops) made
by the ETV to deliver kits of components to workstations.

Findings – The most eco-efficient strategy is always the bi-objective optimal solution regardless of the size
of the assembly line, whereas, for single objectives, the optimization strategy differs depending on the size of
the assembly line.

Research limitations/implications – Instances of the problem are randomly generated to reproduce
real conditions of a particular automotive factory according to a previous case study. The optimization
procedure allows managers to assess real scenarios improving the assembly line eco-efficiency. These results
promote the implementation of automated control of feeding processes in greenmanufacturing.

Originality/value – The HBOO-model assesses the assembly line performance with a view to reducing the
environmental impact effectively and contributes to reducing the existent gap in the literature. The
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optimization results define key strategies for manufacturing industries eager to integrate battery-operated
motors or to address inefficient traffic of automated transport to curb the carbon footprint.

Keywords Optimization, Energy efficiency, Scheduling, Supply chain management,
Ecological efficiency, Green assembly line operational management,
Carbon footprint, Bi-objective optimization, Assembly line scheduling,
Sustainable supply chain management

Paper type Research paper

1. Introduction and motivation
Recent concerns over eco-efficiency have turned assembly line innovation toward
sustainability and cost reduction into primary goals in manufacturing industries such as the
automotive, aerospace, civil engineering and renewable energy industries. Optimization of
assembly lines performance is of primary interest in manufacturing industries where
balancing and scheduling problems represent the main leading research areas (Fathi et al.,
2018; Scholl et al., 2013; Andres et al., 2008; Boysen et al., 2007). To this respect, the present
work is developed within the framework of the later, but under energy efficiency concerns.

Generally, an assembly line involves several elements such as a warehousing space or
supermarket, a forward distribution of serial and paced stations where specific operations
are performed on products, a conveyor belt and a feeding tow vehicle (or a fleet) which refills
the inventory at stations attended by working operators (workstations). Still, on a larger
scale, assembly lines take part in supply chain networks whose optimization problems are
undergoing a transformation along with higher demands in competitiveness and higher
degrees of interaction betweenmanufacturers, suppliers and costumers (Gharaei et al., 2017).
As well, there is a higher commitment to reduce environmental impact (Kähkönen, 2020; Das
and Jharkharia, 2018; Alexander et al., 2014; Srivastava, 2007). Howbeit, optimization of
processes to detect energy inefficiencies in the supply chain and inventory management are
still to face new challenges as pointed by previous works (Wang et al., 2016; Bazan et al.,
2015; Benjaafar et al., 2013).

According to the International Energy Agency (IEA, 2007) by adopting eco-efficient
policies, which imply both, economic and energy efficiency measures to reduce the
environmental impact, industrial CO2 emissions can be reduced by 7%–12% of today’s
global CO2 emissions (1.9 to 3.2 Gt per year). Notably, in the manufacturing industry, motor-
driven systems (engines) account for 15% of the final energy consumed in manufacturing. In
this regard, the IEA advocates to particularize the estimation of energy efficiency for each
type of engine expecting energy savings up to 60% when the velocity of the engines is
controlled.

In this direction, a sustainable supply chain management must integrate eco-efficient
protocols affecting:

� The distribution operations from the suppliers to the supermarket (SM) of the
industrial plant.

� The feeding problem in the assembly line.
� The transport logistics from the manufacturer to the retailer.
� The present work refers to the second item mentioned above, aiming at reducing the

carbon footprint in a car assembly line, which produces the end-product.

The model of study is a serial assembly line that starts and ends at the SM like a
unidirectional closed-loop. In addition, a deterministic production rate, which is planned
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over a daily time horizon, is considered. This deterministic model involves fixed demands
and fixed capacities at workstations which are predetermined by assembly-line production
processes. Equivalent CO2 (CO2–eq) emissions and economic costs are calculated from the
energy consumption of an electric tow vehicle (ETV), which feeds the workstations along
the assembly line. A global review on environmental management in the automotive
industry can be found in (Liu et al., 2016).

To assess eco-efficient actions in the automotive plant, the energy recovery system of an
ETV, known as the regenerative braking effect, is integrated into our model. As reported by
Xu et al. (2011) and Jin et al. (2014) and references therein, energy efficiency due to
regenerative braking has shown to be up to roughly 30%which represents an average value
if the origin of the electricity source (renewable energy or fossil fuel) is disregarded. It must
be emphasized that, although the energy consumption of a single ETV accounts for a small
fraction of the total energy demanded by an automobile assembly line, it is crucial to model
and analyze every aspect in the assembly line management to assume a realistic
commitment to reduce CO2 emissions.

Because of the nonlinear nature of the function defining the energy consumption, the
feeding problem in this study is approached from a different perspective which considers
the linear combination of those objectives which are concurrently related to the energy
consumption in the form of a multi-objective optimization problem. Weighting coefficients
are assigned to each objective component to express their relative importance. Multi-
objective linear programing problems (Figueira et al., 2005; Sawaragi et al., 1985) subjected
to a hierarchical order of restrictions over its variables have been successfully implemented
in operational research, management sciences and engineering design and control problems
to optimize single or more objectives simultaneously. Multi-objective optimization in
management is of utmost importance because results often surpass prior assumptions
bringing into light new strategies for decision-makers.

In accordance with the objective function and constraints of our problem, we propose a
mixed-integer linear programming (MILP) problem. The MILP–problem includes the
following objectives: the number of completed runs driven by the ETV along the entire
assembly line (tours), the number of visits to feed the workstations (stops) and the inventory
level at workstations (inventory). A branch-and-cut algorithm, which combines the search-
tree and the cutting-planes method (CPLEX [1]), is used to solve the MILP–problem. On the
one hand, the branch-and-cut algorithm has shown to be powerful in similar problems like
vehicle routing problems (Araque et al., 1994; Archetti et al., 2007; Rodríguez et al., 2007;
Barcos et al., 2010) and assembly line feeding problems (Fathi et al., 2014a, 2014b). On the
other hand, the CPLEX optimizer allows us to codify the MILP–problem and solve it within
the MATLAB environment where a downstream code quantifies the carbon footprint from
energy consumption. The CPLEX optimization solver is advantageous for defining binary
indicator variables which are of critical importance in routing optimization (Bonami et al.,
2015). Moreover, optimization parameters in the branch-and-cut-algorithm such as gap
parameters for the populate procedure, tolerance parameters for the minimization problem
and constraint relaxation preferences can be tuned to control the reliability of the results
which, in our study, are ultimately tested against technical reports concerning the energy
consumption and emissions of electric vehicles. We find previous reports that compare the
CPLEX performance against other solvers in routing problems (Shijin and Yulun, 2015; Yu
and Jewpanya, 2016; Bonami et al., 2015), and further research on CPLEX performance is
still being developed to boost computational experiments (Bonami et al., 2019). Furthermore,
it should be noted that there is a great deal of research works in routing vehicle problems
and green logistics that have been implementing CPLEX successfully (Keskin et al., 2019;
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Huang and Yang, 2019; Bierwirth et al., 2019; Azmi et al., 2017; Petridis et al., 2017; Wassan
et al., 2017; Salhi and Imran, 2014; Kopfer and Kopfer, 2013; Toth, 2008), just to mention a
few.

Because of the fact that the two most conflicting objectives are the number of tours and
stops because of their competing levels of energy consumption as the size of the assembly
line increases, we show that the problem needs to be addressed using a different method,
and hence, a hybrid bi-objective optimization (HBOO) method is proposed. Bi-objective
optimization problems generally involve dependent objectives with competing roles, and
thus, solutions may not show identical degrees of optimality with regard to both objectives,
simultaneously; as a consequence, it is necessary to implement a lexicographic optimization
method (Ehrgott, 2005). In particular, the HBOO–model has been designed to follow a
lexicographic weighted Tchebycheff approach (Steuer and Choo, 1983; Dächert et al., 2012).
Fundamentally, a lexicographic optimization method selects the best solution with respect
to a particular objective function given the fact that the other objective function has multiple
optimal solutions. The HBOO–method runs in two different phases. In the first phase, a
Pareto front is built from sets of optimal solutions that define a convex border that
represents the trade-off between the two dependent objectives. As a matter of fact, Pareto
fronts inform decision-makers about the best compromise solution. In this respect, the
solution that effectively satisfies the minimum value of the bi-objective function is expected
to be localized at the turning point, which is referred to as the knee solution of this convex
Pareto front (Emmerich and Deutz, 2007; Setämaa-Kärkkäinen et al., 2006). In fact, the knee
solution represents the most convenient bi-objective solution and the one at which the
HBOO–problem is targeted in the second phase. Be that as it may, the HBOO–method
allows top managers to have access to each phase separately to assess strategic decision-
making, and thus, it is a flexible model that promotes a gradual implementation of new
operational logistics planning toward a sustainable manufacturing scenario.

To understand inherent dependencies between two different objectives, such as the case
of objectives (tours) and (stops) in the present study, it is necessary to review here the
concept of dominance between two different solutions u and v (vectors of decision variables)
that belong to the feasible set of solutions S of a bi-objective optimization problem. Being x
the vector of decision variables, and f(x) = f1(x) þ f2(x) the bi-objective function where f1(x)
and f2(x) represent the objectives to be minimized simultaneously. Now, given two solution
vectors u and v that optimize f(x), we say that u dominates v if fi(u) # fi(v) Vi (where i is the
number of objective functions, i = 2) except for at least one i = j for which fj (u) < fj (v).
According to this, a vector of objective variables w [ S is said to be Pareto optimal if it is not
dominated by any other solution vector, then we say that the Pareto optimal set consists of
non-dominated solutions. In other words, when it comes to solving a bi-objective
optimization problem, it is impossible to improve the optimality of an objective without
jeopardizing the optimality of the other objects in the solution vector. In terms of solution
vectors, it can be rigorously defined if we say that a decision vector u [ S and the
corresponding objective vector f(u) are weak Pareto optimal if there is not another decision
vector v [ S such that fi (u)< fi (v) for i= 1, 2 (Sawaragi et al., 1985).

Prior studies on bi-objective optimization methods applied to supply chain management
can be found to design green automotive supply chains (Zhen, 2017; Sadrnia et al., 2013) and
to solve location-allocation problems (Alavidoost et al., 2018; Latha Shankar et al., 2012).
Nevertheless, bi-objective optimization procedures applied to assembly line scheduling
problems with eco-efficiency criteria are still scarce (Zhou and Shen, 2018), and for this
reason, the present work intends to address this gap in literature proposing a new
optimization method.
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Themain application of our research is to help managers to evaluate feeding processes in
manufacturing plants toward sustainability. Furthermore, beyond the discovery and
analysis of the operational management factors that have a critical role in the green
assembly line performance, the optimization results also provide decision support with new
strategies to be implemented in automated feeding processes. To assess the eco-efficient
management of the assembly line, we evaluate emissions and costs from the optimal
solutions for which different velocity profiles of the ETV are tested. In addition, the
regenerative braking effect of the ETV as a way of recapturing energy is also tested. To
further support these results, we show that energy savings are in agreement with previous
studies.

The present paper is organized as follows, in Section 2 we present the particularities of
our automobile assembly line, the emissions assessment and the generation of instances. In
Section 3, we show how the problem is formulated as a MILP–program, and the HBOO–
model. Results on emissions and costs for different sizes of the assembly line are presented
in Section 4. In addition, in this section, the optimality of the results are tested against
standard values. Results are interpreted in terms of new strategies to be implemented in
automated assembly lines to reduce the environmental impact, and to increase the
operational management efficiency. Finally, Section 5 deals conclusively with the most
remarkable results and future perspectives.

2. Problem statement
In this section, we deal with the emissions assessment of the ETV and the generation of
instances. The assembly line consists of N–workstations separated by a fixed inter-spacing,
d, as it is sketched in Figure 1(a), where an ETV feeds the assembly line through different
runs or tours which extend over the planning horizon of a single day. In this study, we
present results for different sizes of the assembly line consisting of N = 20, 40 and 60
workstations. Distances between contiguous workstations are fixed to d = 5 m. Similar
factory conditions are found in previous scheduling problems in the automobile industry
(Fathi et al., 2014a, 2014b; Muguerza et al., 2015). In a previous work where we had tested
sizes of the assembly line for a wider range and different values of d, it was found that
results on N = 20 are sufficiently representative of smaller sizes of the assembly line while
results on N = 60 are sufficiently representative of larger sizes. On the other side, by
increasing the value of parameter d results in emissions (costs) increase proportionally as

Figure 1.
(a) Layout of the

assembly line where
N –workstations are
supplied by an ETV.

(b) Sketch of
triangular and

trapezoidal velocity
profiles of the ETV
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expected from the energetic considerations of the problem as it is explained in the next
Section 2.1. The SM is the logistics storage area where bins, which are the kits of
components specifically packed for different workstations, are stacked while waiting to be
loaded onto the trailers of an ETV, a Linde P60z tow vehicle with a nominal towing capacity
of 6 tonnes. Two trailers are hauled by the ETV. Distances from the SM to the first
workstation, and identical than from the last workstation to the SM (d = 5 m). Bins are
delivered to each workstation according to its storage capacity (inventory level of each
workstation), C( j) and daily demand, D(j). We have chosen a mixed-linear optimization
model to address the scheduling problem in which units of kits are delivered to the line from
and back to the SM along each tour.

The ETV performs two possible types of velocity profiles which are defined for
simplicity as triangular and trapezoidal as it is shown in Figure 1(b). In this figure, planned
stops are represented by non-filled circles while skipped stops (not visited workstations) are
filled in black. Triangular-like velocity profiles are triggered for consecutive stops below a
threshold distance of 10m, where the engine accelerates until reaching a mid-path position
and then decelerates to the next stop. Above the threshold distance, the trapezoidal velocity
profile is triggered, then the ETV accelerates to reach the maximum speed and then
decelerates to the next stop.

2.1 Emissions assessment
We assume that the carbon footprint is given by indirect emissions due to the electricity
consumed by the ETV battery. The energy consumption of the engine battery (Lee, 2005;
Helmers andMarx, 2012) is quantified so that the traction power from the driveline accounts
for the net battery power consumption in accordance with the ETV specifications under
maximum transmission efficiencies. In addition, between each scheduled delivery between
workstations we must consider the precise towed weight; the floor characteristics (flat and
dried concrete); the velocity profile which depends on the traveled distance; and the
regenerative braking mechanism during decelerations. The initial and final runs of the ETV
(from and to the SM) are also included in the emission assessment.

The ETV can load a maximum number of 100 bins, which is defined as the maximum
capacity Cmax, according to a previous case study in the automobile industry (Fathi et al.,
2014a, 2014b). Bins weight is determined to be equal to 30 kg, taking into consideration
ergonomic risks for operators derived from hand-lifting and the towing capacity of the ETV
(Limère et al., 2012). The maximum allowed speed in the plant has been considered to be
1.73m/s (6.24 km/h) which is in the range of safety velocities for internal transport in
premises like factories. To reach the maximum values of regenerated energy, and according
to previous optimization studies (Enang et al., 2015), we have considered an average
acceleration (deceleration) value of 0.5m/s2 which is in accordance with the specifications of
our electric tow vehicle. According to this, the accelerating/decelerating distances have been
calculated to be equal to 3m.

The dynamics of the ETV is modeled to meet the standards of a heavy-duty vehicle. The
energy consumption of the ETV is calculated from the traction force given the distance
between visited workstations, the weight of the bins and the number of loaded bins. The
traction force is calculated from the different forces involved:

F ¼ Ffriction þ Fairdrag þ Finertia;

Each term is described as follows:
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� The friction force is given by Ffriction = m s · exp (�hvi/vo) · g ·W, which is in
accordance with smooth modeling, responds well to the transition between static
and dynamic friction forces. m s is the static friction, hvi is the average velocity,
vo (= 0.69 m/s) is a constant velocity calculated from the values given in Table 1 and
W is the total weight of the tow vehicle with cargo.

� The air-drag force is given by Fairdrag = Ad · hvi2, where Ad = 0.92 kg/m is the air-
drag constant calculated from Ad ¼ 1

2 r � Cd � AF , being Cd = 0.77 a dimensionless
drag coefficient for tractor-trailers and AF (=1.96 0.996 m

2) the projected frontal area
according to the tow vehicle dimensions.

� The inertia force is Finertia = W · Rr · a, where Rr = 1.03 is the rotational inertia
compensator factor which can substitute the rotational inertia increment in tow
trains and trucks and a is the acceleration of the electric tow vehicle.

Parameter values in this subsection are summarized in Table 1.
Up to this point, during acceleration displacements, the energy consumed by the battery

for a maximummotor efficiency is given by:

E ¼ F � d ¼ m s exp �hvi=voð Þ gW þ Ad hvi2 þW Rr � a
h i

d (1)

Identical equations to equation (1) are used when the tow vehicle keeps a stationary velocity
(with a = 0) or decelerates (with negative acceleration, – a). However, during deceleration
displacements, a new term Frb must be introduced if the regenerative braking effect is to be
considered:

Frb ¼
1
2
hvi2 �W � h batt (2)

where h batt = 0.76 corresponds to the lead-acid battery efficiency through the regenerative
braking mechanism (Helmers andMarx, 2012).

Now, the total amount of energy consumed by the battery between visited workstations
is given by:

Table 1.
Parameters for the
quantification of

CO2–eq emissions
and economic costs

Parameters Values

Maximum allowed velocity (m/s) 1.73
Average acceleration (deceleration),6 a (m/s2) 0.5
Maximum tow vehicle capacity (no. bins) 100
Engine weight without cargo (tonnes) 3,000
Total weight of the tow vehicle,W 3,000þ (weight/bin� No. bins)
Static friction coefficient, m s 0.9

Dynamic friction coefficient, md m sexp
�hvi
0:69

� �
gW

Motor efficiency 1
Battery efficiency, h batt 0.76
Trapezoidal distances, d6a (m) 3
Threshold distance (m) 10
Carbon Footprint, CFP (g CO2–eq/kW·h) 500
Economic cost (e/kW·h) 0.12
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E ¼ Fa � da þ Fs � ds þ F�a � d�a � Frb � d�a (3)

where the forces Fa, Fs, F�a, Frb correspond to the engine processes of acceleration,
stationary velocity, deceleration and the regenerative braking during deceleration,
respectively.

Finally, for the whole set of runs driven by the ETV, we are able to calculate the CO2–eq
emissions considering the carbon footprint conversion (CFP) for batteries in electric vehicles
charged with grid electricity (Helmers and Marx, 2012) and the economic costs according to
the annual costs of electricity in the industrial sector of E.U. which are available in Eurostat
(2019). Emission and economic conversion values are summarized in Table 1 as well.

2.2 Instances generation
Five random instances are generated for different sizes of the assembly line (N = 20, 40, 60)
under a fixed daily demand. Besides, a shuffle seed produces a different daily demand D( j)
for each j–workstation and the corresponding inventory level C( j) between a minimum and
maximum values (Archetti et al., 2007). Initial conditions at the workstations impose a zero
stock level, which means that on the very first tour the ETV finds a zero inventory level at
workstations. The generation of these random instances is well supported by previous
scheduling problems (Fathi et al., 2014a, 2014b; Muguerza et al., 2015) for a similar factory to
guarantee a continuous production rate. Instance generation parameters are summarized in
Table 2.

3. Mathematical formulation
To solve the assembly line feeding problem, first, we propose a MILP–model in Section 3.1,
which implements a branch-and-cut algorithm using CPLEX. Despite the successful
performance of the MILP–model when assessing single objectives, the outcome of the
bi-objective model in terms of time processing calls for a more powerful method. In this
respect, we propose a hybrid program, the HBOO–model, which is explained in Section 3.2.
Then, second, we calculate emission and economic costs from the energy consumption of the
ETV according to the conversion values in Table 1.

3.1 The mixed integer linear programing model
The MILP–model considers three different objectives in the assembly line: the number of
tours, the number of stops and the inventory level. The optimal solution will determine the
delivery scheduling of i–tours with i = 1,. . .,T along an assembly line consisting of
j-workstations with j = 1,. . .,N. A previous work (Fathi et al., 2014a) under the same factory
conditions considered only two objectives, the number of tours and the inventory level,
using a simulated annealing-based heuristic algorithm.

According to the problem instances (Section 2.2), the input data of our optimization
problem are the maximum number of allowed tours, T; the maximum number of
workstations per tour, N; the maximum capacity of the ETV in units of bins (100 bins for an

Table 2.
Parameter values for
the generation of
random instances

Inter-spacing, d (meters) 5

Number of workstations, N 20, 40, 60
Maximum ETV capacity Cmax (No. bins) 100
Bins weight (kg) 30
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ETV pulling 2 wagons), Cmax; the daily demand assigned to each j–workstation, D( j); and
the corresponding storage capacities, C( j). Furthermore, we introduce a lower bound for the
minimum number of tours to be launched, tlb, to satisfy the daily demand given the limited
capacities of both the ETV and the workstations with a maximum inventory level. This
value is always below themaximum number of allowed toursT and is given by:

tlb ¼ max
X
j

D jð Þ
Cmax

;max
D jð Þ
C jð Þ

( )
(4)

In equation 5a, we have formulated a multi-objective function according to a MILP–
problem under a set of constraints (equations 5b–5i) and boundaries (equations 5j–5l).
The multi-objective function consists of three different parts, which allow us to
minimize the number of tours (tours), the number of stops (stops) and the inventory
level at workstations (inventory). Because each part represents a different objective
function, the multi-objective function can be optimized with weighting coefficients (v i,
i = 1, 2, 3) equal to one or zero depending on the selected objects to be optimized. For
instance, if the number of tours and stops are to be simultaneously minimized (tours &
stops) in equation 5a, the weighting coefficients would be chosen to be v1,3 = 1 and
v 2 = 0. Likewise, studies on inventory-routing problems set initial weighting
coefficients equal to one (Coelho et al., 2012); and also, in multicriteria decision-making
problems (Cruz and Wakolbinger, 2008).

Additionally, we have notably boosted the performance of our model by introducing two
binary indicator variables y(i) and s(i, j) (equations 5h and 5i, respectively) that act as
constraints in the MILP (CPLEX) solver and have been proven to be highly effective in other
MILP routing problems (Bonami et al., 2015) as it was explained in Section 1. These binary
indicator variables represent: possible tours y(i) (an i–tour is effectively launched if y(i) = 1,
otherwise y(i) = 0) and stop s(i, j) (a visit to the j–workstation on the i–tour is produced if s
(i, j) = 1, otherwise s(i, j) = 0). Finally, z(i, j) represents the inventory level at a particular
j-workstation on the i–tour as a continuous variable. In the constraints below, we
introduce x(i, j) as a dummy variable of the MILP (CPLEX) solver which represents the
number of delivered bins at each j–workstation on each i–tour. In Table 3, we present the
notations of variables and constant parameters of the MILP–model. The MILP–model
can be formally described as follows:

Table 3.
Notation of variables

and parameters in
the MILP–model

Symbol Description in the mixed integer linear program, the MILP model

N Number of workstations per tour (j–index, j = 1,. . .,n)
T Maximum number of allowed tours (i–index, i = 1,. . .,t)
tlb Minimum number of tours to satisfy the demand
v k Weighting coefficients of the multi-objective function with k = 1, 2, 3
y(i) Binary indicator variable for tours
z(i, j) Inventory level at workstations after each tour
s(i, j) Binary indicator variable for workstations
x(i, j) Number of delivered bins at workstations on each tour
Cmax Maximum capacity of the ETV (no. bins)
C(j) Storage capacity at workstations (no. bins)
D(j) Total demand per workstation (no. bins)
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ðMILPÞminimize v 1

XT
i¼1

y ið Þ þ v 2

XT
i¼1

XN
j¼1

z i; jð Þ þ v 3

XT
i¼1

XN
j¼1

s i; jð Þ (5a)

wherev k [{0,1}, Vksubject to:

y 1ð Þ ¼ 1 (5b)

x 1; jð Þ ¼ z 1; jð Þ > 0 ; 8j (5c)

X
i

x i; jð Þ ¼ D jð Þ ; 8j (5d)

X
j

x i; jð Þ#Cmax ; 8i (5e)

z i � 1; jð Þ þ x i; jð Þ � D jð Þ
tlb

# z i; jð Þ (5f)

z i � 1; jð Þ þ x i; jð Þ � D jð Þ
T � z i; jð Þ (5g)

y ið Þ 2 f0; 1g ; y ið Þ ¼ 0 ()
X
j

s i; jð Þ ¼ 0 ; 8i (5h)

s i; jð Þ 2 f0; 1g ; s i; jð Þ ¼ 0 () x i; jð Þ ¼ 0 ; 8i; j (5i)

0# z i; jð Þ#C jð Þ ; 8i; j (5j)

0# x i; jð Þ#C jð Þ ; 8i; j (5k)

X
i

y ið Þ#T ; 8j ;
X
j

s i; jð Þ#N ; 8i (5l)

Initial conditions are imposed in agreement with the fact that the first tour is compulsory
(equation 5b), and in this case, the delivered number of bins must fulfill equations 5c. Also,
the number of delivered bins at workstations must satisfy the daily demand D(j) along with
the total number of tours according to equation 5d. Besides, for each tour, the total number
of bins carried by the ETVmust not exceed the maximum train capacity Cmax as it is shown
in equation 5e. The inventory level is controlled under equations 5f and 5g in accordance
with a deterministic production rate criteria which, for the minimum number of tours
required to satisfy the daily demand as defined previously in equation (4), imposes a
maximum consumption/production rate workstations of D(j)/tlb. Meanwhile, for the
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maximum number of tours, imposes a minimum consumption/production rate workstations
of D(j)/T. Besides, with equations 5f and 5g we are keeping a record of the inventory level of
the previous tour at workstations. Equations 5h and 5i correspond to the binary indicator
variables that account for those launched tours as y(i) = 1 and visited workstations as s(i,j) =
1, being assigned zero values otherwise. Finally, equations 5j and 5k define the boundaries
of the discrete x(i, j) and continuous z(i, j) variables, respectively. The corresponding upper
bounds for the total number of tours and the number of workstations per tour are expressed
in equation 5l.

3.2 The hybrid bi-objective optimization and the hybrid bi-objective optimization model
The HBOO–model developed in this study yields the optimal solution of the delivery
schedule problem when the two most critical (eco-efficient) objectives, the number of tours
and the number of stops, are simultaneously minimized so that the trade-off between both
objectives is analyzed. The new bi-objective function has weighting coefficients (r , v 1, v2)
as it is expressed in equation 6a. On the one hand, the pair (v1, v 2) represents the weight
distribution between the two objectives so that the most important objective will be
assigned the largest weight. On the other hand, the term in r , which is expressed as a linear
combination of the two objectives (Equation 6a), has the role of a perturbative term that
determines the degree up to which the solution search is re-directed toward the target
parameter, at the knee solution of the Pareto front as explained in Section 1. The HBOO–
model can be formally described as follows:

ðHBOOÞminimize v 1

Xt

i¼1

y ið Þ þ v 2

Xt

i¼1

Xn
j¼1

s i; jð Þ þ r
Xt

i¼1

y ið Þ þ
Xt

i¼1

Xn
j¼1

s i; jð Þ

2
4

3
5
(6a)

wherev k � 0 ;
X
k

v k ¼ 1;8k and r � 0
subject to:

Xt

i¼1

y ið Þ# t* (6b)

Equations 5b-5i from theMILP-problem
Equations 5j-5l from theMILP-problem
Constraints and boundaries of the HBOO–model are identical to those in the MILP–

problem (equations 5b–5i and 5j–5l) except for the new constraint in equation 6b, where t*
represents the optimum number of tours and will be referred as the target parameter from
now on. This constraint is characteristic of the lexicographic weighted Tchebycheff method
(Steuer and Choo, 1983; Dächert et al., 2012) and allows us to guarantee the optimality of the
number of tours.

We determine the values of the triad (r , v 1, v 2) as a part of a decision-making process
similar to the lexicographic weighted Tchebycheff method in (Dächert et al., 2012; Setämaa-
Kärkkäinen et al., 2006) where parameters are adaptively chosen. As a matter of fact, by
varying these parameters the sensitivity of the HBOO–the problem is tested. For this
purpose, the bi-objective solutions are evaluated for an assembly line consisting of N = 40
workstations by varying r (r = 110�03, 110�02) along with all possible combinations of
weights, v 1 and v 2, each in the range (0.1, 0.9) with a step size of 0.2. In addition, weights
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must fulfill the normalization condition v 1 þ v 2 = 1. Under these conditions, feasibility and
optimality are successfully achieved for the triad values (0.001, 0.1, 0.9) with minimum
values of gap tolerances (below or equal to 5%) and with less consuming time. From the
weighting coefficients of the corresponding objectives tours and stops, the relevant role of
the number of stops over the number of tours is confirmed.

In the following, the HBOO–model is described in two different phases and summarized
in the flowchart of Figure 2 (notations are presented in Table 4):

� In the first phase, the Pareto front is built by varying the number of tours to
predetermined values (allowed number of tours) which are ordered in a vector, tPF.
For each component of tPF, we optimize the number of stops, which is the objective
that ensures that the pool of solutions is the closest to the Pareto front. The Pareto
front is defined as the inner convex boundary (Section 1) of the complete set of
optimal solutions generated for each random instance. Thus, in this phase, the
HBOO–model performs as a single objective optimization model by simply setting
the triad parameters (r , v 1, v 2) in equation 6a equal to (0, 0, 1), while the target
parameter t* in equation 6b is chosen to be equal to the corresponding component of
tPF. This phase provides the set of optimal solutions (t*,s*) necessary to build the
Pareto front. At this stage, the Pareto front is available to operators and top
managers, and therefore, each candidate solution can be evaluated for alternate
manufacturing scenarios.

In the second phase, which is explained next, the knee solution, tk, is chosen to be the closest
to the minimum number of allowed tours at the Pareto front. The origin of this targeting

Figure 2.
Flowchart of the
HBOO–model
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procedure must be found in the dependence between both objectives, tours and stops, which
is derived from the impact that removing an entire tour has on the quantification of
emissions.

Although for sufficiently long processing times, weak Pareto optimal solutions are
expected to be non-dominated (Section 1), here it is important to notice that by imposing the
relaxation of constraints in addition to limiting the processing times, it is possible that the
final outputs could include dominated solutions. These types of solutions are called weak
Pareto optimal (or weakly efficient) and as they are not removed from the final set, they are
also expected to shape the Pareto front:

� In the second phase, the optimal solution (topt, sopt) is determined by setting the triad
parameters (r , v1, v 2) in equation 6a equal to the adaptively chosen values (0.001,
0.1, 0.9) that were determined in a previous stage. Next, by setting in equation 6b the
target parameter equal to the knee solution obtained in the first phase (t* = tk), the
most eco-efficient solution is obtained. Because emission reduction is the aim of
the present study, the optimal solution is the most convenient from an energetic
perspective otherwise, in the event of a different economic or operational scenario,
the management team could modify this decision by selecting a different
neighboring solution at the Pareto front. On the other hand, the optimal solution
provided by the HBOO–method allows decision-makers to estimate emissions and
costs differences between sustainable planning and real planning.

Finally, from the optimal solution (topt, sopt) and by means of a downstream code, the total
amount of energy consumed by the battery of the ETV is calculated and converted into
CO2–eq emissions and economic costs (Section 2.1). In the next Section 4, we show that
emissions calculated from the HBOO-optimal solutions are in agreement with the most eco-
efficient assembly line management.

The algorithms were coded in the MATLAB environment with IBM ILOG CPLEX
Optimization Studio V12.6.0 as theMILP solver on a personal computer.

4. Results and discussion
Results presented here are obtained from random instances (Section 2.2) which reproduce
real conditions of the factory problem. On the grounds that the battery energy consumption
responds to the dynamics of a feeding electric vehicle (as explained in Section 2.1), it must be
emphasized that those parameters related to the ETV dynamics are inherent to our multi-
optimization function, in fact, it is the number of tours and stops that regulate travel
distances and velocities distributions, while the inventory level determines the loading
weight of the ETV between visited workstations.

Next, in Section 4.1, we show that energy savings obtained from the feeding electric
engine model are in agreement with technical reports, in Section 4.2 we present the three-

Table 4.
Notation of variables

and parameters in
the HBOO–model

Symbol Description in the hybrid bi-objective optimization, the HBOO-model

r Parameter of the perturbative term
v k Weight parameters with k = 1, 2, 3
t* Target parameter (optimum number of tours)
tPF Sequence of the allowed number of tours
(tk, sk) Knee solution of the Pareto front
(topt, sopt) Bi-objective optimal solution
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dimensional Pareto fronts and in Section 4.3 we discuss the results in emissions and
economic costs with a view to sustainable management. By the end of this Subsection, we
also show the suitability of the developed optimization models by testing the energy
efficiency against standard values.

4.1 Testing the regenerative braking effect of the electric tow vehicle
Prior to the optimization analysis of the whole set of instances, we present the results on the
effect of the regenerative braking over an assembly line of N = 40 workstations, as a
benchmark. In Table 5, results in energy savings when different objectives are minimized
are presented. Energy savings are calculated from the results with regenerative braking
with respect to those without regenerative braking. Notice that the higher percentages in
energy savings correspond to the most economically profitable solutions so that the most
eco-efficient solution corresponds to minimizing simultaneously the number of tours and
stops, tours&stops. Percentages in energy savings are in agreement with previous studies
(Helmers andMarx, 2012).

In Figure 3, we present three–dimensional diagrams of emission levels during the feeding
process. The assembly line of this figure consists of 40 workstations with an inter-spacing of
d = 5 m, where both, the number of tours and stops, are simultaneously minimized. The z-
axis corresponds to the levels of CO2–eq emissions (in units of g) while the number of tours
and workstations is represented on the horizontal XY–plane. Cold colors correspond to low
emission values, while hot colors correspond to high emission values. Results with the
regenerative braking effect of the ETV are shown in Figure 3(a) in contrast to Figure 3(b)
(without regenerative braking). Differences in emission levels are revealed if we simply
compare the colored bar ranges. These differences are quantified in the corresponding
Table 5, where it can be observed that the energy and economic savings corresponding to
the regenerative braking effect are of the order of 60%which is in accordance with previous
reports (IEA, 2007). From now on, the discussion focuses on the results with regenerative
braking.

Table 5.
Energy savings
under the
regenerative braking
effect

Objective Energy savings (N = 40)

Tours&stops 63%
Stops 55%
Tours 36%
Inventory 4%

Figure 3.
CO2–eq emissions
along an assembly
line forN= 40
workstations: with
regenerative braking
in (a) and without in
(b)
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4.2 The three-dimensional Pareto fronts
In Figure 4, we show typical three–dimensional Pareto fronts for N = 40 and 60
workstations. These Pareto fronts are built calculating the corresponding CO2–eq emissions
(z-axis) from the set of optimal solutions (t*,s*), which shape a convex Pareto front on the xy–
plane, obtained in the first phase of the HBOO–method (Section 3.2). Minimum emissions
(black circles) correspond to the optimal solutions (topt, sopt) generated in the second phase of
the HBOO–method by introducing the target solution tk (knee solution of the Pareto front),
as it was explained in Section 3.2. Notice that, these optimal solutions are averaged over
each set of instances. In this figure, we observe that although there is a quasi-linear increase
in emissions with respect to the number of tours, for N = 60 there is a discontinuity in the
Pareto front above 24 tours and that subsequent solutions appear to be slightly more
scattered. The integer nature of the variables (the number of tours and stops) and
the existence of weakly Pareto optimal solutions generated by the lexicographic
optimization approach may underlie this fact as it has been previously reported in Farmani
et al. (2007).

4.3 The mixed integer linear programing and hybrid bi-objective optimization models:
annual emissions and economic costs
In the following, we infer general eco-efficient measures to be implemented in similar
assembly-line plants by comparing the effects of minimizing single objectives (tours, stops

Figure 4.
Three–dimensional
Pareto fronts and
optimal solutions

(black circles)

Figure 5.
CO2–eq emissions

versus the number of
workstations in the
assembly line when
different objectives

are minimized
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and inventory), and the bi-objective (tours&stops). These results are in agreement with
audited reports in the transport sector and manufacturing industry (Haven and Gutin, 2015;
EPA, 2015) as it will be shown as a concluding remark in this Subsection.

In Figure 5, the average values of annual CO2–eq emissions are calculated for each set of
instances by minimizing single objectives and the bi-objective as indicated. Error bars are
calculated as the standard deviation of optimal solutions obtained over each set of random
instances. In Figure 5(a), annual CO2–eq emissions using the MILP–model are shown in
comparison to emissions in Figure 5(b) using the HBOO–model. From the energy
consumption of the ETV, we also calculate the annual economic costs with equivalent
results to those of emissions in the sense that relative ratios between different objectives are
identical (Figure 6). From the energetic and economic costs in these figures, it is found that
minimizing the objective inventory doubles and even, in certain cases, triples the costs. In
contrast, the most competitive solution is obtained when the bi-objective tours&stops is
minimized using the HBOO–model. If we compare emissions (and costs) when minimizing
single objectives relative to minimizing the bi-objective tours&stops using the HBOO–
model, we can say that the manufacturer would incur additional costs of the order of the
percentage values summarized in Table 6, which quantitatively supports the discussion
above.

Next, we analyze the annual CO2–eq emissions as the size of the assembly line increases
in terms ofN [Figure 5(a) and 5(b)]:

� For a number of workstations equal to N = 20, the bi-objective tours&stops is the
most eco-efficient solution. Nevertheless, when these objectives are minimized as
single-objective, the MILP–model provides competing levels of emissions. In the
previous study, we had checked this very same emission bar distribution for an
assembly line consisting of fewer workstations (N = 10). According to this, for N #

Figure 6.
Economic costs
versus the number of
workstations in the
assembly line when
different objectives
are minimized

Table 6.
Relative energetic
(economical) costs
with respect to
minimizing
tours&stops

N –workstations 20 40 60

Minimizing tours (%) 14.45 36.61 41.00
Minimizing stops (%) 22.60 28.36 27.25
Minimizing inventory (%) 126.11 194.88 222.73
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20 optimal solutions when minimizing tours appear to be more eco-efficient than
minimizing stops.

� As the size of the assembly line is increased, N = 40 workstations, we observe that
although similar ratios between different bars are obtained, the rivalry between the
single-objectives tours with respect to stops now happens to favor the latter as the
most eco-efficient solution [Figure 5(a)]. Even though the bi-objective tours&stops
still remains the most eco-efficient solution.

� In Figure 5(a), as the number of workstations is increased from N = 40 to 60, we find
that minimizing stops is still more eco-efficient than minimizing tours. However, in
the same figure, it is observed that the bi-objective tours&stops optimization using
the MILP–model (dotted green bars) yields higher levels of emissions than stops for
N = 60 workstations in comparison to N = 40. Thus, a crossover is found between
N = 40 and 60 workstations when the MILP–model is implemented if we compare
the results when minimizing stops with tours&stops. In contrast, when the HBOO–
model is implemented to solve the bi-objective tours&stops problem [Figure 5(b)],
emissions from N = 40 up to N = 60 workstations show no crossover between stops
and tours&stops.

The bi-objective optimization results for N = 40 and 60 workstations can be quantitatively
compared from results in Table 7 (ETV). Here, we can observe that the relative error when
using the HBOO–the model has decreased by 52% and 74%, respectively. Then, as
expected, in the case of N = 20 workstations, there are no significant differences when the
HBOO-method is used. Additionally, in the same table, we show the optimized emissions
produced by the ETV in comparison with the calculated emissions produced by an oil-fueled
heavy-duty-vehicle (HDV). The estimation of emissions produced by the HDV (Haven and
Gutin, 2015; EPA, 2015), are calculated for the minimum number of tours (obtained when
minimizing tours) and average cargo weight of 3 tonnes. It should be stressed that, in the
manufacturing industry, engines specific to material handling consume of the order of 10%
of the manufacturing electricity used (DOE, 2002; IEA, 2007). In the case of the USA and for
the entire volume of manufacturing industries, this percentage would correspond to
emissions of the order of 2106 tonnes CO2/year and costs less than 10m dollars (DOE, 2002),
from which feeding vehicles would contribute to a small amount. Be that as it may if we put
into perspective the optimized results of the feeding ETV against the HDV for a number of
workstations larger than 20, emissions produced by the ETV in contrast to the HDV are
significantly half-reduced which respond well to the scope of our research.

5. Conclusions and future studies
In this paper, we have determined those decision variables that play a decisive role in
diminishing the carbon footprint and the economic costs in the scheduling problem of an
automobile assembly line. Instances are randomly generated for a predetermined demand

Table 7.
Emissions (tonnes
CO2–eq) by electric

(ETV) and oil-fueled
(HDV) vehicles when

tours&stops are
minimized

N –workstations 20 40 60

ETV(MILP–model) 0.3406 0.015 0.9286 0.030 2.2636 0.251
ETV (HBOO–model) 0.3436 0.016 0.8916 0.014 1.7096 0.064
HDV 0.328 1.423 3.120
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according to a real factory problem. The objective functions of our feeding problem are
given by the number of tours, the number of stops and the inventory level at workstations.
In the first place, to minimize the corresponding multi-objective optimization problem, we
propose a MILP–model for different sizes of the assembly line. However, a bi-objective
optimization problem naturally arises from the competing emission levels of the two most
eco-efficient objectives: the number of tours and stops. In this context, a hybrid bi-objective
optimization HBOO–model is developed using a lexicographic weighted Tchebycheff
approach with adaptive values of the weighting coefficients. Finally, a downstream code is
generated to calculate emissions levels and economic costs from the battery energy
consumption of a feeding ETV. The fact of analyzing the energy consumption by means of a
downstream code without using an energy function in the multi-objective optimization
function responds well to the fact that, in our problem, it is the dynamics of the ETV and the
interrelated dissipation processes that drain energy from the battery.

The most significant result of our study is that, for any size of the assembly line, the most
eco-efficient strategy is always to minimize the bi-objective problem given by the number of
tours and stops using the HBOO–method. Besides, in contrast to the MILP–model, the HBOO–
model has successfully proven feasibility and optimality with aminor impact on the gaps of the
branch-and-cut algorithm and on the processing times. This result is of utmost importance
whenever operational managers or other decision-makers, must design new strategies or
analyze the need for new investments to diminish the environmental impact of the assembly
line performance. This is because of the flexibility of the HBBO–model which is built in two-
phases and whose results are available independently: the first phase provides the Pareto front
from which neighboring solutions to the optimal solution can be evaluated for alternate
scheduling, while the second phase provides themost eco-efficient scheduling.

By comparison, results concerning single objectives show that the most eco-efficient solution
is always to minimize the number of stops, except for assembly lines consisting of 20 or fewer
workstations, in which caseminimizing the number of tours is more efficient thanminimizing the
number of stops as expected. Meanwhile, the less eco-efficient management always corresponds
to theminimization of the inventory level which at the very least doubles costs.

Moreover, our results are validated by the estimation of energy savings from the
dynamics of an ETV, with regenerative braking effect, which are in agreement with audited
reports. Furthermore, it is shown that emissions calculated in our green assembly line are
half-reduced in comparison to a feeding oil-fueled vehicle under the same conditions. As a
consequence, the HBOO–model is suitable to advise decision-makers to promote new
measures in green in-house logistics, specifically in feeding and inventory-routing problems
whenever motor-driven engines are used. Likewise, these results encourage the transition of
oil-fueled feeding vehicles to electric ones in those manufacturing industries eager to
implement eco-efficient initiatives.

All in all, these results support scheduling autonomous feeding electric vehicles
according to the proposed bi-objective optimization model, the HBOO–model, as the best
strategy to improve the eco-efficiency management of an assembly line in the automobile
industry and by extension to other assembly lines in the aerospace, civil engineering and
renewable energy industries to assess eco-efficient policies.

In this direction, and given that the proposed model allows analysts to assess the
performance of a green assembly line and decision-makers to have useful decision aid,
further work should consider, on the one hand, developing a contingency plan using the
HBOO–model over instances that would reproduce urgent adverse in-plant situations, for
example, in the event of a supplier failure or the detection of quality defects in the
production. Then, also, over longer periods of time, for example, under the circumstance that
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the production rate could be affected by a change in the customer’s tastes. On the other
hand, and from a managerial perspective, to further improve the eco-efficiency of the
assembly line performance on a daily basis, a more friendly code of the HBOO–model would
contemplate the re-evaluation of the weighting coefficients according to recent production
rates.

Note

1. https://developer.ibm.com/academic/
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