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Abstract. Domain models capture the key concepts and relationships
of a business domain. Typically, domain models are manually defined by
software designers in the initial phases of a software development cycle,
based on their interactions with the client and their own domain expertise.
Given the key role of domain models in the quality of the final system, it
is important that they properly reflect the reality of the business.
To facilitate the definition of domain models and improve their quality, we
propose to move towards a more assisted domain modeling building pro-
cess where an NLP-based assistant will provide autocomplete suggestions
for the partial model under construction based on the automatic analysis
of the textual information available for the project (contextual knowledge)
and/or its related business domain (general knowledge). The process will
also take into account the feedback collected from the designer’s interac-
tion with the assistant. We have developed a proof-of-concept tool and
have performed a preliminary evaluation that shows promising results.

Keywords: domain model · autocomplete · modeling recommendations
· assistant · natural language processing.

1 Introduction

Domain modeling is the activity in which informal descriptions of a (business)
domain are translated into a structured and unambiguous representation using a
concrete (formal) notation. Domain models, also known as conceptual schemas
[29], are built as part of a software development project to abstract the key
concepts of the domain relevant for the project, leaving out superfluous details.

The use of domain models is widely extended and there is a broad variety
of languages (UML, DSLs, ER, etc.), tools and methods [12] that promote and
facilitate their creation and manipulation. Nevertheless, they are typically created
by hand during the analysis and design phases of software development, making
their definition a crucial (but also time-consuming) task in the development
life-cycle. On the other hand, the knowledge to be used as input to define such
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domain models is already (partially) captured in textual format in manuals,
requirement documents, technical reports, transcripts of interviews, etc. provided
by the different stakeholders in the project.

We believe we could exploit this information to assist designers defining domain
models. In software development, autocompletion has been heavily studied for
years. Mature features such as code autocompletion are integrated by default
in IDEs and numerous benefits like faster coding, error prevention and the
discovery of new language elements have been proven. Similarly, we propose
model completion as a new feature for a future generation of modeling/design
tools (i.e., intelligent modeling assistants [28]) that could significantly improve
the domain modeling task.

A couple of commercial low-code platforms [30,26] and research efforts [35,15]
are exploring model autocompletion but using other knowledge sources or tech-
niques, e.g., the analysis of a collection of previously developed models from
where patterns are extracted or ontologies [8]. However, most companies do not
have enough models to obtain meaningful results from the former, while the
latter limits its suggestions to general knowledge sources. We believe that we
can complement these approaches with autocompletions derived from contextual
information in natural language documents. Other approaches [1] have leveraged
textual information in general data sources like Wikipedia to provide model
suggestions. In contrast, in this paper, we propose combining information from
different textual sources: documents generated around the project and general
data sources (which include basic information that is omitted from the previous
ones as it is supposed to be common knowledge in that community). More-
over, we also consider historic information about previously accepted or rejected
suggestions.

More specifically, our goal is to assist the software designer by generating
potential new model elements to add to the partial model she is already authoring.
We believe this is more realistic than trying to generate full models out of the
requirements documents in a fully automated way. In this exploratory paper, we
propose a configurable framework that follows an iterative approach to help in
the modeling process. It uses Natural Language Processing (NLP) techniques for
the creation of word embeddings from text documents together with additional
NLP tools for the morphological analysis and lemmatization of words. With this
NLP support, we have designed a model recommendation engine that queries the
NLP models and historical data about previous suggestions accepted or rejected
by the designer and builds and suggests potential new domain model elements
to add to the ongoing working domain model. Our first experiments show the
potential of this line of work.

The rest of the paper is structured as follows. Sect. 2 describes our NLP-based
architecture for model autocompletion. Sect. 3 describes the implementation
details and Sect. 4 assesses the feasibility of the approach over an industrial case
study. Section 5 presents the related work and Sect. 6, we conclude our work.
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2 Approach

Our proposal aims to assist designers while they build their domain models.
Given a partial domain model, our system is able to propose new model elements
that seem relevant to the model-under-construction but are still missing. To
provide meaningful suggestions, it relies on knowledge extracted out of textual
documents. Two kinds of knowledge/sources are considered: general4 documents
and contextual (all the specific information that we collect about the project)
documents. We do not require these documents to follow any specific template.

General and contextual knowledge complement each other. The need for
contextual knowledge is obvious and intuitive: designers appreciate suggestions
coming from documents directly related to the project they are modeling. General
knowledge is needed when there is no contextual knowledge or this is not enough to
provide all meaningful suggestions (i.e., it may not cover all the aspects that have
to be described in the domain model as some textual specifications omit aspects
considered to be commonly understood by all parties). For instance, project
documents may never explicitly state that users have a name since it is common
sense and both concepts go hand-by-hand. Thus, general sources of knowledge
fill the gaps in contextual knowledge and make this implicit knowledge explicit.
Leveraging both types of knowledge to provide model autocomplete suggestions
to the designer would significantly improve the quality and completeness of the
specified domain models. As most common knowledge sources are available as
some type of text documents (this is specially true for the contextual knowledge,
embedded in the myriad of documents created during the initial discussions on
the scope and features of any software project), we propose to use state-of-the-art
NLP techniques to leverage this textual-based knowledge sources.

Methods such as GloVE [31], word2vec [27], FastText [18], BERT [10] and
GPT-3 [4] create word embeddings (i.e., vectorial representations of words) that
preserve certain semantic relationships among the words and about the context
in which they usually appear. For instance, a NLP model5 trained with a general
knowledge corpus is able to tell us that the concepts plane and airport are
more closely related than plane and cat because they appear more frequently
together. For example, the Stanford NLP Group’s pretrained GloVe model with
the Wikipedia corpus estimates that the relatedness (measured as the euclidean
distance between vectors) between plane and airport is 6.94, while the distance
between plane and cat is 9.04. Relatedness is measured by the frequency in which
words appear closely together in a corpus of text. Apart from giving a quantifiable
measure of relatedness between words, once an NLP model is trained, it enables
4 According to the Cambridge dictionary: “information on many different subjects that
you collect gradually, from reading, television, etc., rather than detailed information
on subjects that you have studied formally”.

5 Note that “NLP model” and “domain model” do not refer to the same type of model
at all. In the NLP field, a model is the result of analyzing the textual corpus of data
(it could be a trained neural network, a statistical model,...). To avoid confusion, in
this work, each time we refer to a NLP model, we always refer to it as “NLP model”
and never as “model” alone.
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Fig. 1: Autocompletion Framework and Process. Legend: Green boxes are data.
White boxes are software artifacts. Dotted lines denote already implemented
software that we reuse. Solid lines are our contribution/implementation.

us to make queries to obtain an ordered list with the closest words to a given
word or set of words. This latter functionality is the one we use in our approach.
Another advantage of these techniques is that they are able to deal with text
documents regardless of whether they contain structured or unstructured data.

Our framework uses the lexical and semantic information provided by NLP
learning algorithms and tools, together with the current state of the partial
model and the historical data stored about the designer’s interaction with the
framework. As output, it provides recommendations for new model elements
(classes, attributes and relationships). The main components of our configurable
architecture as well as the process that it follows to generate autocompletion
suggestions are depicted in Figure 1. The logic of the algorithm implemented
for the recommendation engine is depicted using an UML Activity Diagram.
We describe our framework architecture as well as all its steps in detail in the
following, while Section 3 on tool support provides further technical details.

2.1 Step A: Initialization

Our process starts by preprocessing all the available documentation about the
project to use it as input for the NLP training process. This step provides a
corpus of text that satisfies the requirements imposed by the NLP algorithm
chosen to create the NLP models, e.g., a single text file that contains words
separated by spaces. For most NLP algorithms, this step consists of the basic
NLP pipeline: tokenization, splitting, and stop-word removal.

Once all the natural language text has been preprocessed (i.e., the domain
corpus is available), the NLP contextual model is trained. Note that we could use
any of the NLP language encoding/embeddings alternatives mentioned before.

Instead, we do not train a NLP model for the general knowledge every time.
Due to the availability of NLP models trained on very large text corpora of general



A NLP-based architecture for the autocompletion of partial domain models 5

knowledge data (such as Twitter, Wikipedia or Google News6), we propose to
reuse them. Therefore, neither Step A.1 nor A.2 apply to the general knowledge.
Nevertheless, if desired, the use of a pretrained model could be easily replaced by
collecting general knowledge documents and executing Steps A.1 and A.2 with
them.

2.2 Step B: Suggestion Generation

Step B.1. Model Slicing The input to this step is a partial domain model
(e.g., a UML model). To optimize the results, we do not generate autocomplete
suggestions using the full working model as input. Instead, we slice the model
according to multiple (potentially overlapping) dimensions and generate sugges-
tions for each slice. This generates a more varied style and a higher number of
suggestions and enables the designer to also focus on the types of suggestions
she is more interested in (e.g. attribute suggestions vs class suggestions).

The slicing patterns have been thoroughly designed taking into account the
information and encoding of the NLP models to take full advantage of them.
Each type of slice focuses on a specific type of suggestion. For instance, if we
want to generate attribute suggestions, it is better to slice the model isolating
the class for which we want to generate the attribute suggestions so that the
NLP recommendations are more focused around the semantics of that class and
avoid noise coming from other not-so-close classes in the model. There is clearly
a trade-off of how much content should be included in each slice depending on
the goal. We have refined our current patterns based on our experimental tests.

In short, in each iteration (steps B.1–C.2), we slice the model according to
these patterns:

– one slice that contains all the classes in the model after removing their
features (attributes and relationships);

– one slice for each class C in the model (keeping its attributes and dangling
relationships); and

– one slice for each pair of classes (keeping its attributes and dangling relation-
ships). These slices aim to suggest new classes, attributes and relationships,
respectively, as we explain in Section 2.2.

Step B.2. Querying the NLP models and historical data to obtain
word suggestions Given a slice, we start by extracting the element names.
They become the list of positive words employed to query the two NLP models
(i.e., general knowledge and contextual knowledge). The historical data is used
to provide negative words when querying the NLP models. Indeed, if the same
list of possible words was used in the past to query the NLP models and the
designer rejected a suggestion, that suggestion is stored in the historical data (as
explained next in Step C.2), and used as a negative case here.
6 https://nlp.stanford.edu/projects/glove/, https://wikipedia2vec.github.io/wikipedia2vec/
pretrained/, https://code.google.com/archive/p/word2vec/
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Each query returns a list of new word suggestions sorted by the partial
ordering relation (e.g., euclidean distance) between the embeddings of the initial
list of words (i.e., the element names extracted from the model slice) and each
suggestion. Therefore, the result after querying the two NLP models for each
model slice returns two different lists of related concepts, sorted by shorter to
longer distance between embeddings (i.e., sorted by relatedness) that we use to
prioritize our suggestions. By default, we merge the two lists (the one coming
from the contextual knowledge and the one from the general NLP models) into a
single sorted list. If a word appears in both lists, the position in which the word
appears in the merged list is that whose distance to the slice is smaller (i.e., the
relatedness to the slice is higher).

This process can be customized. Our framework is parametrizable in two
ways: (i) you can select the number of suggestions to receive at once, and
(ii) customize how the the two lists should be prioritized by defining a weight
parameter. Regarding the latter, as previously said, by default, our engine
mixes the recommendations coming from both sources into only one sorted list.
Nevertheless, we provide a parameter to assign different weights to the two
sources of knowledge, gn, a value in the range [0..1], where gn=0 means that
the user does not want general knowledge suggestions at all, and gn=1 that she
only wants general knowledge suggestions. The weight assigned to the contextual
knowledge will be 1− gn. This prioritization can be used to only get contextual
information suggestions, general ones, give different weights to each of them (so
that they appear higher in the list) or even to ask for two different lists, which
helps trace where the suggestions come from, improving the explainability.

Step B.3. Morphological analysis Before building the potential model ele-
ments that will be presented to the designer, we perform some final processing of
the lists to remove/refactor some candidate suggestions.

In particular, we use auxiliary NLP libraries [13,7] to perform a morphological
analysis of each word (Part-of-Speech (POS) tagging) followed by a lemmatization
7 process, paying especial attention to inflected forms. For instance, if one of the
terms returned by a query to an NLP model returns the word flyers, our engine
lemmatizes it as a verb, resulting in the word fly ; and as a noun, resulting in the
word flyer. Therefore, it considers the three words as possible candidates to be
the name of a new model element. We also use the POS tag to discard words
when they do not apply (for instance, verbs as class names).

Step B.4. Building potential model elements to add As a final step, we
transform the refined lists of words into potential new model elements. The
interpretation of the right type of model element to suggest depends on the type
of slice we are processing.

For slices aiming at new class suggestions, the list of potential concepts refined
returned by the NLP morphological analysis refinement step (B.3) is filtered
7 In linguistics, lemmatization is the process of grouping together the inflected forms
of a word so they can be analysed as a single item, identified by the word’s lemma,
or dictionary form.
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(a) Initial Flight model (b) Flight partial model (iteration 1).

(c) Flight partial model (iteration 2) (d) Flight partial model (iteration 3)

Fig. 2: Flight model evolution

to remove verbs, adjectives and plural nouns. After the filtering process, each
of the remaining words, w, is a candidate to become a new class named w. For
instance, let us assume that we are going to build a model in the domain of
flights. Consider that we start from a partial model with a single class named
Flight and no attributes as Figure 2a shows. After the slicing, querying and
lemmatization, we obtain the list of potential concepts refined [flights, plane,
pilots, pilot, flying, fly, airline, airlines, airplane, jet]. We use the POS tag
to filter the list by discarding verbs, adjectives and plural nouns. The list of
remaining words is [plane, pilot, flying, fly, airline, airplane, jet]. For each word
in this list, our algorithm suggests to add a new class with the same name.

For slices aimed at suggesting new features for a class C, for each output
word, w, we offer the user three options: (a) add a new attribute named w to C
(the user is in charge of selecting the right datatype); (b) add a new class called
w and a new relationship between C and w ; (c) if there is already a class called w
in the partial model, our engine suggests the addition of a relationship between C
and w. Continuing with the example, for a slice containing the class Flight with
no features (Figure 2a), the list of potential concepts refined is: [flights, plane,
pilots, pilot, flying, fly, airline, airlines, airplane, jet]. For example, when the
designer picks the word pilot, she will receive the three options above, and she
could select, for instance, to add it to the model as a new class and relationship
(option b) and obtain the model in Figure 2b.

For slices aimed at discovering new associations, each word, w, is suggested
as a new association between the two classes in the slice. For instance, let us
assume that we kept building the model and added a new class called Plane with
no association with the other two (Figure 2c). In this partial model, for the pair
of classes Flight and Plane, our engine suggests the engineer to add associations
with names: flights, pilots, pilot, flying, fly, jet, airplane. Our designer could
select to add two relationships flights and plane to obtain the model in Figure 2d.

Step B.5. Suggestions provided to user In this step, the generated sugges-
tions are provided to the designer. She can accept, discard or ignore each of them.
While the two first options are processed (either by integrating them into the
partial model or by marking them as negative test cases), when suggestions are
ignored, we do not handle them and they can be presented to the designer in the
future again.
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2.3 Step C: Update model and historical data

Step C.1. Partial model update In this step, the suggestion(s) accepted by
the designer are integrated into the partial model.

Step C.2. Feedback and historical data Every time the designer discards
a recommendation, we annotate it as a negative example in order to avoid
recommending it again and to guide the NLP model in an opposite direction
(i.e., providing the concept as a negative case). Note that the more complete
the partial model is and the more feedback we have, the more accurate our
suggestions will be.

3 Tool Support

We present the implementation of our architecture in Fig. 1. The source code
and pretrained NLP models to reproduce the experiments are available in our
Git repository8.

The text preprocessing algorithm that generates the domain corpus of text
is implemented as a Java program that reads the input text documents, removes
all special characters and merges them into a single textual file. The resulting
file only contains words, line breaks and spaces.

To build the NLP models we use GloVe [31], which is an unsupervised
learning method that creates word embeddings via an statistical data analysis.
It is trained on the entries of a global word-word co-occurrence matrix, which
tabulates how frequently words co-occur with one another in a given corpus.
Populating this matrix requires a single pass through the entire corpus to collect
the statistics, which makes it an efficient method. Note that, while different
methods for the computation of word embeddings (e.g., GloVe, word2vec and
FastText) differ in its implementation, they can be used equally for the purposes
of this work. We have used the Stanford’s implementation of GloVe written in
Python.

Our NLP component encapsulates two GloVe models, one trained with
general data and one with contextual project one (when available). We have
created a simple Java library with the necessary methods to create, train,
load and query these two NLP models. This library provides functions such
as get_suggestions(nlp_model, positive_concepts, negative_concepts,
num_suggestions).

As auxiliary NLP tools for morphological analysis and lemmatization, we
use WordNet [13], which is part of the Python NLTK (Natural Language Toolkit).
We query WordNet to obtain the parts of speech of words (i.e., noun, verb,
adjective, etc.) and use its lemmatization tool.

Our implementation supports models in EMF (Eclipse Modeling Frame-
work)9 [37] format. Since this framework is implemented in Java and our engine
8 https://github.com/modelia/model-autocompletion
9 https://www.eclipse.org/modeling/emf/
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(a) Manually Created Domain Model

(b) Domain model autocompleted

Fig. 3: Emasa Domain Models

needs to heavily interact with it, the Model Recommendation Engine is
implemented in Java, too. For example, our engine uses the EMF API to read
the input domain model, represented as a UML class model and slices it. The
engine is in charge of orchestrating also the previous Python components and
implements the suggestion algorithm described in Section 2.

Finally, the Historical Data component stores feedback from the designer.
This feedback is stored for each user and model, i.e., it keeps track of the
suggestions that the designer has discarded for each model. The discarded
suggestions are used to both avoid suggesting them again and use them as
negative cases from which we also learn. Given the way in which GloVe word
embeddings are encoded, it enables the search of words that are both as close
as possible to a set of words (positive cases) and as far as possible to other set
of words (negative cases). The recommendation engine uses this feature when
querying the NLP models.

4 Validation
4.1 Case study and experiment setup

Let us consider an example of an industrial project: the introduction of a notice
management system for incidents in the municipal water supply and sewage
in the city of Malaga, Spain. The Malaga city hall and the municipal water
and sewage company (EMASA) started a project to manage the incidents that
clients and citizens notify to have occurred either in private properties or public
locations. This project replaced the previous process that was handled via phone
calls and paper forms. In this project, contextual knowledge can be derived from
the project documentation (e.g. requirements specification). Meanwhile, general
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knowledge can be extracted from texts in Wikipedia entries, Google News, or
similar sources covering general water supply and sewage issues. The project
developers produced manually the domain model of this system shown in Fig. 3a.
The goal of this section is to evaluate how well our approach can regenerate this
manual model by means of autocompleting partially seeded models to show the
quality and benefits of our proposal.

For this case study, the contextual model was trained with the project doc-
umentation provided by the client: slides (21), forms and the software require-
ment specification document (78 PDF pages) that after being preprocessed
turned into a 48Kb text file with 7.675 words10. For the general knowledge
model, we have reused the pretrained word embeddings available at https:
//nlp.stanford.edu/projects/glove/, which has been trained with the cor-
pus of text from Wikipedia.

As a preliminary evaluation, we have split the domain model from our case
study into 5 different models, each simulating a potential partial model with a
single class and no attributes/relationships. Fig. 4 shows our five initial models.
The goal is to reconstruct the model shown in Fig. 3a from each partial model.
We have parameterized our engine to provide 20 suggestions per round and opted
to receive contextual and general knowledge separately.

Fig. 4: Initial models

We have automated the reconstruction process by automatically simulating
the behaviour of a designer using our framework. As we know the final target
(the full model) we can automatically accept/reject the suggestions based on
whether they do appear in the full model or not. Accepted ones are integrated in
the (now extended) partial model. New rounds of suggestions are requested until
no more acceptable suggestions are received. Note that this evaluation can be
regarded as a worst case scenario as the evaluation criteria is very strict: in a
real-case scenario, a designer could consider as good suggestions a broader set of
scenarios as there is no single and unique correct model for any domain. And,
obviously, real designers can completely stop the suggestions at any time, edit
the model manually and then resume the suggestions again.

As part of this evaluation, we consider the answer to the following research
questions for our case study:

– RQ1. Recall: what percentage of the elements of the final model are we able
to reconstruct?

10 These documents are not publicly available due to industrial property right. Never-
theless, the software artifacts derived from them are available in our Git repository.
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– RQ2. Precision: what percentage of suggestions are accepted and integrated
into the domain model?

– RQ3. Source of accepted suggestions: what percentage of accepted suggestions
are coming from general knowledge and contextual knowledge?

– RQ4. Performance: how does our prototypical implementation perform?

4.2 Recall (RQ1)

Our experiments show that, in all cases, our simulation has been able to re-
construct all classes; for the attributes it has identified an average of 9.67 out
of the 27 that the complete model has with a standard deviation of 0.58 (i.e.
9.67± 0.58), 9.67± 0.58 out of the 13 relationships; and 6.67± 0.6 out of the 7
association names. In total, it has identified an average of 34± 1.73 out of the
55 model elements, which is approximately a 62% of the model. As an example,
Fig. 3b shows the autocompletion produced starting from an empty class Notice.

4.3 Precision (RQ2)

On average, our framework has been queried 15.67 times (each query returning
20 possible suggestions for each source of knowledge), with a standard deviation
of 5.69 (15.7± 5.69). This means that our designer bot has received, on average,
a total of 626.7± 227.4 suggestions. It has accepted an average of 25.67± 0.58
suggestions, resulting on 34± 1.73 model elements added to the domain model.
Thus, the precision of our approach is 4.46%. Although in absolute terms it
seems low, note that the average number of suggestions accepted per set of
suggestions is 1.79± 0.62 suggestions and that our partial model includes very
limited knowledge (a single class name). Furthermore, our automatic acceptance
criteria is very strict, i.e., it considers a single target domain model as the ground
truth. In reality, several alternatives models are feasible so a human designer
might have accepted suggestions rejected by the bot.

4.4 Source of accepted suggestions (RQ3)

On average, an 85.7% of accepted suggestions came from the contextual knowledge.
This is expected as this is a very particular domain for which it is difficult
to assume there is a rich-enough description in a general knowledge source.
Nevertheless, the general knowledge has complemented the contextual one and
has helped discovering implicit knowledge in the contextual descriptions.

4.5 Performance (RQ4)

We have measured independently the execution time that each component of
our framework and its main steps takes. The experiments have been executed in
a machine with Windows 10, an Intel i7 8th generation processor at 1.80 GHz,
16Gb of RAM memory and 4 cores with 8 logical processors.

We have observed that, for our case study, all the times are under one second.
For instance, the model slicing takes on average 19 milliseconds (ms), the build
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of the potential model suggestions takes on average 1 ms, etc. The only step that
heavily affects the overall performance of our framework is the querying of the
NLP models. Thus, we have paid special attention to that.

On the one hand, the training of the contextual knowledge model using the
project documents only took several ms. It resulted in a file that contains the
word embeddings with a size of 121 KB. After training, the time to load the
word embeddings—this is done only when the system is initialized—as well as
the time to query the model are negligible. This is due to the small size of the
contextual data (text documents, the derived word embeddings).

On the other hand, for the general knowledge model, the file with the pre-
trained embeddings has a size of 989 MB and it takes around 32 seconds to be
loaded. Once loaded, a query takes several seconds. For this reason, we plan
in the future to replace the Python implementation of GloVe with a pure C
implementation that will improve the performance considerably.

5 Related Work

Our work is related to works on autocompletion in software development, extrac-
tion of models from text and modeling assistants. In the following we give an
overview of the state of the art in each group and discuss the differences with
our own proposal.

Autocompletion in software development. Development tools can offer differ-
ent types of recommendations to software developers [33,16,19]. Among them,
code completion [25,5] is a standard feature of IDEs. A similar notion is query
(auto)completion in information retrieval [36], e.g., search engines. Both ap-
proaches propose textual completions and use a combination of frequent patterns,
information about the context and historic data to provide useful suggestions.

In this paper, we target model completion rather than source code or query
completion. While some of the techniques employed in these problems are related,
there are fundamental differences among them:

– Code and query completion place a very strong emphasis the analysis of
historic data. This requires a large repository of examples, which is usually
not available at such a large scale in the case of modeling. For this reason,
similarity and relatedness, which play a complementary role in code and
query completion, are the key components of model completion.

– Some coding activities are predictable and repetitive (e.g., define a constructor
to initialize all attributes of an object) so code completion can provide useful
suggestions simply by considering frequent patterns. On the other hand,
models tend to be one-of-a-kind: even when considering a ubiquitous domain
(e.g., the structure of an organization), the vocabulary, constraints and level
of detail may vary from one model to another.

– Code and query completion is typically local : completions are proposed for
the current method or query. Meanwhile, model completion can be local or
global, i.e., identify missing elements in the entire model.
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– In addition to proposing relevant missing elements, model completion needs
to assign a category/type to these proposed elements (attribute, class, rela-
tionship) and establish how it relates to the existing model, e.g. a relationship
between classes X and Y.

Model extraction from textual requirements. Several approaches aim to gen-
erate software models from textual specifications. Among them, some works
extract structural information such as UML class diagrams [22,2,34,20], entity-
relationship diagrams [17] or domain ontologies [6,24,9,38]. Others focus on other
type of information, like variability [3,32] (commonalities and differences among
the products in a software product line) or behavior [14] (such as the workflow
in a business process). Their goal is not the completion of a partial model, but
the construction of a new model from scratch.

Even though the type of models varies, all these approaches rely on Natural-
Language Processing (NLP) techniques and tools and share similar subtasks as
ours. Nevertheless, they do not take into account the partial model, as we do
in the context of this paper. This means that their approach cannot be guided
by the designer nor can they integrate any type of feedback during the model
creation process. As a consequence, their predictions will be less accurate.

Modeling assistants. Several tools apply model autocompletion with different
goals. For instance, [23] analyzes designer actions in the GUI of a model editor to
detect ongoing high-level activities from a predefined catalog (e.g., a refactoring)
and propose actions to auto-complete the activity. [21] suggests meaningful names
for methods and UML model elements. Meanwhile, [35] suggests completions of a
domain-specific model in order to satisfy well-formedness rules. These completions
are proposed by used either a relational model finder (Alloy) or a constraint solver.
Another approach, [11], clusters classes in a metamodel repository according to a
similarity metric to identify related classes. Then, it recommends related classes to
those in the partial model. None of them leverage any project textual documents
to improve the recommendations. Moreover, two commercial software development
tools provide AI-powered assistants: ServiceStudio from OutSystems [30] and
Mendix Assist [26], based on existing models in their private repositories. As
before, they do not use any type of project document as additional input. Finally,
[1] recommends related models based on knowledge from Google Books, but it
does not consider feedback nor contextual knowledge as we do.

6 Conclusions

This exploratory paper has proposed a model recommendation engine that, once
fed with textual descriptions of a domain, generates autocompletions for domain
models under development. This is a first step towards a more general modeling
assistant that effectively helps modelers specify better models faster.

As further work, we plan to integrate in our framework other types of infor-
mation (such as past models created by the same company in the same or similar
domains and general ontologies, e.g., SUMO) to provide richer suggestions. This
will imply dealing with prioritization/inconsistencies among the different sources.
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Usability will be a key point to ensure the framework is well accepted by
software designers. We will explore the optimal parameters for our system such
as the number of suggestions, the confidence threshold to suggest a new model
element, the timeliness (i.e., when to trigger the suggestions) and the level of
automation (i.e., they are automatically sent to the user versus they are provided
only on-demand). We will ensure that our approach can be effectively used by
carrying out an empirical evaluation with a group of experienced designers.

We will keep refining the techniques presented in this paper, e.g., accounting
for aggregation, composition, and generalization relations and suggesting also
data types and potentially missing constraints beyond just new elements. We will
also like to extend the type of suggestions we offer to include the replacement
and removal of elements. Finally, we will study the application of our approach
on other types of models and modeling languages and the exploitation of other
types of NLP models in software modeling.
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