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Frequency Design of Lossless Passive Electronic
Filters: a state-space formulation of the direct

synthesis approach
Arthur Perodou, Anton Korniienko, Gérard Scorletti, Mykhailo Zarudniev, Jean-Baptiste David and Ian O’Connor

Abstract—This paper deals with the frequency design of loss-
less passive electronic filters under magnitude constraints. With
the huge increase in design complexity for mobile applications,
new systematic and efficient methods are required. This paper
focuses on the direct synthesis approach, an historical design
approach that has not been recently updated. It consists in
directly synthesizing the LC values of a pre-specified circuit
until the spectral mask is satisfied. While beneficial in practice,
this approach typically leads to an important computational
time and requires an initial guess to reduce it. Based on recent
developments of the System and Control community, that led to
efficient methods for system design, the direct synthesis approach
is revisited. To achieve this, the port-Hamiltonian Differential
Algebraic Equation (pHDAE) representation, that particularly
fits the design problem, is introduced. A synthesis method is then
developed, leading to solve an optimization problem of moderate
complexity. For particular cases, this complexity happens to be
remarkably low. Based on this observation, a second method
reveals how to obtain such complexity for the more general case,
using an original combination between the pHDAE and the LFT
representations. Finally, a numerical example shows the validity
and illustrates the benefits of this work.

Index Terms—Frequency filter design, LC circuits, passivity,
port-Hamiltonian systems, pH DAE representation, LFT systems,
BMI optimization, quadratic constraints.

I. INTRODUCTION

The frequency design of passive electronic filters is one
of the oldest topic of interest of Circuit and System theory.
Started with the invention of the electrical filter at the begin-
ning of last century, it especially drawn the attention during
the inter-war period and accompanied the early development
of certain research fields, such as Control theory, Signal
Processing or Electronics [1], [2]. While having a venerable
age at the engineering scale, and despite the rise of digital
filters, the design of passive filters is still a research topic for
electronic applications, such as mobile communications [3] or
low-power circuits [4]. In particular, the deployment of the
fourth generation (4G) of mobile standards and the develop-
ment of the fifth generation (5G) have led the design problem
to be highly challenging, mainly due to stringent filtering
requirements, technological constraints and the emergence of
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advanced techniques such as carrier aggregation [5]. Tradi-
tional design methods appear limited to face this complexity
and systematic methodologies need to be developed.

The design process of passive filter is usually split in several
steps, where the complexity of the models is incremented
step-by-step [6]. The first step, that is the subject of this
paper, typically consists in synthesizing an equivalent circuit,
defined as the electrical interconnection of ideal inductors L
and capacitors C, such that the magnitude of the frequency
response of the scattering parameter s21 satisfies given upper
and lower bounds (see for instance Fig. 4 and Fig. 5 at the
end of the paper). As this is the most repeated step, and that
determines the remaining of the design flow, this step should
be systematic and time- efficient [7].

To achieve this first step, two design approaches have
historically competed [8], [9]. The first approach consists in
synthesizing a transfer function that satisfies the frequency
requirements and then exactly realizing it as a circuit. This
approach usually leads to time-efficient methods, as the stan-
dard Butterworth and Chebyshev methods, but is limited to
particular circuits such as LC-ladder filters [10]. It has been
regularly updated in the last decade in order to synthesize
more general filters, such as LC-resonator ladder filters [9],
[11], [12] or Acoustic-Wave (AW) ladder filters [7], [9], [13],
[14]. However, this approach does not enable to consider
technological constraints and generally leads to introduce
additional undesirable elements (see [14] for instance).

The second approach, called the direct synthesis approach
in this paper, consists in directly synthesizing the element
values of a pre-specified circuit until the given frequency re-
quirements are fulfilled. While being flexible, able to consider
technological constraints and closer to the design problem
formulation, this approach is usually time-consuming. Unlike
the first approach, the direct synthesis approach seems to have
not been improved and is still mainly based on the intuition
of designers and the use of generic solvers [6], [15].

In the past two decades, the System and Control community
has obtained numerous time-efficient methods for system de-
sign problems [11], [12], [16]–[20]. Based on similar concepts,
it is proposed in this paper to revisit the direct synthesis
approach using modern Control and System tools.

II. OVERVIEW

From a System perspective, the direct synthesis approach
can be viewed as the structured synthesis of a state-space
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representation. Unfortunately, this generally leads to complex
optimization problems [21]. By complex, it is meant that
they do not belong to the class of P-complex problems [22],
i.e. they do not have polynomial-time resolution algorithm.
A case in point of P-complex problems is the class of
Linear Matrix Inequality (LMI) optimization problems [23],
that are optimization problems where the constraints are
inequalities being linear1 in the optimization variables. This
class has especially met a certain success in Control and
System theory (see for instance [24]). A relevant extension
of the LMI class is the class of Bilinear Matrix Inequality
(BMI) optimization problems. While being generally complex
(cf Discussion in [25]), BMI problems frequently appear in
System Design [25], [26], including this work, and dedicated
algorithms have been developed (see [27]–[29] for instance).
A BMI problem can be viewed as an LMI problem that addi-
tionally contains inequality constraints with bilinear terms, i.e.
products between optimization variables of order 2. Therefore,
in this paper we use the following empirical rule: the more
bilinear terms, the more complex is the optimization problem.
Similarly, products between optimization variables of order 3,
or higher, increase even more the complexity of the resulting
optimization problem, and should be avoided.

In order to tackle the design problem and decrease its
complexity, a structured state-space representation coming
from the port-Hamiltonian (pH) formalism appears promising.
The pH framework is a multi-physics approach for modeling,
analyzing and controlling systems [30]. Surprisingly, while
this framework seems particularly connected to electrical
circuit theory [31]–[35], which is intrinsically linked with
passive network theory and frequency filtering [1], [2], [36],
the frequency design of passive filters has not been tackled
using a pH approach yet, as far as the authors know. We
then propose to use this framework and, more specifically,
a state-space representation with a specific structure, namely
the pH Differential-Algebraic Equations (pH DAE) represen-
tation [37], that is particularly adapted to address the design
problem with the direct synthesis approach (Problem 2).

The first main contribution of this paper is to show how the
design problem can be tackled by solving a BMI feasibility
problem of moderate complexity (Theorem 1). This is obtained
by developing a synthesis method that is adapted to the
structure of the pH DAE representation (Theorem 1). For
particular filters having a usual pH state-space representation,
this synthesis method leads to a BMI feasibility problem with
a remarkably-low complexity. Based on this observation, it is
revealed how to obtain an optimization problem with similar
complexity for any lossless passive electronic filters, leading to
the second main contribution (Theorem 2). To achieve this, an
original representation is especially introduced, based on the
combination of the pH DAE representation and the so-called
Linear Fractional Transformation (LFT) representation [38],
that we denote as the pH LFT representation (Lemma 2).
Furthermore, while the previous synthesis method is based on
the so-called S-procedure lemma and existing quadratic con-
straints on input-output signals of integrators in the frequency

1actually affine

domain (see for instance [17], [39]), the novelty of the pH LFT
representation requires to derive new quadratic constraints on
the input-output signals of a combination of integrators and
derivators. These novel quadratic constraints are proposed in
Appendix C since it is not the main contribution of the paper.

Structure: This article is organized as follows. In Sec-
tion III, after providing some background about lossless pas-
sive electronic filters, the general statement of the design
problem is given (Problem 1). In Section IV, the pH DAE
representation is defined and adapted to our design purposes,
while in Section V, Problem 1 is equivalently reformulated in
a more explicit form, as the synthesis of a pH DAE represen-
tation (Problem 2), and sufficient conditions (Theorem 1) are
provided, in the form of a BMI feasibility problem, to solve
it. In Section VI, the pH LFT representation is introduced, the
design problem is equivalently reformulated with this original
representation (Problem 3), and sufficient conditions in the
form of a BMI feasibility problem are obtained (Theorem 2).
Finally, a numerical example illustrates the potentials of our
synthesis method in Section VII, and Section VIII concludes
this paper by providing certain perspectives of this work.

Notations: Rn×m is the set of real n×m matrices, while
Sn stands for the set of real symmetric n × n matrices and
Dn the set of real, diagonal n × n matrices. The matrix In
denotes the identity matrix of Rn×n and 0n×m the zero matrix
of Rn×m. The subscripts are omitted when obvious from the
context. XT and X∗ respectively denote the transpose and
transpose conjugate of the matrix X , while X > (≥) 0 denotes
positive (semi-) definiteness. The letter s is the Laplace
variable, L(·) the Laplace operator, and given a time-domain
function f(t), f(s) will be its Laplace transformation, i.e.
f(s) = L(f(·))(s). Bold characters denote either explicit de-
cision variables in a design problem or optimization variables
in an optimization problem.

III. BACKGROUND AND GENERAL DESIGN PROBLEM

A. Background about lossless passive electronic filters

Rg

eg

i1

N

i2

Rlv1 v2

Fig. 1. Electronic filter N

An electronic filter is a two-port N terminated on a resistive
voltage source (eg, Rg) and a resistive load Rl (Fig. 1). Its fil-
tering performance is typically evaluated using the frequency-
response of the so-called scattering matrix S defined by [40]:[

β1(s)
β2(s)

]
=

[
s11(s) s12(s)
s21(s) s22(s)

]
︸ ︷︷ ︸

S(s)

[
α1(s)
α2(s)

]
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where

β1(s) =
v1(s)−Rgi1(s)

2
√
Rg

α1(s) =
v1(s) +Rgi1(s)

2
√
Rg

β2(s) =
v2(s)−Rli2(s)

2
√
Rl

α2(s) =
v2(s) +Rli2(s)

2
√
Rl

Remark 1. Physically, β and α are interpreted as power waves
and |s21(jω)|2 as the transducer power gain [40].

Cm Lm

C0

Fig. 2. An acoustic-wave (AW) element

Graphically, a two-port N is viewed as the ideal electrical
interconnection of elements, where an element is a finite-
dimension Linear Time-Invariant (LTI) model of a physical
component. For instance, an element modeling an AW com-
ponent is represented on Fig. 2 and has the impedance ZAW :

ZAW (jω) =
1

C0 · jω
ω2 − ω2

r

ω2 − ω2
a

where ωr :=
√

1
LmCm

and ωa := ωr

√
1 + Cm

C0
are respec-

tively called resonance anti-resonance frequencies.
For electronic filters, the interconnection is usually referred

to as the topology of the filter. For instance, an n-elements
example of a two-port in a ladder topology, that is commonly
used in mobile applications [6], is drawn on Fig. 3.

e2

e1 e3

en−1

en−2 en

Fig. 3. An n-element example of a two-port in a ladder topology

In this article, the elements are assumed to be lossless pas-
sive. Passivity can be interpreted as considering components
that can dissipate, store or release energy but can not release
more energy than was supplied to them. Lossless passive
components are then those that are passive but do not dissipate
energy. For most of practical cases, this implies that the
elements will be drawn as the ideal electrical interconnection
of positive inductors L > 0 and capacitors C > 0 [36].

In this work, a lossless passive electronic filter is defined
as the ideal electrical interconnection of lossless passive
elements, i.e. the ideal electrical interconnection of positive
inductors and capacitors.

B. General design problem formulation
The problem is to design electronic filters of which scatter-

ing matrix S satisfies magnitude constraints in the frequency-
domain. More precisely, frequency filtering constraints are set
on the magnitude of the frequency-response of s21 and consist
of upper and lower bounds defined on frequency intervals.
These constraints are referred to as a spectral mask.

Definition 1 (Spectral Mask SM).
Consider NU upper bounds, defined by NU positive real
numbers Uu associated with NU frequency intervals ΩUu

⊆ R.
Consider NL lower bounds, defined by NL positive real
numbers Ll associated with NL frequency intervals ΩLl

⊆ R.
Define the spectral mask SM as the union of these upper and
lower bounds. A transfer function s21 will be said to satisfy
SM if the following constraints hold:

∀u ∈ {1, . . . , NU}, ∀ω ∈ ΩUu , |s21(jω)|2 ≤ U2
u (1)

∀l ∈ {1, . . . , NL}, ∀ω ∈ ΩLl
, |s21(jω)|2 ≥ L2

l (2)

In practice, the elements and the topology of the filter
are chosen by designers using a circuit diagram through the
interface of a CAD software. The problem is then to find the
element values, for instance Lm, Cm and C0 of Fig. 2, such
that the resulting s21 satisfies a given spectral mask SM, as
stated in Problem 1.

Problem 1 (Lossless passive electronic filter design).
GIVEN a spectral mask SM,
GIVEN a circuit diagram of a lossless passive electronic filter,
FIND if there exist positive element values such that the
resulting scattering parameter s21 is stable and satisfies the
spectral mask SM, i.e. such that (1)-(2) hold.
If such values exist, COMPUTE them.

From a System perspective, the state-space representation
naturally appears when tackling Problem 1 with the direct
synthesis approach. Indeed, when a circuit diagram is made by
a designer, a mathematical model is implicitly built. The state-
space representation provides a direct mean to make it explicit.
By an adequate choice of the state vector, the dynamics
of the elements are displayed, while the topology of the
filter appears through structural constraints on the state-space
matrices. Moreover, the elements values generally appear in a
simpler form than, for instance, with a transfer function.

The design problem becomes then to synthesize the struc-
tured matrices of a state-space representation which defines a
stable s21 such that (1)-(2) hold. Unfortunately, the structured
state-space synthesis problem seems to be inherently com-
plex [21]. Therefore, the objective of the next sections is to
reduce this complexity. To achieve this, a suitable state-space
representation is first introduced, without loss of generality.
Indeed, among the infinite number of equivalent state-space
representations, those leading to the lowest complexity should
be preferred. Then an adapted synthesis approach is developed.

IV. PH DAE REPRESENTATIONS

A. On the use of the pH DAE representations
In order to solve Problem 1, the first step is to obtain a math-

ematical representation from the circuit diagram that is suitable
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for design, i.e. a representation where the decision variables
are explicitly exhibited and leading to an optimization problem
with complexity as low as possible. The formalism of port-
Hamiltonian (pH) systems appears for us appropriate to obtain
such a representation for the reasons detailed below.
First, it provides a straightforward and systematic modeling2

procedure to compute a structured state-space representation
from any circuit diagram [32]. The result is generally not
a usual state-space representation but is in a Differential-
Algebraic Equations (DAE) form [37], called pH DAE repre-
sentation in the sequel. Second, the resulting structure of the
representation appears particularly simple from a design per-
spective. In fact, the design variables, i.e. the element values,
are the entries of a certain diagonal matrix Q that compactly
and linearly appears in the state-space matrices. Intuitively,
these features should reduce the complexity of the design
problem. Third, due to the structure of the pH representation,
certain properties of the scattering parameter s21 can be easily
ensured, such as stability and unitary gain.

B. pH DAE representations

A scattering description, i.e. linking the signals α1, α2, β1

and β2, may not be directly obtained from a given circuit
diagram. Instead, an impedance description, i.e. linking the
signals i1, i2, v1 and v2 (Fig. 1), is usually first obtained and
then transformed to get a scattering description [36].

In order to obtain an impedance description, the modeling
procedure of the pH framework is used [32]. It is a power-
based approach that consists in writing the dynamics of each
element and their interconnection scheme using the Kirch-
hoff’s circuit laws, to obtain a state-space representation.

The result is generally not a usual state-space representation.
This is due to two reasons. First, the impedance matrices
may have both strictly proper and improper entries while a
usual state-space representation engenders a proper transfer
matrix [38]. A hybrid matrix, that only has proper entries, is
sometimes used in Network theory [36]. Another option is to
do not explicitly label the signals as inputs and outputs. This
option is retained in the sequel as the input-output labeling of
the impedance representation is not essential for solving our
design problem. Second, due to the interconnection laws, al-
gebraic constraints commonly appear between state variables.
This leads to use an extended state-space representation for
pH systems, named port-Hamiltonian Differential-Algebraic
Equations (pH DAE) representation and defined below.

Definition 2 (pH DAE representation (Adapted from [37])).

Given matrices Es, Fs ∈ R(n+ne)×n, Ee, Fe ∈ R(n+ne)×ne

such that:

ESF
T
S + FSE

T
S + EeF

T
e + FeE

T
e = 0 (3)

rank
[
FS ES Fe Ee

]
= n+ ne (4)

2Rigorously, this is not a modeling procedure, as a circuit diagram is already
a model of a physical system. This procedure enables to move from the level
of circuit diagrams to the level of mathematical equations. However, for the
sake of simplicity, the word modeling is preferred in this context.

a pH DAE representation is defined as:

FS ẋ(t) = ESQx(t) + Fefe(t) + Eeee(t)

where Q ∈ Sn is a symmetric matrix, x is denoted as the state
variables and (fe, ee) the external variables.

Remark 2. This representation is usually referred to as a matrix
kernel representation of a Dirac structure [37].

Definition 2 provides a general representation that can be
used for any power-preserving interconnection of lossless pas-
sive subsystems. In the context of lossless passive electronic
filters, ee and fe are the electrical signals linking the circuit
with the source and the load, i.e with conventions of Fig. 1:

fe =

[
v1

v2

]
ee =

[
i1
i2

]
(5)

The state variables x and ẋ contain the characteristic electrical
quantities of the elements, while Q ∈ Dn×n is a diagonal
matrix with the inverse of the element values on its diagonal.
Further details on the application of the modeling procedure to
lossless passive electronic filters can be found in [9, Chap. 4].

The scattering pH DAE representation is now defined.

Definition 3 (Scattering pH DAE representation (Adapted
from [41])).
Given a pH DAE representation such as in Definition 2,
Given a positive-definite, diagonal matrix R > 0 ∈ Dne×ne ,
a scattering pH DAE representation associated to R is defined
as:

FS ẋ(t) = ESQx(t) +Gz(t) +Hw(t) (6)

with z(t), w(t) ∈ Rne and G, H ∈ R(n+ne)×ne given by:

z =
1

2

(
R− 1

2 fe −R
1
2 ee

)
G = FeR

1
2 − EeR−

1
2

w =
1

2

(
R− 1

2 fe +R 1
2 ee

)
H = FeR

1
2 + EeR−

1
2

The variables z and w are also denoted as external variables.

Remark 3. For this representation, (3) and (4) become:

ESF
T
S + FSE

T
S +

1

2

(
HHT −GGT

)
= 0 (7)

rank
[
FS ES G H

]
= n+ ne (8)

For lossless passive electronic filters, i.e. when fe and ee
are given by (5), one gets ne = 2 and

w =

[
w1

w2

]
=

[
α1

α2

]
z =

[
z1

z2

]
=

[
β1

β2

]
while R is provided by:

R :=

[
Rg 0
0 Rl

]
Unlike the impedance matrix, the scattering matrix of a pas-

sive electronic filter is known to have proper transfer functions
as entries [36]. This implies that the external variables w and z
can be explicitly split as inputs and outputs. This feature can
be extended to the scattering pH DAE representation, as stated
in the next property.
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Property 1 (Descriptor form [9]).
Consider a scattering pH DAE representation such as in
Definition 3. Then (6) can be re-written as follows:{

FS1
ẋ(t) = ES1

Qx(t) +H1w(t)

z(t) = ES2
Qx(t) +H2w(t)

(9)

This representation is said to be in the descriptor form.

Proof. Cf [9, Property 4.1, p. 60] and the associate proof.

When FS1
= I , or FS1

is invertible, the descriptor form
reduces to a usual state-space representation. Due to (7)-(8),
this is written using the pH formalism as follows [9], [41]:{

ẋ(t) =
(
J −BBT

)
Qx(t) +

√
2Bw(t)

z(t) = −
√

2DBTQx(t) +Dw(t)
(10)

where J = −JT and DTD = I .
Furthermore, even when FS1 is not invertible, the descriptor

form (9) can be reduced, under a mere assumption, to a
pH state-space representation such as (10) by eliminating the
algebraic constraints between the state variables (refer to [37]
and the references therein). However, this process breaks the
diagonal structure of the matrix Q, that will be essential for
limiting the complexity of the synthesis approach developed in
the next section. In addition, the particular connection between
the representation and the circuit diagram is lost.

C. Structural properties

The structure of pH representations enables to easily check
certain system properties. In particular, an important result is
that the condition Q > 0 is sufficient for ensuring stability
and the all-pass property.

Property 2 ( [31], [42]).
Given the scattering pH DAE representation (6), or the equiv-
alent descriptor form (9), of a system Σ with transfer U(s).
If Q = QT > 0, then Σ is stable and is all-pass, i.e.

∀ω ∈ R, U(jω)∗U(jω) = I

In our case, the standard result [36] that the scattering
matrix S is stable and ∀ω ∈ R, S(jω)∗S(jω) = I is found
again. Consequently, the transfer function s21 is stable and

∀ω ∈ R, |s21(jω)|2 ≤ 1

D. Complex-domain representation of s21

The modeling procedure of the pH framework and the
previous considerations allow to obtain (9) as a time-domain
scattering representation of a given circuit diagram. However,
Problem 1 is formulated in the complex domain and on the
scattering parameter s21. In the sequel, it is shown how to
obtain a complex-domain representation of s21.

Assuming zero initial conditions, applying the Laplace
transform to (9) and defining p(s) := L(x(·))(s), one gets:

p(s) =

(
1

s
· In
)
q(s)

FS1q(s) = ES1Qp(s) +H1w(s)

z(s) = ES2Qp(s) +H2w(s)

(11)

This provides a representation of the scattering matrix S(s)
and allows to compute a representation of s21(s), as presented
in the next lemma.

Lemma 1.
Given the complex-domain, scattering pH DAE representation
in a descriptor form (11) of a lossless passive electronic filter,
Define[
Ez1

Ez2

]
:= ES2

[
Hw1

Hw2

]
:= H1

[
Hs11 Hs12

Hs21 Hs22

]
:= H2

Then a representation of s21(s) is given by:
p(s) =

(
1

s
· In
)
q(s)

FS1
q(s) = ES1

Qp(s) +Hw1
w1(s)

z2(s) = Ez2Qp(s) +Hs21w1(s)

(12)

Proof. This is straightly obtained from (11) by noticing that,
with the convention of Fig 1, w2 = α2 = 0, .

V. SCATTERING PH DAE REPRESENTATION SYNTHESIS

The design problem is now tackled. First, using the system-
atic modeling procedure of the pH framework and applying
Lemma 1, Problem 1 is equivalently restated (Problem 2).
Then, an adapted synthesis approach to solve Problem 2 is
provided (Theorem 1). Finally, the result is discussed and
compared with a more traditional approach, highlighting then
the benefits of our approach.

A. Equivalent design problem formulation

The general problem (Problem 1) is now equivalently re-
stated using the scattering pH DAE representation (Problem 2).
Unlike Problem 1, Problem 2 has the benefit of providing an
explicit mathematical formulation of the design problem.

Problem 2 (Scattering pH DAE representation synthesis).

GIVEN a spectral mask SM,
GIVEN a scattering pH DAE representation in the descriptor
form (9) of a lossless passive electronic filter,
FIND if there exists a positive-definite, diagonal matrix
Q > 0 ∈ Dn×n such that the scattering parameter s21, given
by (12), is stable and satisfies the spectral mask SM, i.e. such
that (1)-(2) hold.
If such matrix Q exists, COMPUTE it.

B. Adapted synthesis approach

Next theorem provides sufficient conditions, in the form of
a feasibility problem, to solve Problem 2. This is obtained
using a signal-based approach, based on the so-called S-
procedure and the characterisation of the input-output signals
of integrators by quadratic constraints (see Appendix A).

Theorem 1.
Given a spectral mask SM,
Given a scattering pH DAE representation in the descriptor
form (9) of a lossless passive electronic filter,
Given real matrices Ez2 ∈ R1×n, Hw1

∈ Rn×1, Hs21 ∈ R1×1
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as in Lemma 1,
A solution of statement (i) provides a solution to (ii).
(i) There exists a solution to the following feasibility prob-

lem: ∃Qinv ∈ Dn×n,
∀u ∈ {1, . . . , NU}, ∃Pu , Du ∈ Sn, ∃τu ∈ R,
∀l ∈ {1, . . . , NL}, ∃Pl , Dl ∈ Sn, ∃τl ∈ R,

Qinv > 0

Du > 0 τu > 0

AΩUu
(Du,Pu, τu) +

[
QinvFT

S1
FS1

Qinv A
(
Qinv

)
A
(
Qinv

)T C

]
≥ 0

Dl > 0 τl > 0

AΩLl
(Dl,Pl, τl) +

[
QinvFT

S1
FS1

Qinv A
(
Qinv

)
A
(
Qinv

)T C

]
≥ 0

with

C :=

 ET
S1
ES1

+ ET
z2Ez2 −ET

z2 ET
S1
Hw1

+ ET
z2Hs21

−Ez2 1 −Hs21

HT
w1
ES1

+HT
s21Ez2 −HT

s21 HT
w1
Hw1

+HT
s21Hs21


A
(
Qinv

)
:=
[
−QinvFT

S1
ES1

0 −QinvFT
S1
Hw1

]
AΩUu

(Du,Pu, τu) :=


−zΩUu

Du −y∗ΩUu
Du − Pu 0 0

−yΩUu
Du − Pu −xΩUu

Du 0 0

0 0 −τu 0

0 0 0 U2
uτu



AΩLl
(Dl,Pl, τl) :=


−zΩLl

Dl −y∗ΩLl
Dl − Pl 0 0

−yΩLl
Dl − Pl −xΩLl

Dl 0 0

0 0 τl 0

0 0 0 −L2
l τl


where xΩUu

, yΩUu
, zΩUu

, and xΩLl
, yΩLl

, zΩLl
, depend

respectively on ΩUu
and ΩLl

, and are provided as
follows:[
xΩ yΩ

y∗Ω zΩ

]
=

[
ω2

0 0
0 −1

]
for Ω = [0, ω0][

xΩ yΩ

y∗Ω zΩ

]
=

[
−ω1ω2 −j ω1+ω2

2
j ω1+ω2

2 −1

]
for Ω = [ω1, ω2][

xΩ yΩ

y∗Ω zΩ

]
=

[
−ω2

0 0
0 1

]
for Ω = [ω0,+∞)


(13)

(ii) Problem 2 is solved. Indeed, s21 given by (12), where
Q :=

(
Qinv

)−1
, is stable and verifies (1)-(2).

Proof. Cf Appendix A.

Using Theorem 1, Problem 2, and thus Problem 1, can be
solved in the manner of the direct synthesis approach. It allows
then to take benefits from this approach. In particular, affine
constraints on the element values, such as upper Qinv

U and
lower Qinv

L bounds, can be straightly included by adding LMI
constraints on Qinv:

Qinv
L ≤ Qinv ≤ Qinv

U

This is of practical interest as it allows to include certain
technological constraints that are expressed on the element
values (see [43] for instance for AW elements).

However, it also inherits the inherent complexity of the
direct synthesis approach. Indeed, the optimization problem of
statement (i) contains bilinear terms and is then a BMI feasi-
bility problem, known to be generally complex (see Discussion
in [25]). Nonetheless, this complexity appears moderate as
there is only a single bilinear term per constraint and it is the
same for all the constraints, i.e. QinvFT

S1
FS1

Qinv .
Furthermore, in the particular case where (12) is a usual

pH state-space representation, i.e. when FS1 = I , due to
the diagonal structure of Q the shared bilinear matrix term
degenerates to:

QinvQinv =


(
qinv1

)2
. . . (

qinvn

)2


That is, there is a particularly low number of bilinear terms
equaled to n, the total number of inductors and capacitors used
for representing the elements.

C. Discussion on the synthesis approach

Instead of the approach developed to obtain Theorem 1,
a natural choice from a System perspective would be to
directly extend the standard analysis approach [36], based
on the Kalman-Yakubovich-Popov (KYP) lemma [44], to
a design purpose. In the analysis case, and for particular
system design cases (see for instance the design applications
of [17]), this approach leads to solve an LMI feasibility
problem, known to be efficiently solvable. Unfortunately, in
our case, this approach leads to an optimization problem
much more complex. For instance, assume that the state-space

representation
[

(J −BBT )Q
√

2B1√
2BT

2 Q 0

]
of s21 is given and

consider the following upper bound:

∀ω ∈ [0, ω0], |s21(jω)|2 ≤ U2

Applying the appropriate KYP Lemma [17] leads to the
equivalent feasibility problem:
∃Q > 0 ∈ Dn×n, ∃P ∈ Sn, ∃D > 0 ∈ Sn,

MT


QDQ QP 0 0
PQ −ω2

0D 0 0
0 0 −I 0
0 0 0 U2I

M ≥ 0

where

M :=


J −BBT

√
2B1

I 0√
2BT

2 0
0 I


This approach leads then to solve a feasibility problem with
constraints involving products between optimization variables
of order 3. Moreover, these products are constraint-dependent,
and then a spectral mask with several bounds will involve an
important number of such non-linear terms.

Therefore, this implies that this seemingly-natural approach
leads to an optimization problem more complex than the
synthesis approach developed to establish Theorem 1. While
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both are substantially underlying on the same tools, the S-
procedure and quadratic constraints on signal, our contribution
is to have adapted this approach to the pH representation and
our design objective in order to reduce the complexity of the
resulting optimization problem.

VI. PH LFT REPRESENTATION SYNTHESIS

The synthesis approach developed in the last section leads to
a remarkably-low number of bilinear terms for lossless passive
electronic filters that have a pH state-space representation such
as in (10), with Q being a diagonal matrix. It is now revealed
how to extend this feature to filters that have the more general
representation (9), with Q still being diagonal.

As already mentioned, the process to obtain a usual state-
space representation (10) from a descriptor form (9) is not
suitable, as it breaks the diagonal structure of Q. Instead,
we propose to combine the pH DAE representation with
the Linear Fractional Transformation (LFT) representation.
The LFT representation was introduced for modeling systems
z(s) = G(s)w(s) which are defined as the interconnection of
N sub-systems defined by the transfer functions ∆i(s) [38]:

p(s) =


∆1(s) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 ∆N (s)

 q(s)

q(s) = M11p(s) +M12w(s)

z(s) = M21p(s) +M22w(s)

with M11, M12, M21, M22 matrices of appropriate dimension.
The state-space representation is a particular case of the LFT
representation with ∆i(s) = 1

s , i = 1, . . . , N . The intercon-
nection of more complex subsystems can be represented, such
as multi-agent [20] or uncertain systems [45].

The combination of the pH and the LFT representations
leads to an original representation, that will be denoted as
the pH LFT representation. In the sequel, after exhibiting the
pH LFT representation (Lemma 2), Problem 2 is equivalently
reformulated to suit this new representation (Problem 3). Then,
our synthesis approach is adapted in order to tackle Problem 3,
leading to an optimization problem with similar complexity
than in the previous case of a pH state-space representation.

A. pH LFT representation

Next lemma states that, using the LFT paradigm, the pH
DAE representation is equivalent to a new representation,
denoted as the pH LFT representation. An important feature
is that the elements values, or their inverse, will still be the
entries of a diagonal matrix Q̌ (cf proof in Appendix B).

Lemma 2 (pH LFT representation).
Given the complex-domain, scattering pH DAE representation
in a descriptor form (11) with Q being a diagonal matrix,
Define r as the rank of FS1

, r := rankFS1
, and nAE such

that r + nAE = n.
An equivalent representation of (11) is given by:

p̌(s) =

(
1
s · Ir 0

0 s · InAE

)
q̌(s)

q̌(s) =
(
J −BBT

)
Q̌p̌(s) +

√
2Bw(s)

z(s) = −
√

2DBT Q̌p̌(s) +Dw(s)

(14)

where Q̌ is diagonal, J = −JT and DDT = I .
We denote this representation as a pH LFT representation.

Proof. Cf Appendix B.

When specified to lossless passive electronic filters, the pH
LFT representation enables to obtain an expression of s21 with
a similar structure.

Lemma 3.
Given a pH LFT representation (14) of a lossless passive
electronic filter, Define A B1 B2

C1 D11 D12

C2 D21 D22

 :=

[
J −BBT

√
2B

−
√

2DBT D

]
Then a representation of s21(s) is given by:

p̌(s) =

(
1
s · Ir 0

0 s · InAE

)
q̌(s)

q̌(s) = AQ̌p̌(s) +B1w1(s)

z2(s) = C2Q̌p̌(s) +D21w1(s)

(15)

B. Equivalent design problem formulation

Problem 2 is now equivalently reformulated.

Problem 3 (pH LFT representation synthesis).
GIVEN a spectral mask SM,
GIVEN a pH LFT representation (14) of a lossless passive
electronic filter,
FIND if there exists a positive-definite, diagonal matrix
Q̌ > 0 ∈ Dn×n such that the scattering parameter s21, given
by (15), is stable and satisfies the spectral mask SM, i.e. such
that (1)-(2) hold.
If such matrix Q̌ exists, COMPUTE it.

C. Adapted synthesis approach

The pH LFT representation enables to take advantages of
both pH and LFT representations. Nonetheless, it requires
to adapt the previous synthesis method. While it is based
on a signal approach and can be directly applied, quadratic
constraints have to be obtained in order to characterise the
signals of the top relation of (14). However, this relation is
particularly original and was not found in the literature by
the authors. We propose then to use new quadratic constraints
presented in App. C, leading to the next theorem.

Theorem 2.
Given a spectral mask SM,
Given a pH LFT representation (14) of a lossless passive
electronic filter,
Given real matrices A ∈ Rn×n, B1 ∈ Rn×1, C2 ∈ R1×1,
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D21 ∈ R as in Lemma 3,
A solution of statement (i) provides a solution to (ii).
(i) There exist a solution to the following feasibility problem:
∃Q̌inv ∈ Dn×n,
∀u ∈ {1, . . . , NU},
∃P̌u, Ďu ∈M, ∃P̌uint , Ďuint ∈Mint, ∃τu ∈ R,
∀l ∈ {1, . . . , NL},
∃P̌l, Ďl ∈M, ∃P̌lint , Ďlint ∈Mint, ∃τl ∈ R,

Q̌inv > 0 (16)

Ďu + Ďuint > 0 τu > 0 (17)

ǍΩUu

(
Ďu, Ďuint , P̌u, P̌uint , τu

)
+

[
Q̌invQ̌inv Ǎ

(
Q̌inv

)
Ǎ
(
Q̌inv

)T Č

]
≥ 0

Ďl + Ďlint > 0 τl > 0 (18)

ǍΩLl

(
Ďl, Ďlint , P̌l, P̌lint , τl

)
+

[
Q̌invQ̌inv Ǎ

(
Q̌inv

)
Ǎ
(
Q̌inv

)T Č

]
≥ 0

with

Č :=

ATA+ CT
2 C2 −CT

2 ATB1 + CT
2 D21

−C2 1 −D21

BT
1 A+DT

21C2 −DT
21 BT

1 B1 +DT
21D21


Ǎ
(
Q̌inv

)
:=
[
−Q̌invA 0 −Q̌invB1

]
ǍΩUu

(
Ďu, Ďuint , P̌u, P̌uint , τu

)
:=


−žΩUu

Ďu − y̌∗ΩUu
Ďuint − P̌uint −y̌∗ΩUu

Ďu − žΩUu
Ďuint − P̌u 0 0

−y̌ΩUu
Ďu − žΩUu

Ďuint − P̌u −x̌ΩUu
Ďu − y̌ΩUu

Ďuint − P̌uint 0 0

0 0 −τu 0

0 0 0 U2
uτu



ǍΩLl

(
Ďl, Ďlint , P̌l, P̌lint , τl

)
:=


−žΩLl

Ďl − y̌∗ΩLl
Ďlint − P̌lint −y̌∗ΩLl

Ďl − žΩLl
Ďlint − P̌l 0 0

−y̌ΩLl
Ďl − žΩLl

Ďlint − P̌l −x̌ΩLl
Ďl − y̌ΩLl

Ďlint − P̌lint 0 0

0 0 τl 0

0 0 0 −L2
l τl


where x̌ΩUu

, y̌ΩUu
, žΩUu

, and x̌ΩLl
, y̌ΩLl

, žΩLl
are

defined such as:

[
x̌Ω y̌Ω

y̌∗Ω žΩ

]
:=


xΩ · Ir 0 yΩ · Ir 0

0 zΩ · InAE
0 y∗Ω · InAE

y∗Ω · Ir 0 zΩ · Ir 0
0 yΩ · InAE

0 xΩ · InAE


where xΩ, yΩ and zΩ depend on the frequency interval Ω
and are provided by (13), and

M :=

{
M | ∃Mr ∈ Sr,∃MAE ∈ SnAE ,M =

[
Mr 0
0 MAE

]}
Mint :=

{
Mint| ∃MrAE ∈ Rr×nAE ,Mint =

[
0 MrAE

MT
rAE 0

]}
(ii) Problem 3 is solved. Indeed, s21 given by (15), where

Q̌ :=
(
Q̌inv

)−1
, is stable and verifies (1)-(2).

Proof. Cf Appendix C.

Theorem 2 provides sufficient conditions in the form of
a BMI feasibility problem to solve Problem 3, and thus
Problem 1 and Problem 2. This BMI feasibility problem has a
particularly reduced complexity as it involves a single bilinear

matrix term, i.e. Q̌invQ̌inv , which is the same for all the
constraints. In addition, due to the diagonal property of Q̌inv ,
the number of bilinear terms is remarkably low as, again,
equaled to n, the total number of inductors and capacitors.

VII. NUMERICAL ILLUSTRATION

In order to provide an insight on the potentials of this work,
our synthesis approach is applied on an illustrative example.
To achieve this, the next spectral mask SM, represented by
the grey blocks on Fig. 4, is considered:

∀ω ∈ [0.01 · ωU1
, ωU1

], |s21(jω)|2 ≤ U2
1

∀ω ∈ [ωL1
, ωL2

], |s21(jω)|2 ≥ L2

∀ω ∈ [ωU2 , 100 · ωU2 ], |s21(jω)|2 ≤ U2
2

with ωU1
= 0.9 rad/s, ωL1

= 1.35 rad/s, ωL2
= 2.3 rad/s,

ωU2
= 3.5 rad/s and U2

1 = 0.15, L2 = 0.81, U2
2 = 0.2.

In addition, assume that an initial guess is provided as the 3-
elements, AW ladder filter of Fig. 5 with the elements values
of Table I. The squared modulus of the frequency-response
of the resulting scattering parameter s21 is plotted in black-
dotted line on Fig. 4. This initial guess can be obtained by
tuning the zeros of s21 and s11, using their particular link with
the resonance and anti-resonance frequencies of the resonators
(see for instance [6] for more details).

TABLE I
AW -ELEMENT VALUES (IN F AND H )

C01 Lm1 Cm1 C02 Lm2 Cm2

Initial guess 0.300 1.764 0.567 0.300 0.610 0.567
pH LFT 0.321 1.768 0.600 0.139 0.601 0.396

C03 Lm3 Cm3

Initial guess 0.100 5.291 0.189
pH LFT 0.100 5.291 0.206

Fig. 4. Plot of |s21(jω)|2 of the initial guess and the solutions obtained

In the sequel, the following scheme is made. First, the ma-
trices and signals of the pH LFT representation are computed.
Then, by applying Theorem 2, a BMI problem is obtained.



9

An iterative algorithm based on LMI relaxations is then run
to solve it. This requires an initial point and the previous initial
guess is used for this purpose.

Rg

eg

i1

iLm2
Lm2

Cm2

i2

Rl

iLm1

Lm1

Cm1

iC01

C01

iC02

C02

iLm3

Lm3

Cm3

iC03

C03

v1 v2
vLm1

vCm1

vC01

vLm2 vCm2

vC02 vLm3

vCm3

vC03

Fig. 5. A ladder filter with three AW elements

A. Computation of the pH LFT representation

First, using the systematic procedure of the pH framework
(see [9, Chap. 4, Sec. 4.2.2.2] for further details) and applying
the Laplace transform, the scattering pH DAE representa-
tion (11) is obtained, with ne = 2, n = 9 and:[

FS1
ES1

H1

0ne×n ES2
H2

]

=



0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 −1 0 0

1 0 0 1 0 0 0 0 0 −1 −1 0 0 −1 0 0 0 0 2 0
0 0 0 −1 0 0 1 0 0 0 0 0 0 1 0 −1 −1 0 0 2
0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1



Q :=

Q1 0 0
0 Q2 0
0 0 Q3

 , Qk :=


1

C0k
0 0

0 1
Lmk

0

0 0 1
Cmk


In addition, using notations of Fig. 5, q and p are defined by:

q :=
[
iC01

vLm1
iCm1

iC02
vLm2

iCm2
iC03

vLm3
iCm3

]T
p :=

(
Q−1

[
vC01

iLm1
vCm1

vC02
iLm2

vCm2
vC03

iLm3
vCm3

])T
Then, applying the procedure given in the proof of

Lemma 2, the pH LFT representation (14) of the scattering
matrix S is obtained, with D := H2 and

J :=



0 −1 0 0 0 0 0 −1 −1
1 0 −1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 1

0 0 0 1 0 −1 0 0 0
0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0
1 0 0 −1 0 0 −1 0 0
1 0 0 −1 0 0 0 0 0


B :=



1 1
0 0

0 0
0 −1

0 0
0 0
0 0
0 0
0 0



Q̌ :=

Q1 0 0
0 Q2 0
0 0 Q̌3

 , Q̌3 :=


1

Cm3
0 0

0 1
Lm3

0

0 0 C03



q̌ := 1√
2

[
iC01

vLm1
iCm1

iC02
vLm2

iCm2
iCm3

vLm3
vC03

]T
p̌ := 1√

2

(
Q̌−1

[
vC01

iLm1
vCm1

vC02
iLm2

vCm2
vCm3

iLm3
iC03

])T
B. Iterative algorithm based on LMI relaxations

Applying Theorem 2 leads to solve the BMI feasibility
problem of its statement (i). To achieve this, an adapted ver-
sion of the algorithm proposed in [28] is used (Algorithm 1).
Starting from an arbitrary initial point Q̌inv

init, chosen here as
the initial guess, it proceeds by solving a sequence of LMI
optimization problems. At each iteration k, an LMI relaxation
of the BMI problem is solved (Relaxation_LMI), based on
the result of the previous iteration Q̌inv

k−1. Then, Q̌inv
k is tested

(Test_Satisfaction_SM) to check if the resulting s21

satisfies the spectral mask SM or not. Again, this leads to
solve an LMI problem. Finally, Q̌inv

k−1 is updated in preparation
of the next iteration (line 8 of Algorithm 1), based on the
Nesterov’s acceleration parameter ηk := k−1

k+2 (cf [28] and the
reference therein for further details). Notice that the algorithm
is stopped if a feasible solution of the original BMI problem
is found or if the number of iterations exceeds max iter.

One of the main benefits of Algorithm 1 is that each iteration
only requires to solve LMI problems, that are efficiently
solvable. The computational cost depends then mainly on the
total number of iterations, that should be as low as possible. In
order to decrease this number, a first possibility is to provide
the initial guess as close as possible to the feasibility set of
the original BMI problem. This may be achieved by improving
the first synthesis approach. In a complementary manner, one
may decrease the complexity of the BMI problem, and then
get a closer LMI relaxation. This was achieved in this paper.

C. Results

Algorithm 1 is run on the example with max iter = 500.
The computation is performed using MATLAB 2020a, the
semidefinite programming mode of the CVX framework and
the solver MOSEK3, on a computer with a 4-core 2.30 GHz
CPU and 6GB RAM. After nb iterpHLFT = 12 iterations,
lasting 13.5 s, the algorithm converges to a solution. The
resulting element values are provided in Table I, where the
values of the capacitors are given in Farad (F ) and the
inductors in Henry (H), and the associate |s21(jω)|2 is plotted
in red-solid line on Fig. 4.

Moreover, Theorem 1 is applied and Algorithm 1 is
adapted to solve the BMI feasibility problem resulting from
the statement (i). This adapted algorithms converges in
nb iterpHDAE = 21 iterations, for a computational time of
19.5 s, to a solution, from which the resulting |s21(jω)|2 is
plotted in blue-dashed line on Fig. 4. Therefore, compared
with Theorem 2, the application of Theorem 1 results in
an increase of the total number of iterations, and thus the
computational time. This is consistent with the empirical
rule that aims to get as least bilinear terms as possible, and
motivates the use of our synthesis approach.

Finally, for an illustrative purpose, a more direct approach,
based on the use of generic solvers, is applied on this example.

3www.cvxr.com, www.mosek.com
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Algorithm 1: Iterative LMI-relaxations algorithm

Input: max iter, Q̌inv
init

Output: Q̌inv

1 Q̌inv
k−1 ← Q̌inv

init

2 tk ← 1
3 k ← 1
4 while tk ≥ 0 ‖ k ≤ max iter do
5 Q̌inv

k ← Relaxation_LMI(Q̌inv
k−1)

6 tk ← Test_Satisfaction_SM(Q̌inv
k )

7 k ← k + 1
8 Q̌inv

k−1 ← Q̌inv
k + k−1

k+2

(
Q̌inv

k − Q̌inv
k−1

)
9 nb iter ← k − 1

10 Q̌inv ← Q̌inv
k

11 Function Relaxation_LMI(Q̌inv
k−1)

12 DEFINE Q̌inv, X ∈ Dn×n,

13
{
P̌u, Ďu ∈M, P̌uint , Ďuint ∈Mint, τu ∈ R

}NU

u=1
,

14
{
P̌l, Ďl ∈M, P̌lint , Ďlint ∈Mint, τl ∈ R

}NL

l=1
,

15 MINIMISE trace
(
X − 2Q̌inv

k−1Q̌
inv + Q̌inv

k−1

)
16 subject to
17

(16), (17), (18)[
X Q̌inv

Q̌inv In

]
≥ 0

ǍΩUu

(
Ďu, Ďuint , P̌u, P̌uint , τu

)
+

[
X Ǎ

(
Q̌inv

)
Ǎ
(
Q̌inv

)T Č

]
≥ 0

ǍΩLl

(
Ďl, Ďlint , P̌l, P̌lint , τl

)
+

[
X Ǎ

(
Q̌inv

)
Ǎ
(
Q̌inv

)T Č

]
≥ 0

18

19 return Q̌inv

20 Function Test_Satisfaction_SM(Q̌inv)
21 if there exist
22

{
P̌u, Ďu ∈M, P̌uint , Ďuint ∈Mint, τu ∈ R

}NU

u=1
,

23
{
P̌l, Ďl ∈M, P̌lint , Ďlint ∈Mint, τl ∈ R

}NL

l=1
,

24 such that
25 (17), (18),

26 ǍΩUu

(
Ďu, Ďuint , P̌u, P̌uint , τu

)
+

[
Q̌invQ̌inv Ǎ

(
Q̌inv

)
Ǎ
(
Q̌inv

)T Č

]
≥ 0

27 ǍΩLl

(
Ďl, Ďlint , P̌l, P̌lint , τl

)
+

[
Q̌invQ̌inv Ǎ

(
Q̌inv

)
Ǎ
(
Q̌inv

)T Č

]
≥ 0

28 hold
29 then
30 t← −1

31 else
32 t← 1

33 return t

To achieve this, it is proposed to use the generic fmincon4

solver, with the default interior-point algorithm, to tackle
the nonlinear optimization problem of finding the elements

4www.mathworks.com/help/optim/ug/fmincon.html

values such that the resulting s21 satisfies the spectral mask at
some frequency samples {ωi, i = 1, . . . , Nf}. This requires
to provide these samples and to explicitly calculate s21.
Generating Nf = 100 evenly spaced samples per frequency
intervals ΩU1

, ΩL and ΩU2
, and calculating s21 using the

dss and tf functions, a solution is obtained in 23.0 s. Thus,
this increase in computational time illustrates a benefit of
our approach, but has to be related to the simplicity of the
example. It is expected that the time difference will be higher
for more complex design examples that appear in practice.
Furthermore, the sampling of the frequency intervals may lead
to the following issue: the solution given by the solver satisfies
the spectral mask at the frequency samples but not on the
whole frequency intervals. This may be mitigated by consid-
ering more frequency samples, but at the risk of increasing
significantly the computational cost. For instance, considering
here five times more frequency samples, i.e. Nf = 500, leads
to a computational time of 245.5 s, that is more than a 10-
fold increase. This issue does not appear in the approach
developed in this paper as the obtained optimization problems
are independent from the frequency variable ω.

VIII. CONCLUSIONS AND PERSPECTIVES

In this paper, the direct synthesis approach for the frequency
design of lossless passive electronic filters was revisited from
a System perspective. This leads to solve a synthesis problem
of a structured state-space representation, that is known to be
complex. First, the pH DAE representation, coming from the
port-Hamiltonian framework, was introduced as it provides
a state-space representation that appears suitable to tackle
the design problem. Then, a method was developed using
System tools to transform the design problem into a BMI
optimization problem of moderate complexity. This method
is particularly adapted to the structure of the pH DAE repre-
sentation, leading to the first main contribution of this paper
(Theorem 1). The second main contribution is the introduction
of an original representation, the pH LFT representation,
and the development of another method in order to get a
BMI optimization problem with a remarkably low complexity.
Finally, a numerical example was provided to show the validity
and illustrate the benefits of this work.

In future works, the developed methods will be first applied
to more complex design examples of practical use. This may
require to lower the computational cost, that may be achieved
by choosing suitably the Nesterov’s acceleration parameter ηk,
empirically or with Control theory concepts [46], [47], or
by developing an algorithm that explicitly takes into account
the particular diagonal structure of the bilinear term. Another
perspective of this work is to extend it to the design of passive
electronic filters, i.e. with RLC-models of components, using
the more general pH representation provided in [41, Chap. 6].
Furthermore, both approaches mentioned in the Introduction
are in fact complementary as the first approach, when unsuc-
cessful, provides a result that can constitute an initial point to
the second approach [8], [9]. Therefore, it would be interesting
to combine them in the future to decrease even more the global
computational cost.
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APPENDIX A
PROOF OF THEOREM 1

In order to prove Theorem 1, a signal-based approach is
used. This requires first to transform the representation (12)
and the spectral mask (1)-(2) as quadratic constraints on
signals. Then a signal-free, finite-dimensional optimization
problem is obtained by applying the so-called S-procedure
lemma. For our purpose, the most adapted version of this
lemma is the following [17, Sec. III]. Given Θ = ΘT ,

ξ∗Θξ ≥ 0 ∀ξ =

[
q
p

]
, p =

(
1

jω
· I
)
q, ω ∈ Ω

⇔ ∃P = P T ,∃D = DT > 0,

Θ +

[
−zΩD −y∗ΩD − P

−yΩD − P −zΩD

]
︸ ︷︷ ︸

Π

≥ 0

where the scalars xΩ, yΩ, zΩ are constant and depend on Ω
as in (13) (see [17, Sec. IV] for more details). The matrix Π
actually defines a quadratic constraint on the signal p and q
in the frequency domain when ω ∈ Ω. The S-procedure
lemma equivalently converts then an inequality condition with
signal constraints to an unconstrained inequality condition. In
the analysis case, i.e. when Θ is a constant matrix, the last
condition happens to be an LMI feasibility problem and is then
efficiently solvable. The newly introduced matrices P and D
are called multipliers and will be used as optimization matrices
in the optimization problem coming from the S-procedure.

For the purpose of this paper, we introduce the following
modified version of the S-procedure (Lemma 4), in the spirit of
[48, Th. 2.3.3, p. 54]. This allows to consider an extra equality
constraint in the first statement but losses the equivalence.
Only the ⇐ part remain, which is direct to prove.

Lemma 4 (S-Procedure with equalities).
Given Θ ∈ Sm, Φ ∈ Sm, the following implication holds:

ξ∗Θξ ≥ 0 ∀ξ =


q
p
z
w

 ∈ Cm,

{
ξ∗Φξ = 0,

p =
(

1
jω · I

)
q, ω ∈ Ω

⇐ ∃P ∈ Sn,∃D > 0 ∈ Sn,∃τ ∈ R,

Θ + τ · Φ +


−zΩD −y∗ΩD − P 0 0

−yΩD − P −xΩD 0 0
0 0 0 0
0 0 0 0

 ≥ 0

Using Lemma 4, Theorem 1 is now proved.

Proof of Theorem 1. Rewrite (12) in the kernel form:

[
−FS1

ES1
Q 0 Hw1

0 Ez2Q −1 Hs21

]
q(s)
p(s)
z2(s)
w1(s)

 = 0

This is equivalent to the quadratic form:
q(s)
p(s)
z2(s)
w1(s)


∗ 
−FT

S1
0

QET
S1

QET
z2

0 −1
HT

w1
HT

s21

[−FS1
ES1

Q 0 Hw1

0 Ez2Q −1 Hs21

]
q(s)
p(s)
z2(s)
w1(s)

 = 0

(19)

Constraint (1) can be expressed using two constraints: one
quadratic constraint to ensure that s21(jω) is upper bounded,
and ω ∈ Ω. Using the relation z2(jω) = s21(jω)w1(jω), the
first constraint can be stated as follows:[

z2(jω)
w1(jω)

]∗ [−1 0
0 U2

u

] [
z2(jω)
w1(jω)

]
≥ 0 (20)

Constraint (1) can then be restated as follows: Find if (20)
holds for all p(s), q(s), z2(s) and w1(s) that satisfy (19)
for s = jω, ω ∈ Ω, and p(jω) =

(
1
jω · I

)
q(jω). Applying

Lemma 4 leads to check:

∃Pu ∈ Sn, ∃Du > 0 ∈ Sn, ∃τu ∈ R,
0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 U2

u

+ τu


−FT

S1
0

QET
S1

QET
z2

0 −1
HT

w1
HT

s21

[−FS1 ES1Q 0 Hw1

0 Ez2Q −1 Hs21

]

+


−zΩU

u
Du −y∗ΩU

u
Du − Pu 0 0

−yΩU
u
Du − Pu −xΩU

u
Du 0 0

0 0 0 0
0 0 0 0

 ≥ 0

Without loss of generality, one can impose τu > 0 as the
term behind τu is semi-definite positive. Moreover, pre- and
post-multiplying last inequality by

Q−1 0 0 0

0 Q−1 0 0
0 0 I 0
0 0 0 I


and defining Qinv := Q−1, Du := 1

τu
Q−1DuQ

−1,
Pu := 1

τu
Q−1PuQ

−1 and τu := 1
τu

leads to the result.
Same reasoning applies for (2).

APPENDIX B
PROOF OF LEMMA 2 (PH LFT REPRESENTATION)

The following proof is based on the ideas for establishing
the hybrid input-output representation [30] in the pH
framework (refer to [49, App. B] for the associate proof).

Proof of Lemma 2. The proof is made of four steps.
First, using a singular value decomposition [38] of FS1 ,
there exist a non-singular matrix V ∈ Rn×n, a permutation
matrix T ∈ Rn×n and a matrix FS12r

∈ Rr×nAE such that:

V FS1 =

[
Ir FS12r

0nAE×r 0nAE×nAE

]
T

Hence, (11) can be equivalently re-written as:

[
pr
pAE

]
=

(
1

s
· In
)[

qr
qAE

]
[
Ir FS12r

0 0

] [
qr
qAE

]
=

[
ES11r

ES12r

ES11AE
ES12AE

] [
Qrpr

QAEpAE

]
+

[
H1r

H1AE

]
w

z =
[
ES21

ES22

] [ Qrpr
QAEpAE

]
+H2w

(21)

where
[
qr
qAE

]
:= Tq,

[
pr
pAE

]
:= Tp and[

ES11r
ES12r

ES11AE
ES12AE

]
:= V ES1

TT

[
H1r

H1AE

]
:= V H1
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[
ES21

ES22

]
:= ES2

TT

[
Qr 0
0 QAE

]
:= TQTT

One may note that (7) and (8) become: ES11r
ES12r

ES11AE
ES12AE

ES21 ES22

Ir FS12r

0 0
0 0

T

+

Ir FS12r

0 0
0 0

 ES11r
ES12r

ES11AE
ES12AE

ES21 ES22

T

+ 1
2


 H1r

H1AE

H2

 H1r

H1AE

H2

T

−

0
0
I

0
0
I

T
 = 0

(22)

rank

 Ir FS12r
ES11r

ES12r
0 H1r

0 0 ES11AE
ES12AE

0 H1AE

0 0 ES21
ES22

Ine
H2

 = r + nAE + ne

(23)

Second, (21) can be straightly resorted as:

[
pr
qAE

]
=

(
1
s · Ir 0

0 s · InAE

)[
qr
pAE

]
[
Ir −ES12r

0 −ES12AE

] [
qr

QAEpAE

]
=

[
ES11r

−FS12r

ES11AE
0

] [
Qrpr
qAE

]
+

[
H1r

H1AE

]
w

z =
[
ES21 ES22

] [ Qrpr
QAEpAE

]
+H2w

(24)

Let us demonstrate that
[
Ir −ES12r

0 −ES12AE

]
is invertible, that is,

ES12AE
∈ RnAE×nAE is invertible, i.e. ES12AE

is full rank.
To achieve this, one may notice that (22) implies that

H1AE
= 0 and ES11AE

= −ES12AE
FT
S12r

Thus, it comes that:

rank
[
ES11AE

ES12AE

]
= rank

(
ES12AE

[
−FT

S12r
I
])

= rank
(
ES12AE

)
Now, from (23), rank

[
ES11AE

ES12AE

]
= nAE . Therefore,

ES12AE
is invertible and so is

[
Ir −ES12r

0 −ES12AE

]
.

Third, little bit of calculation shows that (24) is equivalent to:

[
pr
qAE

]
=

(
1
s · Ir 0

0 s · InAE

)[
qr
pAE

]
[

qr
QAEpAE

]
= Ã

[
Qrpr
qAE

]
+ B̃w

z = C̃

[
Qrpr
qAE

]
+Dw

where

Ã =

[
Ir −ES12r

0 −ES12AE

]−1 [
ES11r

−FS12r

ES11AE
0

]
B̃ =

[
Ir −ES12r

0 −ES12AE

]−1 [
H1r

0

]
C̃ =

[
ES21

+ ES22
FT
S12r

0
]

D = H2

Fourth, and finally, (22) implies that:
1

2

(
Ã+ ÃT

)
= −1

4
B̃B̃T C̃ = −1

2
DB̃T DDT = I

Therefore, (14) is obtained by defining:

q̌ :=
1√
2

[
qr

QAEpAE

]
p̌ :=

1√
2

[
pr

QAEqAE

]
J :=

1

2

(
Ã− ÃT

)
B :=

B̃

2
Q̌ :=

[
Qr 0
0 Q−1

AE

]

APPENDIX C
PROOF OF THEOREM 2

To prove Theorem 2, same reasoning than for Theorem 1
is used. However, due to the originality of the pH LFT
representation (14), the Π matrix introduced in Appendix A
needs to be modified. This is achieved in the next proof.

Proof of Theorem 2. Rewrite (15) in the quadratic form:
q̌(s)
p̌(s)
z2(s)
w1(s)


∗

Φ̌


q̌(s)
p̌(s)
z2(s)
w1(s)

 = 0 (25)

where

Φ̌ :=


−I 0

Q̌AT Q̌CT
2

0 −1
BT

1 DT
21

[−I AQ̌ 0 B1

0 C2Q̌ −1 D21

]

Define
[
q̌r
q̌AE

]
:= q̌ and

[
p̌r
p̌AE

]
:= p̌ of appropriate dimen-

sions such that:[
p̌r(s)
q̌AE(s)

]
=

(
1

s
· In
)[

q̌r(s)
p̌AE(s)

]
Defining q :=

[
q̌r
p̌AE

]
and p :=

[
p̌r
q̌AE

]
, it comes

[
q̌
p̌

]
= Ť

[
q
p

]
where Ť is a permutation matrix given by:

Ť :=


Ir 0 0 0
0 0 0 InAE

0 0 Ir 0
0 InAE

0 0


Therefore, (25) can be equivalently re-written as follows:

q(s)
p(s)
z2(s)
w1(s)


∗ [

Ť 0
0 I

]
Φ̌

[
Ť 0
0 I

]
q(s)
p(s)
z2(s)
w1(s)

 = 0 (26)

Constraint (1) can then be restated as follows: Find if (20)
holds for all p(s), q(s), z2(s), and w1(s) that satisfy (26)
for s = jω, ω ∈ Ω, and p(jω) =

(
1
jω · I

)
q(jω). Applying

Lemma 4 leads to check:

∃Pu ∈ Sn, ∃Du > 0 ∈ Sn, ∃τu ∈ R,
−zΩUu

Du −y∗ΩUu
Du − Pu 0 0

−yΩUu
Du − Pu −xΩUu

Du 0 0

0 0 −1 0
0 0 0 U2

u

+ τu

[
Ť 0
0 I

]
Φ̌

[
Ť 0
0 I

]
≥ 0

(27)
Define Pur ∈ Rr×r,PurAE ∈ Rr×nAE ,PuAE ∈ RnAE×nAE ,
Dur ∈ Rr×r, DurAE ∈ Rr×nAE , DuAE ∈ RnAE×nAE as:[

Pur PurAE

P
T

urAE
PuAE

]
:= Pu

[
Dur DurAE

D
T

urAE
DuAE

]
:= Du

Moreover, define P̌u, P̌uint , Ďu, Ďuint as follows:

P̌u :=

[
Pur 0

0 PuAE

]
P̌uint :=

[
0 PurAE

P
T

urAE
0

]

Ďu :=

[
Dur 0

0 DuAE

]
Ďuint :=

[
0 DurAE

D
T

urAE
0

]
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One may then note that:

Ť

[
−zΩUu

Du −y∗ΩUu
Du − P̌u

−yΩUu
Du − P̌u −xΩUu

Du

]
Ť

=

−žΩUu
Ďu − y̌∗ΩUu

Ďuint − P̌uint −y̌∗ΩUu
Ďu − žΩUu

Ďuint − P̌u

−y̌ΩUu
Ďu − žΩUu

Ďuint − P̌u −x̌ΩUu
Ďu − y̌ΩUu

Ďuint − P̌uint


Pre- and post-multiplying (27) by

[
Ť 0
0 I

]
leads then to:


−žΩUu

Ďu − y̌∗ΩUu
Ďuint − P̌uint −y̌∗ΩUu

Ďu − žΩUu
Ďuint − P̌u 0 0

−y̌ΩUu
Ďu − žΩUu

Ďuint − P̌u −x̌ΩUu
Ďu − y̌ΩUu

Ďuint − P̌uint 0 0

0 0 −1 0
0 0 0 U2

u

+ τuΦ̌ ≥ 0

where x̌ΩUu
, y̌ΩUu

, žΩUu
, are defined as in Theorem 2.

Finally, similarly than in proof of Theorem 1, one can
impose τu > 0 without loss of generality. The result is
obtained by pre- and post-multiplying last inequality by

Q̌
−1

0 0 0

0 Q̌
−1

0 0
0 0 I 0
0 0 0 I


and defining Q̌inv := Q̌

−1
, P̌u := 1

τu
Q̌
−1
P̌uQ̌

−1
,

P̌uint := 1
τu
Q̌
−1
P̌uintQ̌

−1
, Ďu := 1

τu
Q̌
−1
ĎuQ̌

−1
,

Ďuint := 1
τu
Q̌
−1
ĎuintQ̌

−1
, τu := 1

τu
.
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