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TOPOLOGICAL MIXING OF POSITIVE DIAGONAL FLOWS

NGUYEN-THI DANG

Abstract. Let G be a semi-simple real Lie group without compact factors and Γ < G a
Zariski dense, discrete subgroup. We study the topological dynamics of positive diagonal
flows on Γ\G. We extend Hopf coordinates to Bruhat-Hopf coordinates of G, which gives the
framework to estimate the elliptic part of products of large generic loxodromic elements. By
rewriting results of Guivarc’h-Raugi into Bruhat-Hopf coordinates, we partition the preimage
in Γ\G of the non-wandering set of mixing regular Weyl chamber flows, into finitely many
dynamically conjugated subsets. We prove a necessary condition for topological mixing, and
when the connected component of the identity of the centralizer of the Cartan subgroup is
abelian, we prove it is sufficient.

1. Introduction

Let G be a connected, real semi-simple Lie group of non compact type i.e. without compact
factors. Let A be a maximal split torus i.e. a maximal abelian subgroup whose Lie algebra
a is a Cartan subspace, denote by a+ ⊂ a a choice of closed positive Weyl chamber and by
a++ its interior, by A+ = exp(a+) and A++ := exp a++. Let Γ < G be a Zariski dense,
discrete subgroup. We study topological mixing of the right action by translation on Γ\G of one
parameter subgroups of A that are parametrized by non-trivial elements of a+.

1.1. Previous results. In the case of lattices1 i.e. Γ\G has finite volume for the Haar measure,
topological mixing is a consequence of Howe-Moore [HM79] Theorem. Moore [Moo87] even
proved that it is exponentially mixing for the Haar measure.

For the isometry group SO(n, 1)0 of Hn, the Cartan subspace a is isomorphic to R. As-
sume that Γ is Zariski dense, discrete and torsion free. Such right action corresponds to the
geodesic frame flow of the hyperbolic orbifold Γ\Hn. The geodesic frame flow factors the geodesic
flow on the unit tangent bundle T 1Γ\Hn. The latter identifies with the right action of A on
Γ\SO(n, 1)0/SO(n − 1), where SO(n − 1) is the stabilizer in SO(n) of a fixed unit vector in
T 1Hn. The geodesic flow is topologically mixing on its non-wandering set2.

Denote by ΩG the preimage in Γ\SO(n, 1)0 of the non-wandering set of the geodesic flow.
For convex cocompact subgroups, Winter [Win16] and Sarkar-Winter [SW20] proved exponential
mixing for the push forward of the Bowen-Margulis-Sullivan (BMS) measure on the frame bundle.
Since this measure is supported in ΩG, these results imply topological mixing of the frame flow.

Under no other assumption for Γ than Zariski dense, Maucourant-Schapira [MS19] proved
that the frame flow is topological mixing on ΩG.

For rank one (i.e. dimA = 1) locally symmetric spaces and discrete Zariski dense subgroup
admitting a finite BMS measure, Winter [Win15] showed mixing for the frame flow.

1lattices are Zariski dense subgroups
2For example, topological mixing is equivalent to non-arithmeticity of the length spectrum by [Dal00], which

follow, for Zariski dense subgroup from [Ben00] or [Kim06].
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2 NGUYEN-THI DANG

1.2. Main setting. In this article, we focus on a higher rank semisimple Lie group G, meaning
that dimA ≥ 2 and on an infinite covolume, discrete, Zariski dense subgroup Γ of G.

Let K be a maximal compact subgroup of G for which the Cartan decomposition KA+K of
elements of G holds. Denote by M := ZK(A) the centralizer subgroup of A in K.

For any θ ∈ a+, the nonnegative diagonal flow φt
θ corresponds to the right action by translation

on Γ\G of exp(tθ). When θ ∈ a++ \ {0}, the flow φt
θ is called positive diagonal. Nonnegative

diagonal flows φt
θ, where θ ∈ a+, induce right actions on Γ\G/M , so called Weyl chamber flows.

They are called regular when they are induced by positive diagonal flows. The latter will play
the same role in higher rank as the geodesic flow in the unit tangent bundle of the hyperbolic
orbifold.

1.3. Mixing of regular Weyl chamber flows. Conze-Guivarc’h [CG00] defined for SL(n,R)
and Zariski dense discrete subgroups a right A-invariant closed subset Ω ⊂ Γ\G/M (cf. § 5.1
for a detailed construction). Their construction generalizes to all semisimple Lie groups without
compact factors.

Definition 1.1. We denote by Ω the smallest closed A-invariant subset of Γ\G/M containing
all periodic orbits of regular Weyl chamber flows and by ΩG its preimage in Γ\G.

The closed subset Ω is the analogue for Weyl chamber flows of the non-wandering set of the
geodesic flow in the hyperbolic case. With Glorieux [DG20], we obtained the following necessary
and sufficient mixing condition for regular Weyl chamber flows.

Theorem 1.2 ( [DG20]). Let G be a semisimple, connected, real linear Lie group, of non-compact
type. Let Γ be a Zariski dense, discrete subgroup of G.

A regular Weyl chamber flow φt
θ is topologically mixing on Ω if and only if θ ∈

◦

C(Γ).
The limit cone C(Γ) was introduced by Benoist [Ben97b]. For every Zariski dense Γ, he proves

that the limit cone is a closed, convex cone of a+ of non-empty interior.

Definition 1.3. Denote by λ : G → a+ the Jordan projection. The limit cone of Γ which is also
called Benoist cone C(Γ), is the smallest closed cone of a+ containing λ(Γ).

Mixing ratio for regular Weyl chamber flow φt
θ, where θ lies in the interior of the limit cone,

were obtained by Thirion [Thi09] for Ping-Pong groups, Sambarino [Sam15] for Hitchin repres-
entations and Edwards-Lee-Oh [ELO20] for Borel Anosov groups.

1.4. Main result. We study the topological dynamics of non-negative diagonal flows (ΩG, φ
t
θ).

We focus on its topological mixing properties. Note that ΩG is a right AM -invariant closed
subset of Γ\G and a principal M -bundle over Ω, where M is not necessarily connected.

Using a result of Guivarc’h-Raugi [GR07], we partition ΩG into finitely many A-invariant
subsets that are dynamically conjugated to each other for nonnegative diagonal flows.

Theorem 1.4. Let G be a semisimple, connected, real linear Lie group, of non-compact type.
Let Γ be a Zariski dense, discrete subgroup of G.

Then there exists a normal subgroup of finite index M0⊳MΓ⊳M and a partition (Ω[m])[m]∈M/MΓ

of ΩG such that

(a) every Ω[m] is right AMΓ-invariant and a principal MΓ-bundle over Ω;

(b) for all θ ∈ a+, the dynamical systems {(Ω[m], φ
t
θ)}[m]∈M/MΓ

are conjugated to each other;

(c) if θ ∈ a++ and (Ω[eM ], φ
t
θ) is topologically mixing then θ ∈

◦

C(Γ) .

If furthermore M0 is abelian and θ ∈ a++, then the converse of (c) is true:

(d) (Ω[eM ], φ
t
θ) is topologically mixing if and only if θ ∈

◦

C(Γ).
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We expect that condition (d) holds in the general case, because Maucourant-Schapira [MS19]
proved topological mixing of the geodesic frame flow for SO(n, 1)0 where M = M0 = SO(n− 1).
Condition (c) is a consequence of the joint work with Glorieux.

Observe that M0 is abelian for example: split real semisimple Lie groups i.e. SL(n,R),
Sp(2n,R), SO0(p, p), SO0(p, p+1); and also for SU(p, p+1), SU(p, p), SO0(p, p+2) and SL(n,C).
The closed, normal subgroup of finite index MΓ of M containing the connected component of the
identity M0 of M , is defined in Guivarc’h-Raugi [GR07] by using the elliptic part of loxodromic
elements of Γ. It was also defined and studied in the appendix of [Ben05]. We call it the sign
group of Γ.

Labourie [Lab06] proved that MΓ is trivial if Γ is the image of a Hitchin representations. It
thus follows from the above result that in this case, there are 2n−1 disjoint subsets in Γ\PSL(n,R)
that share the same dynamical behavior for non-negative diagonal flows. Consequently, positive
diagonal flows are topologically mixing on any of these subsets if and only if they are parametrized
by directions of the interior of the limit cone.

For Borel Anosov subgroups and independently, Lee-Oh [LO20] prove that there is an A-
ergodic decomposition of every BMS measure into AMΓ-semi-invariant and A-ergodic measures
parametrized by M/MΓ. Any pair of such measures is the same up to right multiplication by
elements of M/MΓ, which concur with our result.

1.5. Key ideas.

Bruhat-Hopf coordinates. Denote by F (2) the subset of transverse pairs in the Furstenberg
boundary (cf. § 2.2) which identifies with G/AM (cf. Proposition 2.6). Thirion [Thi07] general-
ized Hopf coordinates in higher rank by parametrizing point of G/M with elements of F (2) × a.
The left action of G on G/M reads using the Iwasawa cocycle σ (cf. Definition 2.3) as follows

g(ξ, η ; x) = (gξ, gη ; σ(g, ξ) + x).

The Weyl chamber flow reads by translating only the a coordinate without changing the first
two.

Consider the set {Gs}s∈S of maximal Bruhat cells of G. For every s ∈ S, we denote by Fs

(resp. F (2)
s ) the projection of Gs in F (resp. F (2)).

In Section 3, we construct Bruhat-Hopf coordinates Hs : Gs → F (2)
s ×AM that extend Hopf

coordinates (cf. Definition 3.2, 3.12, Proposition 3.10). Note that they differ from coordin-
ates coming from the unique Bruhat decomposition of N−MAN or their translate of the form
hN−MAN , where h ∈ G. The projection G → G/M reads for all s ∈ S by preserving the
coordinates in F (2) and projecting the AM -coordinates to a. The right translation by AM on

G reads for all (ξ̌, ξ;u)s ∈ F (2)
s ×AM and x ∈ AM as (ξ̌, ξ;ux)s.

The left action of G on itself reads in this family of Bruhat-Hopf coordinates (Hs)s∈S equivari-
antly in the coordinates in F (2) and via left multiplication by the signed Iwasawa cocycles
(βs′,s)s,s′∈S (cf. Definition 3.7) of domains in G × F and codomains in AM . They extend
(cf. Proposition 3.10) the Iwasawa cocycle in the sense that for all ξ ∈ Fs and g ∈ G such that
gξ ∈ Fs′ , then βs′,s(g, ξ) ∈ exp(σ(g, ξ))M. We prove that the signed cocycles (βs,s)s∈S are all
cohomologous (cf. Fact 3.9) for the transition maps Ts,s′ : Fs ∩ Fs′ → AM of Definition 3.5.

Furthermore, Bruhat-Hopf coordinates induce local coordinates of K in F ×M by removing
the second coordinate and projecting in M the third one.

Likewise, the reader can check that Bruhat-Hopf coordinates induce local coordinates on G/N ,
G/A and G/MN .

The elliptic part of loxodromic elements. Elements of G whose Jordan projection is in the
positive Weyl chamber are called loxodromic. Denote by Glox and Γlox the subset of loxodromic
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elements of the respective groups. Loxodromic elements (see §4) have trivial unipotent parts
and are conjugated to elements in MA++. The part in A++, corresponding to the hyperbolic
part, is given by the Jordan projection. In [Ben96], [Ben97b] and [Ben00], Benoist defines
(r, ε)-loxodromic elements (see Definition 4.5) and obtains estimates for the Jordan projection
of generic products of (r, ε)-loxodromic elements. We show that their elliptic part satisfy similar
estimates.

The elliptic part of a loxodromic element is conjugated to an element of M which is defined
up to conjugacy by M . Therefore, the latter is only well defined when M is abelian, in which
case one can extend the Jordan projection from Glox to a++×M . Bruhat-Hopf coordinates gives
a framework to solve this technical difficulty in the general case.

Fix a loxodromic element g and denote by g+ (resp. g−) its attracting (resp. repelling) fixed
point in F and by b(g−) the basin of attraction of g+ (cf. Proposition 4.4). Starting from the
formula σ(g, g+) = λ(g) satisfied by loxodromic elements, we define a multiplicative and signed
Jordan projection for g. For every s ∈ S such that g+ ∈ Fs, we set Ls(g) := βs,s(g, g

+). It
is the unique element in exp(λ(g))M such that there is an element hs ∈ Gs unique up to right
multiplication by A such that h−1

s ghs = Ls(g).
Using the continuous maps Rs′,s given in Definition 4.8, we obtain an exact formula.

Proposition 1.5 (4.9 below). Let G be a connected, real linear, semisimple Lie group of non-
compact type.

Then for all loxodromic element g ∈ Glox, all integer n ≥ 1 and ξ ∈ b(g−), for any suitable
s0, s1, s2 ∈ S such that (ξ, g+, gnξ) ∈ Fs0 ×Fs1 ×Fs2

βs2,s0(g
n, ξ) = Rs1,s2(g; g

nξ)−1
Ls1(g)

n
Rs1,s0(g; ξ).

We estimate the elliptic part of generic products of (r, ε)-loxodromic elements. In order to do
that, we introduce a family of constants {δr,ε | 0 < ε ≤ r} (cf. Definition 4.11) such that for all
r > 0, they satisfy limǫ→0 δr,ǫ = 0 (cf. Proposition 4.10).

Proposition 1.6 (4.12 below). Let G be a connected, real linear, semisimple Lie group of non-
compact type. For all r > 0 and ε ∈ (0, r] and every family g1, ..., gl ∈ G of (r, ε)-loxodromic
elements such that

⋆ r ≤ 1
6d

(
{g+i−1, g

+
i }, ∂b(g−i )

)
for all 1 ≤ i ≤ l with the convention g0 = gl.

For all family (si)0≤i≤l ⊂ S such that

⋆⋆ Fsi ⊃ Vr(∂b(g
−
i ))

∁ for every 1 ≤ i ≤ l and Fs0 ⊃ Vε(∂b(g
−
1 ))

∁.

Then for all integers n1, ..., nl ≥ 1, the element gnl

l ...gn1

1 is (2r, 2ε)-loxodromic with attracting

(resp. repelling) point in B(g+l , ε) (resp. B(g−1 , ε)) and its extended Jordan projection satisfies

Lsl(g
nl

l ...gn1

1 ) ∈ Lsl(g
nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(g

n1

1 )Rs1,sl(g1, g
+
l )B(eAM , 2lδr,ε).

Decorrelation. Denote by Mab the abelianization of M . We define an abelianized Jordan
projection for loxodromic elements L ab : Glox → A++Mab using the previous local Jordan
projections Ls. The number of connected components of Mab reached by the subset L ab(Γlox)
suffices to understand MΓ. Indeed, its abelianized Mab

Γ is the subgroup of Mab generated by the
projection to Mab of L ab(Γlox). Thanks to Guivarc’h-Raugi [GR07, Theorem 6.4] we deduce that
the subgroup generated by L ab(Γlox) is dense in AMab

Γ . Guivarc’h-Raugi also give a classification
of Γ-invariant minimal subsets of K. We rewrite their result using Bruhat-Hopf coordinates of

K in Theorem 5.9 and define the invariant subsets Ω[m] through their universal cover Ω̃[m] in G.

Denote by L(Γ) ⊂ F the limit set of Γ and by L(2)(Γ) := L(Γ) × L(Γ) ∩ F (2). The universal

cover Ω̃G has Bruhat-Hopf coordinates L(2)(Γ)×AM .
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Without loss of generality, by using the joint work with Glorieux [DG20], it suffices to prove the
decorrelation Proposition 6.1 i.e. that there exists (ξ1, ξ̌1) ∈ L(2)(Γ) such that for every x ∈ AM
and small δ > 0, the orbit Γ(ξ1, ξ̌1 ; x)č1 is δ-dense in an MΓ-orbit of the form (ξ1, ξ̌1 ; yδxMΓ)c1
(for suitable č1, c1 ∈ S).

The first step (Lemma 6.2) is to reach all connected components of MΓ by the left action of
finitely many (r, ε)-loxodromic elements of Γ of attracting point close to ξ1. It does not use that
M abelian.

In the second step (Lemma 6.4) we construct (r, ε)-loxodromic elements γ1, ..., γl ∈ Γ that
satisfy the hypothesis of Proposition 1.6 and such that L ab({γnl

l ...γn1

1 | n1, .., nl ≥ 1}) is δ-dense
in an M0-invariant set that projects to log πA(yδx)+ C0, where C0 ⊂ a++ is a closed convex cone
of non-empty interior. We rely on density of squares in M0, as well as density lemmata deduced
from the assumption that M0 is abelian.

Finally, we deduce the decorrelation with an overlapping cone argument.

1.6. Organization of the paper. In Section 2 we recall the classical Iwasawa, Bruhat de-
compositions of Lie groups and characterize the transverse points in the Furstenberg boundary.
Section 3 is dedicated to the construction of Bruhat-Hopf coordinates. In Section 4, using Bruhat-
Hopf coordinates, we estimate the elliptic part of products of generic loxodromic elements. In
Section 5, we define the subgroup MΓ, the Γ-invariant subsets of G and prove Theorem 1.4
(a)(b). Section 6 is dedicated to the proof of decorrelation. In Section 7 we prove the necessary
and sufficient condition for topological mixing when M0 abelian. In the appendix, we prove the
density lemmata.

Relation to other works. Sections 2, 5, 6, 7 and the Appendix can be found in french in
the author’s PhD thesis [Dan19]. Sections 3 and 4 improve the thesis’s construction of Bruhat-
Hopf coordinates and its estimates of the elliptic and hyperbolic parts of products of loxodromic
elements.

Bruhat-Hopf coordinates were independently studied by Lee-Oh [LO20].
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2. Background

A classical reference for this section is [Hel01]. Let K be a maximal compact subgroup of
G. Denote by g (resp. k) the Lie algebra of G (resp. K). Consider a Cartan decomposition
g = k ⊕ p. Let a ⊂ p be a Cartan subspace i.e. a maximal abelian subspace of p for which the
adjoint endomorphism of every element is semisimple. Denote by m the centralizer of a in k.

For every linear form α ∈ a∗, set gα := {v ∈ g | ∀u ∈ a, [u, v] = α(u)v}. Note that g0 = m⊕ a.
The set of restricted roots is given by Σ := {α ∈ a∗\0 | gα 6= 0}. By simultaneous diagonalisation
over the abelian family of endomorphisms ad(a), we deduce the decomposition g = g0 ⊕α∈Σ gα.
Note that Σ is a finite set. Let us now choose a positive Weyl chamber of a i.e. a connected
component of a \ ∪α∈Σ ker(α). Denote the closed positive Weyl chamber by a+ and a++ its
interior. The set of positive roots, denoted by Σ+, is the subset of restricted roots which take
positive values in the positive Weyl chamber. This choice allows to define two particular nilpotent
subalgebras n = ⊕α∈Σ+gα and n− = ⊕α∈Σ+g−α.

Finally, denote by A := exp(a) the maximal split torus or Cartan subgroup, A+ := exp(a+) the
closed positive Weyl chamber, A++ := exp(a++) its interior, N := exp(n) (resp. N− := exp(n−))
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the positive (resp. negative) maximal unipotent subgroups and M the centralizer of A in K,
of Lie algebra m. By definition, A normalizes N and N−. Furthermore, for all a ∈ A++ and
h± ∈ N± the following convergences hold

(1) a−nh±a
n −→

±∞
eG.

2.1. Furstenberg boundary. By Iwasawa decomposition ( cf. [Hel01, Chapter IX, Thm 1.3 ])
G = KAN and G = KAN− and the maps (with the convention that N+ = N)

K ×A×N± −→ G

(k, a, n) 7−→ kan

are diffeomorphisms. Denote by g 7→
(
kI±(g), aI±(g), uI±(g)

)
∈ K × A × N± the respective

inverse diffeomorphisms. Note3 that [g0, gα] ⊂ gα for all α ∈ Σ+. Hence m⊕a⊕n and m⊕a⊕n−
are Lie subalgebras of g. Consequently MAN and MAN− are closed subgroups of G.

Definition 2.1. The Furstenberg boundary is defined by F := G/MAN . Denote by kι ∈ K a
representative of the element in the Weyl group such that Ad(kι)a

+ = −a+. Set η0 := MAN
and η̌0 := kιη0.

The map k ∈ K 7→ kη0 ∈ F is surjective and equivariant for the left action of K. Furthermore,
the stabilizer of η0 is the closed subgroup M . Therefore, we deduce an identification of K/M
with the Furstenberg boundary.

Let us sketch the construction of a K-invariant Riemannian distance on K. Start from a
scalar product on k. Since K is a compact subgroup, its Haar measure is finite. By averaging the
scalar product on k along the Haar measure on K for the adjoint action, we obtain an Ad(K)-
invariant scalar product and norm on k. Using the left action of K, we transport them on every
tangent space and obtain a left K-invariant metric which is also invariant by conjugation. Hence
K is endowed with an invariant Riemannian metric. Its induced Riemannian distance is thus
K-invariant.

Definition 2.2. Let dK be a K-invariant Riemannian distance on K. For every ξ, η ∈ F for
any choice of representatives kξ, kη ∈ K such that kξη0 = ξ and kηη0 = η, we consider the
induced left K-invariant distance in F

d(ξ, η) := dK(kξM,kηM).

Let us define the Iwasawa cocycle.

Definition 2.3. For all g ∈ G and ξ ∈ F , we denote by σ(g, ξ) the unique element4 in a such
that for all kξ ∈ K such that kξη0 = ξ,

gkξ ∈ K exp(σ(g, ξ))N.

The map σ : G×F → a is the Iwasawa cocycle.

2.2. Transverse pairs in the Furstenberg boundary. The following subset of F × F is a
higher rank analogue to the set of pair of points in the geometric boundary of the hyperbolic
plane H2 that parametrize oriented geodesics. It also identifies for SL(n,R) with the space of
transverse complete flags of Rn.

3using Jacobi identity
4because M normalises N , this element does not depend on the choice of the representative in K of ξ.
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Definition 2.4. The subset of ordered transverse pairs of F × F is defined by

F (2) := {(gη0, gη̌0) | g ∈ G}.
Since kι is an involution, (η̌0, η0) is also an ordered transverse pair. Consequently, we say that
ξ, η ∈ F are transverse if any of the ordered pairs (ξ, η) of (η, ξ) are transverse.

Denote by W := NK(A)/ZK(A) the Weyl group of G. We choose for every w ∈ W a
representative kw ∈ NK(A). Then by Bruhat decomposition [Hel01, Chapter IX, Thm 1.4 ],

G = ⊔w∈WBkwB

where B = MAN . Note that N− = kιNk−1
ι and that G = ⊔w∈WkιBkwB, meaning that

N−MAN is a cell in the Bruhat decomposition of G.

Corollary 2.5 (Chapter IX, Cor. 1.9 [Hel01]). Let G be a connected, real linear, semisimple
Lie group of non-compact type. Then the map

N− −→ N−η0

n− 7−→ n−η0

is a diffeomorphism, its image is an open submanifold of F and its complement is a finite union
of disjoint submanifolds of stricly smaller dimensions.

It thus turns out that N−MAN is a maximal cell for the Bruhat decomposition. We de-
scribe below the subset of transverse pairs in the Furstenberg boundary and include a proof for
completeness.

Proposition 2.6. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Then the following holds,

(i) the set of transverse points to η̌0 is N−η0,
(ii) for all η, ξ ∈ F and kη, ǩξ ∈ K such that kηη0 = η and ǩξ η̌0 = ξ,

(η, ξ) ∈ F (2) ⇐⇒ ǩ−1
ξ kη ∈ N−MAN,

(iii) for all ξ ∈ F and ǩξ ∈ K such that ǩξ η̌0 = ξ, the set of transverse points to ξ is ǩξN
−η0.

(iii’) for all ξ ∈ F and kξ ∈ K such that kξη0 = ξ, the set of transverse points to ξ is kξNη̌0.

Furthermore, the G−equivariant map

G/AM −→ F (2)

gAM 7−→ (gη0, gη̌0)

is a diffeomorphism.

Proof. (i) First remark that N−(η0, η̌0) = (N−η0, η̌0). Let us now prove the converse i.e. that
any point transverse to η̌0 must be in N−η0. Let g ∈ G such that (gη0, η̌0) ∈ F (2). Then by
definition, there exists h ∈ G such that

(gη0, η̌0) = h(η0, η̌0).

On one hand hη̌0 = η̌0, hence h ∈ Stab(η̌0) = kιMANk−1
ι . Since N− = kιNk−1

ι and MA is
invariant by conjugation by kι, we deduce that

h ∈ MAN−.

On the other hand gη0 = hη0, hence h−1g ∈ Stab(η0) = MAN. Thus

g ∈ hMAN ⊂ MAN−MAN.

Since MA normalizes N−, we deduce that g ∈ N−MAN . Hence gη0 ∈ N−η0.
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(ii) It follows from (i) and by noticing that the pair (kηη0, ǩξ η̌0) ∈ F (2) if and only if

(ǩ−1
ξ kηη0, η̌0) ∈ F (2).

(iii) It follows from (ii) since ǩη(N
−η0, η̌0) ∈ F (2).

For the last statement, remark first that G acts transitively on F (2). Furthermore

StabG(η0, η̌0) = MAN ∩MAN− = AM.

We thus deduce the G-equivariance and bijectivity of the map

G/AM −→ F (2)

gAM 7−→ (gη0, gη̌0).

The left action of G on the Furstenberg boundary F = G/MAN is differentiable and so is its
action on F × F . Thus, the map g 7→ (gη0, gη̌0) is differentiable. The kernel of the differential
in eG of the map g 7→ (gη0, gη̌0) contains m ⊕ a. Since the maps N− → N−η0 and N → Nη̌0
are diffeomorphisms, the differential in eG of g 7→ (gη0, gη̌0) is surjective from g to n− ⊕ n+. By
Bruhat decomposition in the Lie algebra g = n− ⊕ m⊕ a ⊕ n, we deduce that the kernel of the
differential in eG of g 7→ (gη0, gη̌0) is equal to a ⊕ m. Thus, the map G/AM → F (2) is a local
diffeomorphism in AM . Finally, by transitivity of the left G action on G/AM , we deduce that
it is a diffeomorphism. �

We parametrize the maximal Bruhat cells of the Furstenberg boundary.

Definition 2.7. Let ξ̌ ∈ F , then for any representative h(η̌) ∈ G such that η̌ = h(η̌)η̌0, we
denote by b(η̌) := h(η̌)N−η0 the Bruhat cell opposite to η̌.

Thanks to the previous Proposition, the representative h(η̌) ∈ G is chosen up to right multi-
plication by MAN−. Remark that b(η0) = Nη̌0 and b(η̌0) = N−η0. Using this notation, the set
of Bruhat cells of F is naturally endowed with a left action of G which satisfies hb(η̌0) := b(hη̌0)
for all h ∈ G.

3. Bruhat-Hopf coordinates

In his thesis, Thirion [Thi07, Chapter 8 §8.G.2] introduced Hopf coordinates for SL(n,R)/M .
His construction generalizes to every semisimple Lie group without compact factors. It is defined
by

G/M −→ F (2) × a

hM 7−→ (hη0, hη̌0 ; σ(h, η0)).

The commuting left action of G and right action of A on G/M read in those coordinates for all
(g, θ, t) ∈ G× a× R and (ξ, ξ̌ ; x) ∈ F (2) × a as follows.

φ̃t
θ

(
g(ξ, ξ̌ ; x)

)
= (gξ, gξ̌ ; σ(g, ξ) + x+ tθ).

The respective projections G/M → F and G/M → G/AM read as the projection to the first
coordinate in F and by removing the coordinate in a.

In this section, we extend locally and equivariantly (for the left action of G and right action
of A) Hopf coordinates to G.

Any local trivialisation of G → G/AM provides local coordinates in F (2) × AM that are
equivariant for the right action of A. The restricted left G-action provides a local AM -cocycle.
In general, neither these cocycles extend the Iwasawa cocycle nor will those coordinates locally
extend Hopf coordinates. We construct families of trivialisations of G → G/AM starting from
those of G → F , for which these cocycles generalize the Iwasawa cocycle and obtain commutative
diagrams with the Hopf coordinates.
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In §3.1, using Bruhat decomposition, we construct from cross-sections of G → F , local co-
ordinates in F (2) ×AM of G (cf. Definition 3.2). We set notations for the rest of the article and
in Definition 3.3, define covering families of cross-sections and of the same type (i.e. that are
translates of one another by G-action).

In §3.2, we set notations for the transition functions between the trivializations in Definition
3.5. In Proposition 3.6 we express classical properties of these functions with respect to our
choice of notation. Note that the cross-section parameters follow a Chasles relation.

In §3.3, for every family of differentiable cross-sections (si)i∈I of G → F whose domain cover
F , we read in those coordinates the left action of G on itself. The behavior is the same as for Hopf
coordinates for the first two coordinates in F (2). We define AM -valued functions in Definition
3.7 of domain in G × F . We prove in Proposition 3.8 that those functions are cocycles that
encode the information in AM for the left action of G on itself. We deduce that the information
contained in the second and third coordinate in F (2) × AM are not needed when one reads the
left action of G. In Fact 3.9, we extend to the cocyle the Chasles type relations we previously
had with the transition functions.

In §3.4, we give a sufficient condition on a differential cross-section of G → F for which the
associated coordinates of G extend Hopf coordinates. We prove in Proposition 3.10 that when
the cross-sections (si)i∈I take value in K, the signed multiplicative Iwasawa cocycles (βsi,sj )i,j∈I

defined in the third paragraph generalize the Iwasawa cocycle. We obtain an equivariant and
commutative diagram with Hopf coordinates.

In §3.5, we prove in Proposition 3.11 that local coordinates of G that extends Hopf coordinates
provide local coordinates of K that take value in F × M . Furthermore, the map kI : G → K
reads in those coordinates by keeping the first coordinate in F and projecting the last one in M .

In the last paragraph, using Bruhat decomposition and Iwasawa decomposition, we construct
two families of cross-sections of G → F defined on Bruhat cells of F : unipotent and compact
Bruhat sections in Definition 3.12 We define Bruhat-Hopf coordinates as the local extensions of
Hopf coordinates given by Proposition 3.10 with respect to the compact Bruhat sections. In
Proposition 3.14 we parametrize these cross-sections.

3.1. Local trivialisations. Let s be a non-trivial cross-section of the MAN -bundle G → F ,

we denote by Fs its domain, F (2)
s := (Fs × F) ∩ F (2) the subsets of ordered transverse pairs of

first coordinate in Fs. We explicit the trivialization of G given by this cross-section.

Fact 3.1. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let s be
a differentiable cross-section of G → F .

Then the two maps below are diffeomorphisms.

Fs ×N ×AM −→ s(Fs)NAM ⊂ G

(ξ, u, x) 7−→ s(ξ)ux.

Fs ×N ×AM −→ F (2)
s ×AM

(ξ, u, x) 7−→ (ξ, s(ξ)uη̌0 ; x)s.

Proof. By hypothesis, the map s : Fs → G is a cross-section and by Iwasawa decomposition in
NAM , we deduce that the first map is a diffeomorphism.

By Proposition 2.6 (iii’) for every ξ ∈ Fs, the set of transverse points to ξ is s(ξ)Nη̌0. Hence
the map

Fs ×N −→ F (2)
s

(ξ, u) 7−→ (ξ, s(ξ)uη̌0)

is a diffeomorphism. Consequently, the second map is a diffeomorphism. �
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Definition 3.2. For any differentiable cross-section s of G → F , we denote by Bs the associated
differentiable trivialization

Bs : s(Fs)NAM ⊂ G −→ F (2)
s ×AM

g = s(ξ)ux 7−→ (gη0, gη̌0 ; x)s.

When s is compact valued i.e. a cross-section of K → F , the same map is denoted Hs.

In order to parametrize every element of G in such coordinates, we construct families of
differentiable cross-sections whose domain cover F . For all g ∈ G and any cross-section s : Fs →
G, we define the left translate by

g · s : gFs −→ G

ξ 7−→ gs(g−1ξ).

This provides a left G action on the space of cross-sections of G → F . For any b ∈ MAN, we
define the cross-section

s.b : Fs −→ G

ξ 7−→ s(ξ)b.

Definition 3.3. A family of cross-section (si)i∈I of the bundle G → F is covering when the
family of domains {Fsi}i∈I covers F i.e.

F ⊂ ∪i∈IFsi .

The family (si)i∈I is of the same type if for any i, j ∈ I there exists gij ∈ K such that

si = gij · sj .
Using that K acts transitively on F and the compacity of the latter, one can construct finite

families of differentiable cross-sections of the same type that are covering. We provide two such
families in Definition 3.12.

3.2. Transition functions. First we explicit the transition functions between Bs parametriza-
tions. In Proposition 3.6 we express classical properties of these functions with respect to our
choice of notation. Note that the cross-section parameters follow a Chasles relation.

Fact 3.4. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let
s and s′ be two differentiable cross-sections of G → F such that Fs ∩ Fs′ 6= ∅. Then for all
ξ ∈ Fs ∩ Fs′ ,

aI
(
s(ξ)−1s′(ξ)

)
kI

(
s(ξ)−1s′(ξ)

)
∈ AM.

Proof. For every ξ ∈ Fs∩Fs′ , we denote by Ts,s′(ξ) := aI
(
s(ξ)−1s′(ξ)

)
kI

(
s(ξ)−1s′(ξ)

)
. Due to

the hypothesis that s and s′ are both cross-sections of G → F , we deduce that s′(ξ) ∈ s(ξ)MAN .
Hence the compact part kI

(
s(ξ)−1s′(ξ)

)
is in M and Ts,s′(ξ) is in AM . �

Let us explicit the notation of the transfert maps between Bs and Bs′ parametrizations where
s and s′ are differentiable cross-sections of intersecting domains.

Definition 3.5. Let s and s′ be two differentiable cross-sections of G → F such that Fs∩Fs′ 6= ∅.
We define the transition map

Ts,s′ : Fs ∩ Fs′ −→ AM

ξ 7−→ aI
(
s(ξ)−1s′(ξ)

)
kI

(
s(ξ)−1s′(ξ)

)
,

which associate to every ξ ∈ Fs ∩ Fs′ , the unique element in AM such that

s′(ξ) ∈ s(ξ)NTs,s′ (ξ).
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Remark that the transition functions between two compact valued cross-sections take value
in M , however, it is not the case when one of them is not compact valued.

Proposition 3.6. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let s and s′ be differentiable cross-sections of G → F such that Fs ∩ Fs′ 6= ∅.

Then the following holds.

(i) The map Ts,s′ is differentiable and the identity map of s(Fs ∩ Fs′)NAM reads in Bs′

and Bs coordinates as follows:
(
F (2)

s′ ∩ F (2)
s

)
×AM −→

(
F (2)

s ∩ F (2)
s′

)
×AM

(ξ, ξ̌ ; x)s′ 7−→ (ξ, ξ̌ ; Ts,s′(ξ)x)s.

(ii) For all differentiable cross-section s′′ such that Fs′′ ∩Fs′ ∩Fs 6= ∅, for all ξ in the latter,

Ts′′,s(ξ) = Ts′′,s′(ξ)Ts′,s(ξ).

(iii) For all ξ ∈ Fs′ ∩ Fs,
Ts′,s(ξ) = Ts,s′(ξ)

−1.

(iv) For all x ∈ AM and u ∈ N ,

Ts,s.xu = x = Ts,s.ux.

The first three points enforce the computational ’rule’ that double cross-sections subscript
cancel.

Proof. (i) note that s′(Fs∩Fs′)NAM = s(Fs∩Fs′)NAM since s and s′ are both cross-sections of
G → F . We want to write every element of this subset of G in the two coordinates. By Definition
3.2 of the coordinate maps, the first two coordinates in F (2) do not depend on s and s′. We only
need to compute the change in the last coordinate. Fix an element g ∈ s′(Fs ∩ Fs′)NAM and

denote by (ξ, ξ̌ ; x)s′ ∈ F (2)
s′ ×AM its coordinates with respect to the section s′. Using Fact 3.1

on g and s′, there exists a unique element uξ̌ ∈ N such that g admits the following decomposition

g = s′(ξ)uξ̌x.

Let us deduce the last Bs coordinate of g by finding its decomposition in s(Fs∩Fs′)NAM . Since
ξ ∈ Fs′ ∩ Fs, by Definition 3.5, there exists a unique element us′,s(ξ) ∈ N such that

s′(ξ) = s(ξ)us′,s(ξ)Ts,s′(ξ).

Then we replace it in s′(ξ)uξ̌x,

s′(ξ)uξ̌x = s(ξ)us′,s(ξ)Ts,s′(ξ)uξ̌x.

Since AM normalizes N and Ts,s′(ξ) ∈ AM , we deduce the following s(Fs ∩ Fs′)NAM decom-
position of g,

g = s′(ξ)uξ̌x = s(ξ)
(
us′,s(ξ)Ts,s′ (ξ)uξ̌Ts,s′(ξ)

−1
)

Ts,s′(ξ)x.

Hence, the Bs-coordinates of g is
(
ξ, ξ̌ ; Ts,s′(ξ)x

)
s
.

(ii) is a direct consequence of the relation BsB−1
s′′ = BsB−1

s′ Bs′B−1
s′′ where each map is restricted

to s
(
Fs′′ ∩ Fs′ ∩ Fs

)
NAM .

(iii) follows from (ii) since eAM = Ts,s = Ts,s′Ts′,s.
(iv) we recall that for all x ∈ AM and u ∈ N the section s.xu (resp. s.ux) is defined for every

ξ ∈ Fs by s.xu(ξ) = s(ξ)xu (resp. s.ux(ξ) = s(ξ)ux). Using that AM normalises N , we deduce
the unique decomposition in s(Fs)NAM,

s.xu(ξ) = s(ξ) (xux−1) x.

Hence the maps Ts,s.xu and Ts,s.ux are constant equal to x. �
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3.3. Cocycle. Fix a covering family of differentiable cross-sections (si)i∈I of G → F and let us
read in (Bsi)i∈I coordinates the left action of G on itself. The left action of G on the first two
coordinates in F (2) is given by g(ξ, ξ̌) = (gξ, gξ̌).

In Proposition 3.8, we prove that the AM -valued function defined below, called signed Iwasawa
cocycle, contains the remaining information on the third coordinate. Its domain is in G × F ,
meaning that the information contained in the second and third coordinate in F (2) × AM are
not needed when one reads the left action of G.

In Fact 3.9, we extend to the cocyle the Chasles type relations we previously had with the
transition functions.

Definition 3.7. Let s0, s1 be differentiable cross-sections of G → F .
For every g ∈ G and ξ ∈ Fs0 such that gξ ∈ Fs1 , we denote βs1,s0(g, ξ) the unique element in

AM such that

gs0(ξ) ∈ s1(gξ)βs1,s0(g, ξ)N.

When s1 = s0, we set βs0 := βs0,s0 .
Whenever s0 and s1 take value in K, the cocycle βs1,s0 is called signed (multiplicative) Iwasawa

cocycle or in a shorter way, signed cocycle.

Proposition 3.8. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let s0, s1 be differentiable cross-sections of G → F .

For all g ∈ G and every element in s0(Fs0)NAM of coordinates (ξ, ξ̌ ; x)s0 ∈ F (2)
s0 ×AM such

that gξ ∈ Fs1 , we denote by g
(
ξ, ξ̌ ; x

)
s0

its left multiplication by g. Then the latter’s coordinates

with respect to s1 satisfy

(2) g
(
ξ, ξ̌ ; x

)
s0

=
(
gξ, gξ̌ ; βs1,s0(g, ξ)x

)
s1
.

Therefore, for every covering family of smooth cross-sections (si)i∈I of G → F , the AM -
valued functions (βsi,sj )i,j∈I satisfy the following cocycle relations.
For every i, j, k ∈ I, all ξi ∈ Fsi and gj , gk ∈ G such that gjξi ∈ Fsj and gkgjξi ∈ Fsk then

(3) βsk,si(gkgj , ξi) = βsk,sj (gk, gjξi) βsj ,si(gj , ξi).

Furthermore, for all y ∈ AM, the right multiplication by y of the element of coordinate
(ξ, ξ̌ ; x)s0 denoted by (ξ, ξ̌ ; x)s0y satisfies

(4) (ξ, ξ̌ ; x)s0y = (ξ, ξ̌ ; xy)s0 .

As in Proposition 3.6 concerning the transition functions, (2) and (3) enforce the computa-
tional ’rule’ that double cross-sections subscript cancel.

Proof. Because AM normalizes N , the following diagram is G-equivariant for the left action of
G and commutative.

g ∈ G

N

xxqq
qq
qq
qq
qq
q

AM

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙

gN ∈ G/N

AM
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
G/AM ≃ F (2) ∋ g(η0, η̌0)

N
uu❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

gη0 ∈ F
Thanks to the lower left side G/N → F of the diagram we deduce that local trivializations of
G → F induces local trivializations of G/N → F , of fiber AM . Indeed, for every differentiable
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cross-section s : Fs → G, the map Fs × AM → G/N that associate to (ξ ; x)s ∈ Fs × AM the
element s(ξ)xN ∈ G/N is the inverse of a local coordinate system.
Let (si)i∈I be a covering family of cross-sections of G → F . Then the cocycles (βsi,sj )i,j∈I of
Definition 3.7 and the left action of G on F encode the left action of G on G/N . Indeed, let
hN ∈ G/N be an element of coordinates (ξ ; x)si ∈ Fsi × AM and g ∈ G such that gξ ∈ Fsj .
By the restricted coordinates map, we write hN = si(ξ)xN. Hence

ghN = gsi(ξ)xN.

By Definition 3.7 of βsj ,si , there exists a unique u ∈ N such that gsi(ξ) = sj(ξ)βsj ,si(g, ξ)u.
Replacing it in the expression of ghN and using that AM normalizes N yields

ghN = sj(gξ)βsj ,si(g, ξ)uxN = sj(gξ)βsj ,si(g, ξ)x
(
x−1uxN

)
.

Hence ghN has coordinates (gξ ; βsj ,si(g, ξ)x)sj .
Thanks to the higher right hand side of the diagram, the same cocycles (βsi,sj )i,j∈I combined

with the left action of G on F (2) allow us to write in local trivialisations the left action of G on
itself. Hence, equation (2) holds.

The cocycle relation given by equation (3) follows from the equivariance of the diagram for
the left action of G.

For equation (4), note first that for every cross-section s of G → F , the subset s(Fs)NAM
is invariant by right AM -translation. Furthermore, right translating by AM preserve the parts

of the decomposition in s(Fs)N . Finally, this translates in F (2)
s ×AM to a trivial action in the

F (2) coordinates and a translation in the third AM coordinate. �

Lastly, let us combine the relations between transition functions and cocycles for the (Bsi)i∈I

coordinates.

Fact 3.9. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let
s0, s

′
0, s1, s

′
1 be differentiable cross-sections of G → F . Then for all g ∈ G and ξ ∈ Fs0 ∩ Fs′

0

such that gξ ∈ Fs1 ∩ Fs′
1
,

βs′
1
,s′

0
(g, ξ) = Ts′

1
,s1(gξ) βs1,s0(g, ξ) Ts0,s′0

(ξ).

Note that cross-section subscript that are doubled, cancel out with our notations.

Proof. Let (ξ, ξ̌ ; x)s′
0
∈
(
Fs′

0
∩ Fs0

)(2) ×AM and g ∈ G such that gξ ∈ Fs′
1
∩Fs1 . By equation

(2) of the previous Proposition 3.8 for the local coordinates given by s′1 and s′0,

g(ξ, ξ̌ ; x)s′
0
= (gξ, gξ̌ ; βs′

1
,s′

0
(g, ξ)x)s′

1
.

Then by the transition identity of Proposition 3.10 (i) between s′0 and s0 on the left side of the
previous equation,

g(ξ, ξ̌ ; x)s′
0
= g(ξ, ξ̌ ; Ts0,s′0

(ξ)x)s0 .

Again by the cocycle identity on the right hand side between s0 and s1,

g(ξ, ξ̌ ; x)s′
0
= (gξ, gξ̌ ; βs1,s0(g, ξ)Ts0,s′0

(ξ)x)s1 .

Lastly, the transition identity between s1 and s′1 on the right side of the equation yields

(gξ, gξ̌ ; βs′
1
,s′

0
(g, ξ)x)s′

1
= (gξ, gξ̌ ; Ts′

1
,s1(gξ)βs1,s0(g, ξ)Ts0,s′0

(ξ)x)s′
1
.

�
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3.4. Local extensions of Hopf coordinates. Given a family of covering differentiable cross-
sections (si)i∈I of G → F , the associated cocycles do not extend the Iwasawa cocycle. Hence, in
a general setting, the maps (Bsi)i∈I do not extend Hopf coordinates of G/M .

We prove that when the cross-sections (si)i∈I take value in K, the signed multiplicative
Iwasawa cocycles (βsi,sj )i,j∈I generalize the Iwasawa cocycle. We obtain an equivariant and
commutative diagram with the Hopf coordinates.

Proposition 3.10. Let G be a connected, real linear, semisimple Lie group of non-compact
type. Let s be a compact valued, differentiable cross-section of G → F , then Hs extends the
Hopf coordinates restricted to s(Fs)NAM i.e. the following diagram is commutative.

s(Fs)NAM

πM

��

// F (2)
s ×AM ∋ (ξ, ξ̌ ; x)s

��

G/M // F (2) × a ∋ (ξ, ξ̌ ; log xA)

Moreover, it is equivariant with the left action of G, i.e. for all ξ ∈ Fs, for all g ∈ G and all
compact valued section s′ such that gξ ∈ Fs′ , the element

g(ξ, ξ̌ ; x)s = (gξ, gξ̌ ; βs′,s(g, ξ)x)s′

projects in G/M to

g(ξ, ξ̌ ; log xA) = (gξ, gξ̌ ; σ(g, ξ) + log xA).

Similarly, it is equivariant with the right action of A i.e. for all (ξ, ξ̌ ; x) ∈ F (2)
s × AM and all

θ ∈ a \ {0}, the element

φ̃t
θ(ξ, ξ̌ ; x)s = (ξ, ξ̌ ; xetθ)s

projects to

φ̃t
θ(ξ, ξ̌ ; log xA) = (ξ, ξ̌ ; log xA + tθ).

Proof. Recall that the lower part of the diagram reads as gM 7→ (gη0, gη̌0 ; σ(g, η0)). The
upper part reads as g 7→ (gη0, gη̌0 ; x)s where x is the component in MA given by the Iwasawa
decomposition of s(gη0)

−1g. Commutativity of the diagram then follows from the hypothesis
s(Fs) ⊂ K and the Definition 2.1 of the Iwasawa cocycle exp(σ(g, η0)) = aI(g) = aI(s(gη0)

−1g).
Let us check left G-equivariance. Let s and s′ be compact valued differential cross-sections.

By Proposition 3.8 (2) the left G-action starting from s(Fs)NAM landing in s′(Fs′)NAM is
expressed in the AM -coordinate thanks to the cocycle βs′,s. Since s and s′ take value in K,
by the previous point Hs and Hs′ are local extensions of the Hopf coordinates where the left
G-action is given in the a-coordinate by the Iwasawa cocycle. Hence the equivariance.

The last part follows from the commutativity of the diagram and Proposition 3.8 (4) that
describe how to read the right multiplication by elements of AM in coordinates associated to
cross-sections of G → F . �

3.5. Local coordinates of K. We prove that every differentiable compact valued cross-section
of G → F also induces local coordinates of K that take value in F×M . We explicit in coordinates
the map kI .

By endowing K with the left G-action defined for every g ∈ G and k ∈ K by g.k = kI(gk),
we make the projection G-equivariant.

Proposition 3.11. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let s be a differentiable compact valued cross-section of G → F . Then the restriction to the first
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and last coordinates of Hs provide local coordinates of K as follows.

Fs ×M −→ s(Fs)M ⊂ K

(ξ ; c)s 7−→ s(ξ)c.

Furthermore, the map kI : G → K reads in coordinates as

F (2)
s ×AM −→ Fs ×M

(ξ, ξ̌ ; x)s 7−→ (ξ ; xM )s

and for every covering family of compact valued cross-sections (si)i∈I of G → F , the M -
coordinate of the cocycles (βsi,sj )i,j∈I parametrize the left G action on K.

Proof. The map k 7→ kη0 allows to identify F with K/M . Consequently, every compact valued
differential cross-section induces a local trivialization.

Let s be a compact valued differential cross-section of G → F . Then s(Fs)M ⊂ K. Co-

ordinates in F (2)
s ×AM are the same as unique decompositions in s(Fs)NAM where the N part

is associated to the second coordinate in F and the AM part the last coordinate. Since AM
normalises N and M commutes with A, the compact part of the Iwasawa decomposition KAN
of every element in s(Fs)NAM is given by the product of its elements in s(Fs) and M . Hence,
the following diagram

G
AN−→ K

M−→ F
g 7−→ kI(g) 7−→ gη0

reads in local Bs coordinates as

F (2)
s ×AM −→ Fs ×M −→ Fs

(ξ, ξ̌ ; x)s 7−→ (ξ ; xM )s 7−→ ξ.

Let (si)i∈I be a family of covering differentiable cross-sections of K → F . That the left G action
in K reads as the projection in M of the cocycles

(
βsi,sj

)
i,j∈I

now follows from the equivariance

of the second diagram in local coordinates. �

3.6. Bruhat-Hopf coordinates. We define two (covering) families of cross-sections of G → F
defined on Bruhat cells of F : unipotent and compact Bruhat sections. We define Bruhat-Hopf
coordinates as the local extensions of Hopf coordinates given by Proposition 3.10 with respect to
the compact Bruhat sections. In Proposition 3.14 we prove that every unipotent (resp. compact)
Bruhat section is parametrized by a point of F and an element in AM (resp. M).

By Corollary 2.5 of Bruhat decomposition, the map

N− −→ N−η0 = b(η̌0)

u 7−→ uη0

is a diffeomorphism. Denote by [e] its inverse.

Definition 3.12. A unipotent Bruhat section is a left translate by G of the map [e]. We denote
them by [h] := h · [e] where h ∈ G. For every h ∈ G, the unipotent Bruhat section [h] has domain
hN−η0 = b(hη̌0), codomain hN− and is defined for all ξ ∈ b(hη̌0) by

[h](ξ) = h[e](h−1ξ).

A compact Bruhat section is the compact component in the KAN decomposition of a unipotent
Bruhat section, meaning that for every h ∈ G, the associated compact Bruhat section is defined
by kI ◦ [h].

Bruhat-Hopf coordinates (resp. Bruhat coordinates) are the families of coordinates of G given
by covering families of compact (resp. unipotent) Bruhat sections.
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For every h ∈ G, the unipotent Bruhat section [h] and the compact Bruhat section kI ◦ [h]
share the same domain: the Bruhat cell b(hη̌0) opposite to hη̌0. However, the latter’s codomain
is in K. Remark that Bruhat cells b(hη̌0) are open submanifolds of F therefore of non-empty
interior. Using compactness of F , one can choose finite families of covering Bruhat sections of
any type.

For every ξ̌ ∈ F , we pick a compact element hξ̌ ∈ K such that hξ̌ η̌0 = ξ̌. The choice of

this compact family (hξ̌)ξ̌∈F ⊂ K determines a covering family of unipotent Bruhat sections.
Abusing notation, we denote each of them by

[ξ̌] := [hξ̌].

Likewise, we determine a choice of compact Bruhat section for every domain b(ξ̌) where ξ̌ ∈ F .
We denote them by

k(ξ̌) := kI ◦ [ξ̌].
Remark 3.13. The Proposition below implies that for any h ∈ G such that hη̌0 = ξ̌, there is a
unique element x∗ ∈ AM such that [h] = [ξ̌].x∗.

Similarly, any compact Bruhat section s is determined by its domain b(ξ̌) with ξ̌ ∈ F and an
element c ∈ M such that s = k(ξ̌).c.

Recall that kI− (resp. aI−) denotes the coordinate in K (resp. A) in the Iwasawa decom-
position G = KAN− and that for every cross-sections s, s′ of G → F , for all ξ ∈ Fs ∩ Fs′ , we
defined Ts,s′(ξ) as the unique element in AM such that

s′(ξ) ∈ s(ξ)NTs,s′ (ξ).

Proposition 3.14. Let G be a connected, real linear, semisimple Lie group of non-compact type.
The following holds.

(1) For every u∗ ∈ N−, then [u∗] = [e] i.e.

T[e],[u∗] = eAM .

(2) For every x∗ ∈ AM and u∗ ∈ N−, then [x∗u∗] = [e].x∗ = [u∗x∗] i.e.

T[e],[x∗u∗] = x∗ = T[e],[u∗x∗].

(3) For every h ∈ G, then [h] = [kI−(h)].aI−(h) i.e.

T[kI−(h)],[h] = aI−(h).

Proof. Note that for every h ∈ N−AM , because hη̌0 = η̌0, every unipotent Bruhat section of
this form have the same domain i.e.

F[h] = F[e] = b(η̌0).

Let us prove (1) i.e. that for all u∗ ∈ N− and ξ ∈ F[u∗] then [u∗](ξ) ∈ [e](ξ)N. Since

[u∗](ξ) = u∗[e](u
−1
∗ ξ) for every ξ ∈ b(η̌0), then by Definition 3.12 of [e], we deduce that [u∗] takes

value in N−. Hence [e](ξ)−1[u∗](ξ) ∈ N−. Furthermore, using that [e] and [u∗] are cross-sections
of G → F , we deduce [e](ξ)−1[u∗](ξ) ∈ N− ∩ MAN . Therefore, by uniqueness of the Bruhat
decomposition [e](ξ)−1[u∗](ξ) = eG and T[e],[u∗] = eAM .

For statement (2), for all (u∗, x∗) ∈ N−×AM and ξ ∈ F[e], then [x∗u∗](ξ) = x∗u∗[e](u
−1
∗ x−1

∗ ξ).

Using that AM normalizes N−, we deduce that the map ξ 7→ [x∗u∗](ξ)x
−1
∗ is a differentiable

cross-section of G 7→ F taking value in N− and of domain b(η̌0). Hence, by uniqueness of
the Bruhat decomposition in N−NAM , we deduce that T[e],[x∗u∗].x

−1
∗

= eAM . Now we apply

Proposition 3.6 (ii) on transition functions to deduce that

eAM = T[e],[x∗u∗].x
−1
∗

= T[e],[x∗u∗]T[x∗u∗],[x∗u∗].x
−1
∗

.
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Then point (iv) of the same Proposition yields T[x∗u∗],[x∗u∗].x
−1
∗

= x−1
∗ , hence

T[e],[x∗u∗]x
−1
∗ = eAM .

For the second part of the equality, note that [u∗x∗] = [x∗(x
−1
∗ u∗x∗)]. Since AM normalizes N−,

the conjugated term is in N− and the rest follows from the previous point.
For statement (3), we write the KAN− decomposition h = kI−(h)aI−(h)uI−(h). Then by

properties of the left action of G on [e], we deduce that

h · [e] = kI−(h) · [aI−(h)uI−(h)].

Hence by statement (2), we deduce [h] = [kI−(h)].aI−(h). �

4. Products of loxodromic elements

Recall that an element of G is unipotent (resp. elliptic, hyperbolic) if it is conjugated to an
element in N (resp. K, A). By semisimplicity of the Lie group, every element g ∈ G admits a
unique decomposition g = geghgu, called the Jordan decomposition, where ge, gh and gu commute
and ge (resp. gh, gu) is called the elliptic part (resp. hyperbolic part, unipotent part) of g.

Definition 4.1. For any element g ∈ G, there is a unique element λ(g) ∈ a+ such that the
hyperbolic part of g is conjugated to exp(λ(g)) ∈ A+. The map λ : G → a+ is called the Jordan
projection.

An element g ∈ G is loxodromic if λ(g) ∈ a++. Denote by Glox (resp. Γlox) the subset
of loxodromic elements of G (resp. Γ). Since any element of N that commutes with A++ is
trivial, the unipotent part of loxodromic elements is trivial. Furthermore, the only elements of
K that commute with A++ are in M . We deduce that the elliptic part of loxodromic elements
is conjugated to elements in M . Therefore, g is loxodromic if and only if there exists h ∈ G such
that h−1gh ∈ MA++.

Hence, for every loxodromic element g ∈ G, there exists hg ∈ G and m(g) ∈ M so that we

can write g = hgm(g)eλ(g)h−1
g . However, for every m ∈ M we can also write

g = (hgm)(m−1m(g)m)eλ(g)(hgm)−1.

Which means that the angular part m(g) is only well defined up to conjugacy by M . We thus
use specific cross-sections of G → G/AM , to study the elliptic part of products of loxodromic
elements.

For every loxodromic element g ∈ G, denote by g+ := hη0 and g− := hη0. The Iwasawa
cocycle of g on g+ is equal to its Jordan projection (see for instance [DG20, Fact 2.6])

σ(g, g+) = λ(g).

In §4.1, by using differential cross-sections of G → F that factor the projection G → G/AM , we
extend locally and to loxodromic elements the previous formula.

In §4.2, we recall the dynamical properties of the left action of loxodromic elements on the
Furstenberg boundary. This leads us to another definition of (r, ε)-loxodromic elements, where r
is a positive number that measures the distance between the attracting point of the loxodromic
element and the boundary of its basin of attraction and ε measures how contracting it is. Using
the Bruhat sections of G → F , we give another proof that every loxodromic element, iterated
enough times, will become (r, ε)-loxodromic.

In §4.3, we compute the cocycle of loxodromic elements on points of their basin of attraction,
with respect to the latter’s unipotent Bruhat section. By defining the Ratio maps that are similar
to the error terms for products of generic loxodromic elements given in [Ben00], we obtain an
exact computation in Proposition 4.9.



18 NGUYEN-THI DANG

We define in §4.4 a family of equicontinuity constants δr,ε for compact Bruhat sections. We
claim the construction can be adapted for any family of covering K-valued cross-sections of
G → F of the same type.

In the last paragraph, we estimate simultaneously the elliptic and hyperbolic part of products
of generic loxodromic elements in Proposition 4.12. The proof is based on a Ping-Pong argument.

4.1. Extended Jordan projections for loxodromic elements. For every loxodromic ele-
ment g ∈ G, denote by g+ := hη0 and g− := hη0. By [DG20, Fact 2.6], its Iwasawa cocycle on
g+ is equal to the Jordan projection

σ(g, g+) = λ(g).

Let us define a multiplicative and local extension to MA++ of the Jordan projection of loxodromic
elements.

Definition 4.2. Let s be a differentiable cross-section of G → F . For every loxodromic element
g ∈ G such that g+ ∈ Fs, we denote by

Ls(g) := βs(g, g
+).

For compact or unipotent Bruhat sections, such a map is called a local extended Jordan projec-
tion (for loxodromic elements).

Fact 4.3. Let G be a connected, real linear, semisimple Lie group of non-compact type. Fix a
family of unipotent Bruhat sections denoted by ([ξ])ξ∈F of respective domains b(ξ). Let g ∈ G be
a loxodromic element. Then the following holds.

(1) For every h ∈ G such that h−1gh ∈ MA++ then L[h](g) = h−1gh.

(2) For every loxodromic element g, the element hg of Bruhat coordinates (g+, g− ; eAM )[g−]

satisfies h−1
g ghg = L[g−](g).

(3) For every cross-section s such that g+ ∈ Fs, then

Ls(g) = T[g−],s(g
+)−1

L[g−](g)T[g−],s(g
+).

(4) Therefore Ls(g) ∈ Meλ(g).

Proof. (1) By Definition 3.7 of the cocycle, β[h](g, g
+) is the unique element in AM such that

g[h](g+) ∈ [h](g+)β[h](g, g
+)N.

By Definition 3.12 of the unipotent Bruhat section, [h](g+) = h[e](h−1g+). Since g+ = hη0, we
deduce that [h](g+) = h[e](η0) = h. We rewrite the inclusion, with the definition of the extended
Jordan projection β[h](g, g

+) = L[h](g)

gh ∈ hL[h](g)N.

Since h−1gh ∈ MA++, we deduce that L[h](g) ∈ MA++ and the N -coordinate is trivial, i.e.

gh = hL[h](g).

(2) The unipotent Bruhat section [g−] shares the same domain as [h]. By Remark 3.13, these
cross-sections are defined only up to their domain and by right multiplication by an element in
AM . Since hg the unique element in hMA of Bruhat coordinates (g+, g− ; eAM )[g−], then

g(g+, g− ; eAM )[g−] = (g+, g− ; β[g−](g, g
+))[g−].

Using properties of the right translation by AM in Bruhat coordinates, we deduce that

ghg = hgL[g−](g).
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(3) Follows first from the identity between transition functions and cocycle of Fact 3.9, using
that g+ is a fixed point for the action of g on F , then we apply Proposition 3.6 (iii) to recognize
the inverse term for the transition function.

(4) Follows from (3) because we are conjugating by an element in AM . �

4.2. Dynamical action on the Furstenberg boundary. We study the left action of loxo-
dromic elements on the Furstenberg boundary. We give an alternative proof that the basin of
attraction is the Bruhat cell opposite to the repelling point. This leads to a Definition 4.5 of
(r, ε)-loxodromic elements using the K-invariant distance on F . We give another proof that large
iterates of loxodromic element are (r, ε)-loxodromic.

Proposition 4.4. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let g ∈ G be a loxodromic element.

Then g+ is an attracting point for the action of g on the Furstenberg boundary. Furthermore,
the basin of attraction of g+ is b(g−), the Bruhat cell opposite to its repelling point.

The classical proof uses the fundamental representations of G introduced Tits (cf. [Sam14,
Corollary 3.12]) and involves the notion of simultaneaous proximality in those representations (
cf. [Ben97b]). We only rely here on Bruhat decomposition and the convergence (1).

Proof. Let us first assume that g ∈ MA++. Then g+ = η0 and g− = η̌0 and we are going to
prove that its basin of attraction is b(η̌0).

Since MA normalizes N−, we deduce that g stabilizes the Bruhat cell b(η̌0). Indeed, for every
u∗ ∈ N−, then gu∗η0 = gu∗g

−1η0 ∈ N−η0. Furthermore for any u∗ ∈ N−, then gnu∗g
−n → eG

when n → +∞. This implies that b(η̌0) is in the bassin of attraction of η0.
Conversely, let ξ ∈ F be in the basin of attraction of η0. Choose for every element in the Weyl

group w ∈ W a representative kw ∈ NK(A) and recall that kι ∈ NK(A) denotes an element such
that N− = kιNk−1

ι . Apply Bruhat decomposition G = kι⊔w∈W BkwB where B = MAN . Then
there exists u∗ ∈ N− and kw ∈ NK(A) such that ξ = u∗kwη0. Now gnξ = gnu∗g

−n (gnkwη0).
Since ξ is in the basin of attraction and gnu∗g

−n converges to eG, we deduce that gnkwη0 → η0.
Using that kw normalizes MA, we deduce that gnkwη0 = kw(k

−1
w gnkw)η0 = kwη0. The sequence

is stationary at kwη0, by uniqueness of the limit kwη0 = η0. Hence kw ∈ M and ξ ∈ N−η0.
In the general case, let g ∈ G be a loxodromic element. Consider the unique element hg ∈ G

given by Fact 4.3 such that
h−1
g ghg = L[g−](g) ∈ MA++.

Hence, the attracting point of g is hgη0 = g+ and its basin of attraction is hgb(η̌0) = b(g−). �

We give a definition of (r, ε)-loxodromic elements which is slightly different from what the
reader may find in [Ben97b] or [Ben00] because it does not use the notion of simultaneous
proximality in the fundamental representations of G given by Tits. However, using our choice of
distance on F and the intrinsic characterization of the basin of attraction of loxodromic elements,
one can check that both definitions are equivalent.

Definition 4.5. Let r > 0 be a positive number and ε ∈ (0, r]. An element g ∈ G is (r, ε)-
loxodromic if it satisfies the following conditions.

(i) The element g is loxodromic and r ≤ 1
2d(g

+, ∂b(g−)).

(ii) It maps the compact set Vε(∂b(g
−))∁ into the ball B(g+, ε).

(iii) The restriction of g to Vε(∂b(g
−))∁ is an ε-Lipschitz map.

These remarks follow from the previous definition.

1) If an element is (r, ε)-loxodromic, then it is (r′, ε)-loxodromic for every ε ≤ r′ ≤ r.
2) If an element is (r, ε)-loxodromic, then it is (r, ε′)-loxodromic for every r ≥ ǫ′ ≥ ε.
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3) If g is is (r, ε)-loxodromic, then gn is also is (r, ε)-loxodromic for every n ≥ 1.

Note that loxodromic elements that are not sufficiently contracting, for instance those too close
to eG, will never satisfy the second condition for being (r, ε)-loxodromic. However, we give below
another proof that every loxodromic element, iterated a large enough amount of times will be
(r, ε)-loxodromic.

Proposition 4.6. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let g ∈ G be a loxodromic element.

Then for all positive number r ≤ 1
2d(g

+, ∂b(g−)) and all ε ∈ (0, r], there exists an integer
Nr,ε ≥ 1 such that for all n ≥ Nr,ε, the element gn is (r, ε)-loxodromic.

Proof. Let g ∈ G be a loxodromic element and fix r ≤ 1
2d(g

+, ∂b(g−)) and ε ∈ (0, r]. By choice
of these parameters, condition (i) holds.

Note that Vε(∂b(g
−))∁ is a compact subset of b(g−), which by Proposition 4.4 is the basin

of attraction of g+. Hence {gnVε(∂b(g
−))∁}n≥1 is a sequence of compact sets in the basin of

attraction shrinking towards g+. Consequently, condition (ii) holds for every n ≥ N2 sufficiently
large.

Let us now prove that there exists an integer Nr,ε such that for every n ≥ Nr,ε the restriction

of gn to Vε(∂b(g
−))∁ is an ε-Lipschitz map. By Fact 4.3, we consider the element hg ∈ G such

that h−1
g ghg = L[g−](g). Using that AM normalises N−, we express the action of g on b(g−) in

the unipotent charts [g−](b(g−)) = hgN
− by

c(g) : hgN
− −→ hgN

−

hgu∗ 7−→ hg

(
L[g−](g)u∗L[g−](g)

−1
)
.

The chosen metric on F is induced by the identification K/M ≃ F . Furthermore, the compact
Bruhat section k(g−) : b(g−) → K defined by kI ◦ [g−] is a differentiable chart of b(g−).
Therefore, any upper bound of the differential of the map

k(g−)(b(g−)) −→ k(g−)(b(g−))

kI(hgu∗) 7−→ kI ◦ c(g)(hgu∗).

restricted to k(g−)(Vε(∂b(g
−))∁) provides a Lipschitz constant for the map

Vε(∂b(g
−)∁ −→ b(g−)

ξ 7−→ gξ.

Set Cr,ε := supu∗∈[g−]B(g+,ε) ‖Du∗
kI‖ supu∗∈[g−]Vε(∂b(g−))∁ ‖Du∗

kI‖−1.

At every point, the eigenvalues of the differential of c(g) are {e−α(λ(g))}α∈Σ+
where Σ+ is the

set of positive roots. Denote by ℓg := minα∈Σ+ α(λ(g)). Since g is loxodromic, ℓg is a positive
number and we obtain the uniform exponential decay of the differential of c(g) i.e. for every
n ≥ 1,

sup
u∗∈hgN−

‖Du∗
c(gn)‖ ≤ e−nℓg .

By hypothesis on r and ε, we deduce that B(g+, ε) ⊂ Vε(∂b(g
−))∁. Let n ≥ N2. Then by choice

of ℓg and Cr,ε, we deduce that Cr,εe
−nℓg is a Lipschitz constant for the action of gn restricted

to this compact subset of the basin of attraction. Since this sequence decays exponentially fast,
there exists Nr,ε ≥ N2 such that for every n ≥ Nr,ε, then Cr,εe

−nℓg ≤ ε and condition (iii) is
satisfied. �
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4.3. Cocycle on the basin of attraction. Let g be a loxodromic element. We prove in
Lemma 4.7 that the cocycle of g and every point ξ in its basin of attraction, with respect to [g−]
is everywhere equal to its local extended Jordan projection. Then we define a map which allow
us to write in Proposition 4.9 an exact relation between the cocycle of g and every ξ in its basin
of attraction and any local extended Jordan projection, with respect to any suitable choice of
cross-sections.

Lemma 4.7. Let G be a connected, real linear, semisimple Lie group of non-compact type. Then
for all loxodromic element g ∈ G, all n ≥ 1 and ξ ∈ b(g−),

β[g−](g
n, ξ) = L[g−](g)

n.

We give a different proof from Lee-Oh [LO20].

Proof. Denote by hg the element of G of Bruhat coordinates (g+, g− ; eAM )[g−], then ghg =

hgL[g−](g) by Fact 4.3 and the unipotent Bruhat sections [hg] and [g−] are equal.

By property of the unipotent Bruhat section, for every ξ ∈ b(g−) = hgN
−η0, there exists a

unique uξ ∈ N− such that ξ = hguξη0 and hguξ reads in Bruhat coordinates (ξ, g− ; eAM )[g−].

On one hand, by definition of the cocycle and because b(g−) is the basin of attraction of g+,
for all n ≥ 1, the element gnhguξ reads as

gn(ξ, g− ; eAM )[g−] = (gnξ, g− ; β[g−](g
n, ξ) )[g−].

Note that β[g−](g
n, ξ) is the unique element in AM such that gnhguξ ∈ hgN

−β[g−](g
n, ξ)N. That

the second coordinate remains equal to g− means that the part in N is trivial.
On the other hand, using the definition of the signed Jordan projection,

gnhguξ = hgL[g−](g)
nuξ = hg

(
L[g−](g)

nuξL[g−](g)
−n

)
L[g−](g)

n.

Since AM normalizes N−, we deduce that L[g−](g)
nuξL[g−](g)

−n ∈ N−, hence

gnhguξ ∈ hgN
−

L[g−](g)
n.

This allows us to deduce by uniqueness of the Bruhat decomposition in hgN
−MAN that

β[g−](g
n, ξ) = L[g−](g)

n. �

Definition 4.8. Given two cross-sections s1, s2 and a Bruhat cell b(ξ̌), then for all ξ1 ∈ Fs1∩b(ξ̌)
and ξ2 ∈ Fs2 ∩ b(ξ̌) we define the Ratio

Rs1,s2(ξ̌; ξ1, ξ2) := Ts1,[ξ̌]
(ξ1)T[ξ̌],s2

(ξ2).

When s1 = s2, we shorten the notation Rs1 := Rs1,s1 . For every loxodromic element g ∈ G such
that g+ ∈ Fs1 ∩ b(g−), for all ξ ∈ Fs2 ∩ b(g−), set

Rs1,s2(g, ξ) := Rs1,s2(g
−; g+, ξ).

The regularity of the Ratio map depends on the regulatity of the transfer maps which in turn
depend on that of the cross-sections. Because the transition functions between the unipotent and
compact Bruhat sections take value in AM , for any compact Bruhat sections s1, s2, the Ratio
map Rs1,s2 is continuous on its domain and takes value in AM .

Using the ratio map, the following statement follows from Lemma 4.7.

Proposition 4.9. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Then for all loxodromic element g ∈ Glox, all integer n ≥ 1 and ξ ∈ b(g−), for any choice of

compact (Bruhat) sections s0, s1, s2 such that (ξ, g+, gnξ) ∈ Fs0 ×Fs1 ×Fs2

(5) βs2,s0(g
n, ξ) = Rs1,s2(g; g

nξ)−1
Ls1(g)

n
Rs1,s0(g; ξ).
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Proof. Indeed, by using first the transition functions between s2, s0 and [g−], then applying
Lemma 4.7 on the middle term and finally using the transition function between [g−] and s1 in
the middle term yields

βs2,s0(g
n, ξ) = Ts2,[g−](g

nξ) β[g−](g
n, ξ) T[g−],s0(ξ)

= Ts2,[g−](g
nξ) L[g−](g

n) T[g−],s0(ξ)

= Ts2,[g−](g
nξ)T[g−],s1(g

+) Ls1(g
n) Ts1,[g−](g

+)T[g−],s0(ξ).

Finally, using Definition 4.8 and properties of the transition functions we check that
Ts2,[g−](g

nξ)T[g−],s1(g
+) = Rs1,s2(g; g

nξ)−1 and Ts1,[g−](g
+)T[g−],s0(ξ) = Rs1,s0(g; ξ). �

4.4. Equicontinuity constants. After constructing a distance of AM0 that is symmetric and
left and right invariant, we introduce for every r > 0 and ξ̌ ∈ F , a family (δr,ε(ξ̌))ε∈(0,r] of
equicontinuity constants of a continuous fonction defined over a compact set. These constants
are thus positive and converge to zero when ε goes to zero. Furthermore, using the K-invariance
of the distance on F and the action of K on the compact and unipotent Bruhat sections, we
show that these constants do not depend on the choice of ξ̌ ∈ F .

Let us now choose a distance between on AM and which is left and right AM invariant i.e. for
every x, y, z, w ∈ AM , dAM (wxz,wyz) = dAM (x, y). The maximal torus A is an abelian group
of finite dimension, any norm on its Lie algebra a will induce by the exponential map a suitable
distance on the former. Since M is the centralizer of A in K, it is sufficient to construct an M
invariant distance between arc connected points and setting an infinite distance otherwise. We
will then endow AM with the distance dAM induced by the product group structure A×M .

Now we construct an M -invariant norm on the Lie algebra of M . Starting from an euclidean
norm on m, we make it Ad(M)-invariant by taking its average with respect to the Haar measure
on M . Since M is compact, its Haar measure is finite. Therefore, the average is an Ad(M)-
invariant norm on m. It induces an Ad(M)-invariant scalar product on TeMM . By transporting
it on the tangent space over every point by left multiplication by M we obtain a left invariant
metric. The induced riemannian distance on M is only defined between arc connected points
and is, by construction, left M -invariant and invariant by conjugation. This suffices to deduce
the M -invariance of such a distance.

Recall that for every ξ̌ ∈ F , then [ξ̌] denotes a choice of unipotent Bruhat section of domain
b(ξ̌) and k(ξ̌) := kI ◦ [ξ̌] is the associated compact Bruhat section. Therefore k(F) denotes the
family of such compact Bruhat sections.

Proposition 4.10. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let r > 0. Consider the compact, symmetric and invariant by conjugacy by K subset

Kr := {h ∈ K | hVr(∂b(η̌0)) ⊂ V2r(∂b(η̌0))}.
For every ξ̌ ∈ F , denote by

δr,ε(ξ̌) := sup
s∈Kr·k(ξ̌)

{
dAM (Rs(ξ̌ ; ξ1, ξ2), eAM )

∣∣∣ ξ1 ∈ V3r(∂b(ξ̌))
∁ and ξ2 ∈ B(ξ1, ε)

}
.

Then the following holds.

(a) For every r > 0 and every ε ∈ (0, r], the constant δr,ε(η̌0) is non-zero and

δr,ε(η̌0) −→
ε→0

0.

(b) For every ξ̌ ∈ F , the equality holds δr,ε(η̌0) = δr,ε(ξ̌).

Proof. Note first that by M -invariance of the distance

dAM (Rs(ξ̌ ; ξ1, ξ2), eAM ) = dAM (Ts,[ξ̌](ξ1) ,Ts,[ξ̌](ξ2)).
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(a) Because the Bruhat sections and the Iwasawa decomposition are differentiable, by Defini-
tion 3.5 of the transition maps, the map

Kr × V2r(∂b(η̌0))
∁ −→ AM

(c, ξ) 7−→ Tc·k(η̌0),[η̌0](ξ)

is continuous. It is defined over a compact set and using the Definition 4.8 of the ratio map,
we notice that δr,ε(η̌0) is for every ε > 0 bounded above by the equicontinuity constant of this

map and bounded below by the equicontinuity constants for the restriction to Kr×V3r(∂b(η̌0))
∁.

Hence the positivity and convergence to zero.
(b) Let l ∈ K such that ξ̌ = lη̌0 and k(ξ̌) = l · k(η̌0). Since lV2r(∂b(η̌0))

∁ = V2r(∂b(ξ̌))
∁, note

that δr,ε(ξ̌) is associated to the continuous map

Kr × V2r(∂b(η̌0))
∁ −→ AM

(c, ξ) 7−→ Tcl·k(η̌0),l·[η̌0](lξ).

Recall that the transition function is the unique element in AM such that
(
cl · k(η̌0)

)
(lξ) ∈

(
l · [η̌0]

)
(lξ)NTcl·k(η̌0),l·[η̌0](lξ).

By first applying the definition of the translation l · s(lξ) = ls(ξ), then multiplying by l−1 on the
left, we obtain (

l−1cl · k(η̌0)
)
(ξ) ∈ [η̌0](ξ)NTcl·k(η̌0),l·[η̌0](lξ).

Therefore Tcl·k(η̌0),l·[η̌0](lξ) = Tl−1cl·k(η̌0),[η̌0](ξ). Since Kr is invariant by conjugation, in partic-

ular l−1Krl = Kr. The continuous maps associated to δr,ε(ξ̌) and δr,ε(η0) coincide, hence the
constants are equal. �

Definition 4.11. Let r > 0. We define the family of equicontinuity constants

δr,ε := sup
ξ̌∈F

sup
s∈Kr ·k(ξ̌)

{
dAM (Rs(ξ̌ ; ξ1, ξ2), eAM )

∣∣∣ ξ1 ∈ V3r(∂b(ξ̌))
∁ and ξ2 ∈ B(ξ1, ε)

}
.

4.5. Estimates for products of generic loxodromic elements. Let g1, ..., gl ∈ Glox be
loxodromic elements. Taking the convention that g0 = gl, we say the (ordered) family is generic
if g+i−1, g

−
i are transverse for every 1 ≤ i ≤ l or in other words g+i−1 ∈ b(g−i ).

Proposition 4.12. Let G be a connected, real linear, semisimple Lie group of non-compact type.
For all r > 0 and ε ∈ (0, r] and every generic family g1, ..., gl ∈ G of (r, ε)-loxodromic elements
such that

⋆ r ≤ 1
6d({g+i−1, g

+
i }, ∂b(g−i )) for all 1 ≤ i ≤ l with the convention g0 = gl.

Fix a choice of compact Bruhat sections (si)0≤i≤l such that

⋆⋆ Fsi ⊃ Vr(∂b(g
−
i ))

∁ for every 1 ≤ i ≤ l and Fs0 ⊃ Vε(∂b(g
−
1 ))

∁.

Then for all ξ0 ∈ Vε(∂b(g
−
1 ))

∁ and for all integers n1, ..., nl ≥ 1,

βsl,s0(g
nl

l ...gn1

1 , ξ0) ∈ Lsl(g
nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(g

n1

1 )Rs1,s0(g1, ξ0)B(eAM , (2l− 1)δr,ε).

Furthermore, gnl

l ...gn1

1 is (2r, 2ε)-loxodromic with attracting (resp. repelling) point in B(g+l , ε)

(resp. B(g−1 , ε)) and its extended Jordan projection satisfies

Lsl(g
nl

l ...gn1

1 ) ∈ Lsl(g
nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(g

n1

1 )Rs1,sl(g1, g
+
l )B(eAM , 2lδr,ε).

One can find a proof in [Ben00, Lemma 3.6] that gnl

l ...gn1

1 is (2r, 2ε)-loxodromic with attracting

(resp. repelling) point in B(g+l , ε) (resp. B(g−1 , ε)) and obtain an estimate for the Jordan
projection λ. We improve the result by giving an estimate for the elliptic part.
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Proof. Let us prove the estimate for the cocycle, the extended Jordan projection’s estimate will
follow from the Definition 4.2 that for every loxodromic element g and a suitable cross-section s
such that g+ ∈ Fs, then Ls(g) = βs(g, g

+).
For all 1 ≤ j ≤ l, we set ξj := g

nj

j ...gn1

1 ξ0. At each step starting from j = 1, the element gj

is (r, ε)-loxodromic and ξj−1 ∈ Vε(∂b(g
−
j ))

∁ ∩ Fsj−1
. Hence ξj := g

nj

j ξj−1 ∈ B(g+j , ε), which by

choice of sj and r ≤ 1
6d(g

+
j , ∂b(g

−
j )∪∂b(g−j+1)) is inside Vr(∂b(g

−
j+1))

∁ ∩Vr(∂b(g
−
j ))

∁ ⊂ Fsj . We

deduce, by induction, that ξj ∈ B(g+j , ε) ⊂ Fsj for every 1 ≤ j ≤ l.
By the cocycle relation and recognizing ξj for every 1 ≤ j ≤ l − 1,

βsl,s0(g
nl

l ...gn1

1 , ξ0) = βsl,sl−1
(gnl

l , g
nl−1

l−1 ...gn1

1 ξ0) βsl−1,s0(g
nl−1

l−1 ...gn1

1 , ξ0)

= βsl,sl−1
(gnl

l , ξl−1) βsl−1,s0(g
nl−1

l−1 ...gn1

1 , ξ0)

= βsl,sl−1
(gnl

l , ξl−1) · · · βsj ,sj−1
(g

nj

j , ξj−1) · · · βs1,s0(g
n1

1 , ξ0).

We will first prove that the first term on the right hand side is in a 2δr,ε neighbourhood

of Lsl(g
nl

l )Rsl,sl−1
(gl ; g+l−1). It will then follow by induction that every term of the form

βsj ,sj−1
(g

nj

j , ξj−1) where 2 ≤ j ≤ l is 2δr,ε close to Lsj (g
nj

j )Rsj ,sj−1
(gj ; g+j−1). Finally, we

prove that the last term is in a δr,ε neighbourhood of Ls1(g
n1

1 )Rs1,s0(g1; ξ0).
Let us apply Proposition 4.9, then replace gnl

l ξl−1 with ξl

βsl,sl−1
(gnl

l , ξl−1) = Rsl(gl ; g
nl

l ξl−1)
−1

Lsl(gl)
nl Rsl,sl−1

(gl ; ξl−1)

= Rsl(gl ; ξl)
−1

Lsl(gl)
nl Rsl,sl−1

(gl ; ξl−1).

By Definition 4.8 of the ratio Rsl(gl ; ξl)
−1 = Rsl(g

−
l ; g+l , ξl)

−1. Since ξl ∈ B(g+l , ε) and by

choice of r ≤ 1
6d(g

+
l , ∂b(g

−
l )), we deduce by Definition 4.11 of δrε that Rsl(gl ; ξl) ∈ B(eAM , δr,ε).

The first term is small, it remains to show that the third term is close to Rsl,sl−1
(g−l ; g

+
l , g

+
l−1).

By definition of the ratio map,

Rsl,sl−1
(g−l ; g

+
l , ξl−1) = Tsl,[hl](g

+
l ) T[hl],sl−1

(ξl−1)

= Tsl,[hl](g
+
l ) T[hl],sl−1

(g+l−1)

Tsl−1,[hl](g
+
l−1)T[hl],sl−1

(ξl−1)

= Rsl,sl−1
(g−l ; g

+
l , g

+
l−1) Rsl−1

(g−l ; g
+
l−1, ξl−1).

Hence, the cocycle can be written as follows,

βsl,sl−1
(gnl

l , ξl−1) = Rsl(gl ; ξl)
−1

Lsl(gl)
nl Rsl,sl−1

(gl ; g
+
l−1) Rsl−1

(g−l ; g
+
l−1, ξl−1).

Finally, by choice of r ≤ 1
6d(g

+
l−1, ∂b(g

−
l )) and Definition 4.11 of δr,ε, the third term is small i.e.

Rsl−1
(g−l ; g

+
l−1, ξl−1) ∈ B(eAM , δr,ε). Given that the distance in AM is symmetric and invariant

by conjugation, we deduce that

βsl,sl−1
(gnl

l , ξl−1) ∈ Lsl(gl)
nl Rsl,sl−1

(gl ; g
+
l−1) B(eAM , 2δr,ε).

By induction, for every 2 ≤ j ≤ l

βsj ,sj−1
(g

nj

j , ξj−1) ∈ Lsj (gj)
nj Rsj ,sj−1

(gj ; g
+
j−1) B(eAM , 2δr,ε).

Now for βs1,s0(g
n1

1 , ξ0), by Proposition 4.9 and by replacing gn1

1 ξ0 with ξ1

βs1,s0(g
n1

1 , ξ0) = Rs1(g1 ; gn1

1 ξ0)
−1

Ls1(g1)
n1 Rs1,s1(g1 ; ξ0).

Similarly, by choice of r and definition of δr,ε, we deduce that

βs1,s0(g
n1

1 , ξ0) ∈ Ls1(g1)
n1 Rs1,s1(g1 ; ξ0) B(eAM , δr,ε).
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Hence,

βsl,s0(g
nl

l ...gn1

1 , ξ0) ∈ Lsl(g
nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(g

n1

1 )Rs1,s0(g1, ξ0)B(eAM , (2l− 1)δr,ε).

Finally, for the extended Jordan projection, we apply the cocycle estimate for the attracting
point g+ of gnl

l ...gn1

1 with cross-section s0 = sl. By [Ben00, Lemma 3.6], it is in B(gnl

l , ε), there-

fore by choice of r ≤ 1
6d(g

+
l , ∂b(g

−
1 )), we deduce that Rs1,sl(g1, g

+) ∈ Rs1,sl(g1, g
+
l )B(eAM , δr,ε).

Hence Lsl(g
nl

l ...gn1

1 ) ∈ Lsl(g
nl

l )Rsl,sl−1
(gl, g

+
l−1)...Ls1(g

n1

1 )Rs1,sl(g1, g
+
l )B(eAM , 2lδr,ε). �

Definition 4.13. Let 0 < ε ≤ r. A semigroup Γ ⊂ G is strongly (r, ε)-Schottky if

(i) every element is (r, ε)-loxodromic,
(ii) d(h+, ∂b(h′−)) ≥ 6r for all h, h′ ∈ Γ.

We also write that Γ is a strong (r, ε)-Schottky semigroup.

5. Invariant sets

Let Γ is a Zariski dense subgroup of G. In the first paragraph, following [DG20], we construct
the non-wandering set Ω ⊂ Γ\G/M for regular Weyl chamber flows. We notice that it is the
smallest closed A-invariant subset of Γ\G/M containing all the periodic orbits of the flows
φt
λ(Γlox).

Denote by Ω̃G the preimage of Ω via the projection G → Γ\G/M . Such a subset is closed,
left Γ-invariant and right AM -invariant. Denote by M0 the connected component of the identity
of M . In the second paragraph, following Guivarc’h-Raugi [GR07], we introduce the sign group
MΓ, a normal subgroup of finite index of M containing M0. One can find another construction
of the sign group in [Ben05].

Finally, using Guivarc’h-Raugi’s classification of Γ-invariant subsets of K (cf. Theorem 5.9)

we construct a partition of left Γ-invariant right AMΓ-invariant subsets of Ω̃G. We prove in Pro-
position 5.12 that the topological dynamics of diagonal flows on these subsets are all conjugated.

5.1. In the space of Weyl chamber.

Definition 5.1. A point η ∈ F is a limit point if there exists a sequence (γn)n≥1 in Γ such that(
(γn)∗HaarF

)
n≥1

converges weakly towards the Dirac measure in η.

The limit set of Γ, denoted by L+(Γ), is the set of limit points of Γ. It is a closed, Γ-invariant
subset of F .

Denote by L−(Γ) the limit set of Γ−1 and finally let L(2)(Γ) =
(
L+(Γ)× L−(Γ)

)
∩ F (2).

Note that when Γ is a subgroup, then L+(Γ) = L−(Γ) and L(2)(Γ) is the subset of pair of
points of L+(Γ) in general position. For the hyperbolic plane, we get the product of the usual
limit set minus the diagonal.

By [Ben97b] Lemma 3.6, the set of pairs of attracting and repelling points of loxodromic
elements of Γ is dense in L+(Γ)×L−(Γ). Therefore, using Hopf coordinates and the construction
of attracting and repelling points of loxodromic elements, L(2)(Γ) identifies with smallest closed
Γ-invariant subset of G/AM containing

{
hγAM | ∃γ ∈ Γlox such that h−1

γ γhγ ∈ MA++
}
.

Theorem 5.2 (Theorem 4.5 [DG20]). Let G be a real linear, connected, semisimple Lie group
of non-compact type (i.e. without compact factors) and Γ be a Zariski dense subsemigroup of G.

Then the (diagonal) action of Γ on L(2)(Γ) is topologically transitive, i.e. there are dense
Γ-orbits.



26 NGUYEN-THI DANG

Definition 5.3. We denote by Ω̃ the subset of non-wandering Weyl chambers, defined through
the Hopf parametrization by:

Ω̃ := H−1(L(2)(Γ)× a).

This is a Γ-invariant and right A-invariant subset of G/M . When Γ is a subgroup, we denote

by Ω := Γ\Ω̃ the quotient space.

By Theorem 5.2 the quotient Ω is the smallest closed A-invariant subset of Γ\G/M containing
the following subset

{
φR

λ(γ)(hγM) | γ ∈ Γlox and h−1
γ γhγ ∈ MA++

}
.

Note that in rank one, the above set is the reunion of all periodic orbits for the geodesic flow.

5.2. The sign subgroup. Denote by Mab := M/[M,M ] the abelianisation of the compact
group M and by πab : M → Mab the projection. Abusing notations, πab also denotes the
projection AM → AMab.

Fact 5.4. Let G be a connected, real linear, semisimple Lie group of non-compact type. For
all cross-sections s and s′ the projection into AMab of the signed translation maps Ls and Ls′

coincide on the intersection of their domains i.e. for every loxodromic element g ∈ G such that
g+ ∈ Fs ∩ Fs′ , then

πab

(
Ls(g)

)
= πab

(
Ls′(g)

)
.

Proof. By Definition 4.2 of the signed translation map, we write

Ls′(g) = βs′(g, g
+).

Using first the Fact 3.9 over signed cocycles and transition functions, then that g+ is fixed by g,
we deduce that

Ls′(g) = Ts′,s(g
+)βs(g, g

+)Ts,s′(g
+).

The middle term is an extended Jordan projection and the first and last term are inverse (see
Proposition 3.6 (iii) on transition functions). Hence

Ls′(g) = Ts′,s(g
+)Ls(g)Ts′,s(g

+)−1.

The claim then follows by projecting the relation into the abelian group AMab. �

Denote by L ab the map that associates to every loxodromic element g ∈ G the projection into
AMab of any signed Jordan projection. We call this map the abelian signed Jordan projection.
Denote by πMab the projection AMab → Mab.

Definition 5.5. Let Γ be a Zariski dense subgroup of G. Denote by Γlox the subset of loxodromic
elements of Γ. We define the abelian sign group of Γ by

Mab
Γ := πMab

(
〈L ab(Γlox)〉

)
.

The sign group of Γ, denoted by MΓ is given by MΓ := π−1
ab (M

ab
Γ ).

The following Theorem will imply non-arithmeticity in AMab
Γ of the abelian signed Jordan

projections of Γ.

Theorem 5.6 (Theorem 6.4 [GR07]). Let G be a real linear, connected, semisimple Lie group
of non-compact type (i.e. without compact factors). Then for all Zariski dense subsemigroup
Γ ⊂ G, the closed subgroup spanned by L ab(Γlox) is of finite index in AMab.
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Corollary 5.7. Let G be a real linear, connected, semisimple Lie group of non-compact type
(i.e. without compact factors) and Γ be a Zariski dense subsemigroup of G. Then

〈L ab(Γlox)〉 = AMab
Γ .

Proof. Denote by H := 〈L ab(Γlox)〉. By definition, it is a closed subgroup of AMab. In particular,
AMab/H is Hausdorff. According to the previous Theorem 5.6, it is a finite group. By endowing
it with the discrete topology, we deduce that the morphism

ϕ : A −→ AMab/H

a 7−→ aH

is a continuous map that takes value in a finite group. Since A is connected, ϕ is constant to
eAH , hence ϕ(A) = AH = H and A ⊂ H .

By Definition 5.5 of the sign group, H ⊂ AMab
Γ . Conversely, for every x ∈ A and m ∈ Mab

Γ ,
there exists y ∈ A such that ym ∈ H . We now write xm as a product xm = (xy−1)ym. In the
right hand side, the first term is in A hence in H and the second term is in H , hence xm ∈ H .
We thus conclude that H = AMab

Γ . �

Theorem 5.8 (Theorem 8.2 [Ben05],Theorem 1.9 [GR07]). Let G be a real linear, connected,
semisimple Lie group of non-compact type (i.e. without compact factors) and Γ be a Zariski
dense subsemigroup of G. Then the following holds.

(a) MΓ is a closed normal subgroup of finite index of M and contains the connected com-
ponent of the identity M0.

(b) There exists an integer pΓ ∈ [0, dim a] such that MΓ/M0 is isomorphic to
(
Z/2Z

)pΓ
.

(c) MΓ−1 = kιMΓk
−1
ι where kι ∈ NK(A) is an element such that Ad(kι)a

+ = −a+.
(d) For all g ∈ G, the groups satisfy MgΓg−1 = MΓ.

When G is a split, real linear, algebraic group, Y. Benoist in [Ben97a] studies the following
conditions:

(C1) There exists a Zariski dense subgroup Γ ⊂ G such that MΓ = M0.
(C2) There exists a Zariski dense subgroup Γ ⊂ G with MΓ ) M0 such that the sign group of

every Zariski dense subgroup of Γ strictly contains M0.

In particular, he proves for SL(m,R) that both conditions hold when m is a multiple of 4, in fact
(C2) is true for all m. . However, when m is even but not divisible by 4, condition (C1) is false
i.e. the sign group of every Zariski dense subgroup of SL(m,R) is non trivial.

5.3. Γ-invariant subsets of G. Recall the left action of G on K defined for all g ∈ G and
k ∈ K by g.k = kI(gk). The projection K → F is thus equivariant and endows K with a fiber
bundle structure of fiber M over the Furstenberg boundary. Apply a result of Guivarc’h-Raugi
[GR07] on the left action of G on K. Denote by LG(Γ) the preimage in K of the limit set
L(Γ) ⊂ F . Then the closed right M -invariant and left Γ-invariant subset LG(Γ) ⊂ K partitions
into |M/MΓ| closed, Γ-invariant, minimal subsets. Furthermore, these invariant subsets are right

MΓ-invariant. Lastly, using Iwasawa decomposition, we partition Ω̃G into left Γ-invariant and
right AMΓ-invariant subsets of G.

Theorem 5.9 (Theorem 2 [GR07] ). Let G be a connected, real linear, semisimple Lie group of
non-compact type. Let Γ be a Zariski dense, discrete subsemigroup of G.

Then the following holds.

1) LG(Γ) ⊂ K partitions into |M/MΓ| closed, minimal Γ-invariant subsets i.e. in each
partition, every Γ-orbit is dense.



28 NGUYEN-THI DANG

2) There is an indexation of this partition by M/MΓ i.e. LG(Γ) = ⊔[m]∈M/MΓ
L[m](Γ) such

that for every m ∈ M ,

L[m](Γ) = L[eM ](Γ)m.

3) Every element of the partition turns out to be right MΓ-invariant.

Recall that for every compact Bruhat section s, the map g ∈ s(Fs)NAM 7→ kI(g) ∈ K reads
in Bs coordinates for the source and target as

F (2)
s ×AM −→ Fs ×M

(ξ, η ; x)s 7−→ (ξ ; xM )s.

Bruhat-Hopf coordinates make the following diagram commutative and equivariant for every
compact Bruhat section s.

F (2)
s ×AM ≃ s(Fs)NAM ⊂ G

M
��

// Fs ×M ≃ s(Fs)M ⊂ K

M

��

H−1
(
F (2)

s × a
)
⊂ G/M // Fs

Let us now translate Theorem 5.9 using the restriction to K of the Bruhat-Hopf coordinates
given by the right side of the diagram.

Corollary 5.10. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let Γ be a Zariski dense, discrete subsemigroup of G. Then for every compact Bruhat section s,
the following holds.

1) For every element in LG(Γ) of coordinates (ξ ; x)s ∈
(
Fs ∩ L(Γ)

)
× M , there exists a

unique element [m] ∈ M/MΓ such that the element of coordinate (ξ ; x)s is in L[m](Γ).
Furthermore, the Γ-orbit of this element Γ(ξ ; x)s is dense in L[m](Γ).

2) For every element in L[eM ](Γ) of coordinate (ξ ; x)s and for all m ∈ M , the translate of
coordinate (ξ ; xm)s is in L[m](Γ).

3) For every element in L[m](Γ) of coordinate (ξ ; x)s and for all c ∈ MΓ then the element
of coordinate (ξ ; xc)s remains in L[m](Γ).

Denote by Ω̃G the preimage in G of Ω̃ ⊂ G/M by the projection G → G/M . It is a closed, left
Γ-invariant and right AM -invariant subset of G. For every compact Bruhat section s ∈ k(F),

the intersection Ω̃G ∩ s(Fs)NAM reads in Bruhat-Hopf coordinates as

Bs

(
Ω̃G ∩ s(Fs)NAM

)
=

(
L(2)(Γ) ∩ F (2)

s

)
×AM.

In other words, every element of coordinate (ξ, η ; x)s ∈ L(2)(Γ)×AM with ξ ∈ Fs is in Ω̃G. The
previous Theorem and left side of the diagram allow us to partition it into closed left Γ-invariant
and right AMΓ-invariant subsets. To simplify notations, for every x ∈ AM , we denote by xM its
projection in M .

Definition 5.11. For every m ∈ M , we denote by Ω̃[m] := L[m](Γ)AN∩Ω̃G and Ω[m] := Γ\Ω̃[m].

In other words, Ω̃[m] is the subset of elements of coordinate (ξ, η ; x)s ∈ L(2)(Γ) × AM whose
compact Iwasawa projection of coordinate (ξ ; xM )s is in L[m](Γ), for every suitable compact
Bruhat section s.

Proposition 5.12. Let G be a connected, real linear, semisimple Lie group of non-compact type.
Let Γ be a Zariski dense, discrete subgroup of G. Then the following holds.
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(a) The left Γ-invariant and right AMΓ-invariant subsets Ω̃[m] form a partition of Ω̃G, i.e.

Ω̃G =
⊔

[m]∈M/MΓ

Ω̃[m].

(b) For every m ∈ M , then Ω̃[m] = Ω̃[eM ]m.

(c) For all [m] ∈ M/MΓ, the dynamical systems (Ω[m], φ
t
θ) and (Ω[eM ], φ

t
θ) are conjugated.

Proof. The left Γ-invariance in (a) is a consequence of the first point of Theorem 5.9 and of the

left Γ-invariance of Ω̃G. It also follows from the same point that the subsets
(
Ω̃[m]

)
[m]∈M/MΓ

form a partition of Ω̃G. The right AMΓ-invariance is due to the right MΓ-invariance of L[m](Γ)
and the properties of the Bruhat-Hopf coordinates given by Proposition 3.8 and Proposition 3.11.

Point (b) is a direct consequence of the second point of Theorem 5.9 and the compatibility of
the Bruhat-Hopf coordinates with the compact Iwasawa projection.

Point (c) follows from the commutativity of the right action by multiplication by M with that
of A, because every element of M commute with every element of A. �

6. Decorrelation

Let Γ be a Zariski dense subgroup of G. We construct a pair of points (ξ1, ξ̌1) ∈ L(2)(Γ) and
show that there exists (r, ε)-loxodromic elements in Γ of attracting and repelling points in an
ε-neighbourhood of these points and whose signed cocycle are dense in an MΓ-invariant set.

Consider the family of equicontinuity constants δr,ε of Definition 4.11. To simplify notations,
we introduce the family of constants

δ̃r,ε := (8 dim a+ 4dimM0 + 5)δr,ε.

In this section, we prove the following Proposition.

Proposition 6.1. Let G be a real linear, connected, semisimple Lie group of non-compact type
(i.e. without compact factors.) Assume that M0 is abelian. Let Γ be a Zariski dense subsemigroup
of G. Then there exists

1) (ξ1, ξ̌1) ∈ L(2)(Γ),
2) a real positive number

0 < r1 ≤ 1

6
d(ξ1, ∂b(ξ̌1)),

such that for all r ∈ (0, r1] and ε ∈ (0, r], for any choice of compact Bruhat sections c1, č1 with

B(ξ1, r) ⊂ Fc1 and V6r

(
∂b(ξ̌1)

)∁ ⊂ Fč1

there exists a finite family (gi)i∈I ⊂ Γ and a point ar,ε ∈ A that satisfy the following conditions.

† For all i ∈ I, the element gi is (2r, 2ε)-loxodromic with

(g+i , g
−
i ) ∈ B(ξ1, ε)×B(ξ̌1, ε).

‡ For all η ∈ V6r

(
∂b(ξ̌1)

)∁
and (ηi)i∈I ⊂ B(η, ε), the family {βc1,č1(gi, ηi)}i∈I is δ̃r,ε-dense

in ar,εRc1,č1(ξ̌1; ξ1, η)MΓ i.e.

ar,εRc1,č1(ξ̌1; ξ1, η)MΓ ⊂ ∪i∈IB(βc1,č1(gi, ηi), δ̃r,ε).

In the first paragraph, we construct in Lemma 6.2 infinitely many elements (as products of
loxodromic elements) whose cocycle will hit all the connected components of AMΓ.

In the second paragraph, we decorrelate in an M0 orbit of AMΓ that projects into a convex
cone of non-empty interior of a++. More specifically, we construct in Lemma 6.4:

(a) a convex cone of non-empty interior C0 ⊂ a++,
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(b) a pair of transverse points (ξ0, ξ̌0) ∈ L(2)(Γ),
(c) a real positive number r0 > 0.

for which there exists, for all 0 < ε ≤ r ≤ r0 an (r, ε)-Schottky generating family Fr,ε =
(γ1, ..., γl), containing at most 4 dim a+2dimM0 loxodromic elements, such that the generalized
Jordan projection of the elements of the form

{γn1

1 ...γnl

l | n1, ...nl ≥ 1}
are lδr,ε-dense in a translate in AMΓ of exp(C0)M0. Note that the constants δr,ε become as small
as we want as ε goes to 0.

In the third paragraph, we prove the Proposition 6.1 by combining the previous Lemmata
with an overlapping cone argument.

6.1. The connected components of AMΓ. Denote by p the integer such that MΓ/M0 is
isomorphic to (Z/2Z)p. Since M/M0 is abelian, the projection in M/M0 of every signed Jordan
projection does not depend on the choice of the cross-section. The following Lemma does not
require that M0 is abelian.

Lemma 6.2. Let G be a real linear, connected, semisimple Lie group of non-compact type (i.e.
without compact factors). Let Γ be a Zariski dense subgroup of G. Denote by p the integer such
that MΓ/M0 is isomorphic to (Z/2Z)p and by πM/M0

: AM → M/M0 the projection.

Then for all ξ0 ∈ L+(Γ), there exists h1, ..., hp ∈ Γlox such that taking the notation h+
0 := ξ0,

the following holds.

(i) For every choice of cross-sections s1, ..., sp such that h+
i ∈ Fsi for all 1 ≤ i ≤ p, the set

{πM/M0
(Lsi(hi))}1≤i≤p forms a basis of the vector space MΓ/M0.

(ii) For all 1 ≤ i ≤ p, the pair (h+
i−1, h

−
i ) ∈ L(2)(Γ) is transverse.

(iii) Assume now that s0, sp are compact Bruhat sections of respective domains b(h−
1 ) and

b(h−
p ), then there exists mp ∈ M and a large integer N ∈ N such that for all ν ∈ {0, 1}p,

for all n ≥ N ,

πM/M0

(
βspmp,s0(h

2n+νp
p ...h2n+ν1

1 , ξ0)
)
= ν.

For the first step of the proof of this Lemma we use the non-arithmeticity Corollary 5.7 to
choose p loxodromic elements in Γ. We order them. For the second step, since the repelling
point of the ith element is not necessarily transverse to the attracting point of the i− 1th term,
we conjugate inductively these elements. Thanks to the Fact below, the abelianised Jordan
projection of the conjugated element will remain in the same connected component of AMΓ. To
obtain the third point, we use the explicit formula of the cocycle given by Proposition 4.9 and
the cocycle relation and combine it with a Ping-Pong argument. Finally, the corrective term
mp ∈ M of the cross-section is chosen using the Definition 4.8 of the ratio maps.

Fact 6.3. Let G be a connected, real linear, semisimple Lie group of non-compact type. Then
for all u ∈ G and all loxodromic element g ∈ G, the conjugate ugu−1 is loxodromic of attracting
point ug+ and basin of attraction ub(g−) = b(ug−). Furthermore,

L
ab(ugu−1) = L

ab(g).

Proof. By Proposition 4.4 a loxodromic element g has attracting point g+ in F and its basin
of attraction is the Bruhat cell opposite to its repelling point b(g−). By Fact 4.3, consider
hg ∈ G such that L[g−](g) = h−1

g ghg. Since the Jordan projection is invariant by conjugation,

ugu−1 is also loxodromic and diagonalised by uhg. Therefore, its attracting point is ug+ of
basin of attraction b(ug−). The abelian signed Jordan projection relation comes from Fact 4.3
by choosing to compute Lu·[g−](ugu

−1) = L[g−](g) and then using Fact 6.3 to argue that the
abelian signed Jordan projection does not depend on the choice of the cross-sections. �
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Proof of Lemma 6.2. Since Z/2Z is a field, MΓ/M0 is a vector field over it. By Corollary 5.7, the

abelian signed Jordan projection of Γlox spans AMab
Γ i.e. AMab

Γ = 〈L ab(Γlox)〉. Furthermore,
because M0 is a closed normal subgroup of M containing the latter’s commutator subgroup, we
deduce Mab

Γ /Mab
0 = MΓ/M0. Using that this is a discrete vector space and projecting in Mab

the abelian signed Jordan projection, we write

MΓ/M0 = Mab
Γ /Mab

0 =
〈
πMab/Mab

0

(
L

ab(Γlox)
)〉

.

The left and middle sides are Z/2Z vector space of dimension p. The right hand side provides
us with a generating set of the vector space, we extract a basis from it. Hence there exists
g1, ..., gp ∈ Γlox such that

MΓ/M0 =
〈
πMab/Mab

0

(
L

ab(gp)
)
, ..., πMab/Mab

0

(
L

ab(g1)
)〉

.

Now using that Mab
Γ /Mab

0 = MΓ/M0, we deduce for every suitable choice of compact Bruhat
sections b1, ..., bp, that

MΓ/M0 =
〈
πM/M0

(
Lbp(gp)

)
, ..., πM/M0

(
Lb1(g1)

)〉
.

By the above Fact 6.3, condition (i) holds for every family h1, ..., hp such that for every i = 1, ..., p
the element hi is a conjugate of gi.

Let us now construct h1, ..., hp. Set u0 := eG and g+0 := ξ0. We are going to choose by
induction u1, ..., up ∈ Γ such that for every i = 1, ..., p,

(
u−1
i−1g

+
i−1, u

−1
i g−i

)
∈
(
L+(Γ)× L−(Γ)

)
∩ F (2).

Repelling points of loxodromic elements lie in L−(Γ) i.e. for every i = 1, ..., p,

g−i ∈ L−(Γ).

By minimality of the action of Γ−1 on L−(Γ) and because there are no isolated points in this
subset, we choose u1 ∈ Γ such that u−1

1 g−1 also lies in the Bruhat cell opposite to ξ0, meaning

that u−1
1 g−1 ∈ L−(Γ) ∩ b(ξ0). By Proposition 2.6, we deduce the first step (ξ0, u

−1
1 g−1 ) ∈ L(2)(Γ).

Using the same minimality arguments on the action of Γ−1 on L−(Γ), we proceed as such to
construct ui given u1, ..., ui−1 such that

(
u−1
i−1g

+
i−1, u

−1
i g−i

)
∈ L(2)(Γ). Now that u1, ..., up ∈ Γ

are chosen, we set for every i = 1, ..., p

hi := u−1
i giui.

By the above Fact 6.3, condition (i) holds. Furthermore, because Γ is a subgroup, every hi is a
loxodromic element of Γ with

(h+
i , h

−
i ) = (u−1

i g+i , u
−1
i g−i ).

The family h1, ..., hp verify condition (ii) by construction of the ui.
Let us now check condition (iii). Choose s1, ..., sp compact Bruhat sections of respective

domains b(h−
1 ), ..., b(h

−
p ) and set s1 = s0. For all n1, ..., np ≥ 1, denote by n := (n1, ..., np) and

for all i = 1, ..., p we set

ξi,n := hni

i ...hn1

1 ξ0.

Let us compute the cocycle βsp,s0(h
np
p ...hn1

1 , ξ0). We want to understand in which connected
component of AM it takes value. Apply the cocycle relation, condition (ii) ensures the maps are
well defined, then recognize the ξi,n. Finally apply the identity (5) of Proposition 4.9 between



32 NGUYEN-THI DANG

the cocycle of loxodromic elements and ratio maps on each term using that the domain of si is
b(h−

i ) for every i = 1, ..., p.

βsp,s0(h
np
p ...hn1

1 , ξ0) = βsp,sp−1
(hnp

p , h
np−1

p−1 ...hn1

1 ξ0) ... βs1,s0(h
n1

1 , ξ0)

= βsp,sp−1
(hnp

p , ξp−1,n) ... βs2,s1(h
n2

2 , ξ1,n)βs1,s0(h
n1

1 , ξ0)

= Rsp(hp; ξp,n)
−1

Lsp(hp)
np Rsp,sp−1

(hp; ξp−1,n) ...

... Rs2(h2; ξ2,n)
−1

Ls2(h2)
n2 Rs2,s1(h2; ξ1,n)

Rs1(h1; ξ1,n)
−1

Ls1(h1)
n1 Rs1,s0(h1; ξ0).

Condition (i) allow us to deduce that the products of the middle terms Lsp(hp)
np ...Ls1(h1)

n1

take value in the connected component of AMΓ corresponding to the projection of n in
(
Z/2Z

)p

that we denote by ν. Then

(6) πM/M0

(
Lsp(hp)

np ...Ls1(h1)
n1
)
= ν.

Note that this equation does not depend on the choice of compact Bruhat section s1, ..., sp of
same domains.

It remains to control the connected components of AM in which the ratio terms take value.
First, by a Ping-Pong argument, we choose a large integer N which will allows us to control
the sequence (ξi,n)1≤i≤p. Then we slightly modify the choice of s1, ..., sp while preserving their
domains. Lastly, we check that under these modifications the ratio terms are AM0 valued.

Let us start by the Ping-Pong argument. For all i = 2, ..., p denote by b
0(h−

i , h
−
i−1) the

connected component of b(h−
i ) ∩ b(h−

i−1) containing h+
i−1. By condition (ii) then ξ0 ∈ b(h−

1 )

and h+
1 ∈ b(h−

2 ). By Proposition 4.4 applied on the loxodromic element h1, there exists a large
integer N1 ≥ 1 such that for every n1 ≥ N1, the element hn1

1 ξ0 is sufficiently close to h+
1 to

satisfy

hn1

1 ξ0 = ξ1,n1
∈ b

0(h−
2 , h

−
1 ).

Assume for any i = 1, ..., p the following induction hypothesis, that there exists a large integer
Ni−1 such that for every n ∈

(
[Ni−1,+∞) ∩ N

)p
and every j = 1, ..., i− 1

ξj,n ∈ b
0(h−

j+1, h
−
j ).

In particular ξi−1,n ∈ b(h−
i ). Also, by condition (ii) then h+

i ∈ b(h−
i+1). As before, we apply

Proposition 4.4 on hi to choose a large integer Ni ≥ Ni−1 such that for all n ∈
(
[Ni,+∞)∩N

)p
,

hni

i ξi−1,n = ξi,n ∈ b
0(h−

i+1, h
−
i ).

Since Ni is larger that Ni−1, the induction hypothesis is inherited for every j = 1, ..., i i.e.
ξj,n ∈ b

0(h−
j+1, h

−
j ). Hence, by induction, there exists a large integer N ≥ 1 such that for all

n ∈
(
[N,+∞) ∩ N

)p
and all i = 1, ..., p

(7) ξi,n ∈ b
0(h−

i+1, h
−
i ).

Now that the large integer N is chosen, assume that n ∈
(
[2N,+∞)∩N

)p
. Let us now modify

the sections by right multiplication by elements of M and prove that the ratio terms for the new
family of compact Bruhat section take value in AM0. Recall the Definition 4.8 of the ratio map.

Rsi,si−1
(hi; ξi−1,n) = Tsi,[h

−

i
](h

+
i )T[h−

i
],si−1

(ξi−1,n).

By Definition 3.5 of the transition functions, the domain of Rsi,si−1
(hi; .) is b(h−

i )∩b(h−
i−1). Set

m0 = eM . By induction, we multiply s1, ..., sp on the right by elements m1, ...,mp ∈ M such
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that for every i = 1, ..., p the restriction to the connected component containing h+
i−1 of the map

b
0(h−

i , h
−
i−1) −→ AM

ξi−1 7−→ Rsi.mi,si−1.mi−1
(hi; ξi−1)

takes value in AM0. In particular, by choice of N such that condition (7) holds, we deduce that
all Rsi.mi,si−1.mi−1

(hi; ξi−1,n) term take value in AM0. Replacing them in the cocycle expression,
we write

βsp.mp,s0(h
np
p ...hn1

1 , ξ0) = Rsp.mp
(hp; ξp,n)

−1
Lsp.mp

(hp)
np Rsp.mp,sp−1.mp−1

(hp; ξp−1,n) ...

... Rs1.m1
(h1; ξ1,n)

−1
Ls1.m1

(h1)
n1 Rs1.m1,s0(h1; ξ0).

Let us now prove that the left hand terms of the form Rsi.mi
(hi; ξi,n)

−1 take value in AM0.
Recall that,

Rsi.mi
(hi; ξi,n) = Tsi.mi,[h

−

i ](h
+
i )T[h−

i ],si.mi
(ξi,n).

Using that the domain of si.mi is b(h−
i ), we deduce that Rsi.mi

(hi; .) is well defined on it.
Furthermore, by Proposition 3.6, (iii)

T
−1

si.mi,[h
−

i
]
= T[h−

i
],si.mi

.

Hence by continuity of the transition functions defined in a connected set, we deduce that the
continuous maps ξi ∈ b(h−

i ) 7→ Rsi.mi
(hi; ξi)

−1 take value in AM0.
Finally, since all ratio terms take value in AM0 and by equation (6), we deduce condition (iii)

that for all ν ∈ {0, 1}p, all n of the form (2n+ νi)1≤i≤p such that n ≥ N ,

πM/M0

(
βsp.mp,s0(h

np
p ...hn1

1 , ξ0)
)
= πM/M0

(
Lsp(hp)

np ...Ls1(h1)
n1
)
= ν.

�

6.2. The connected component AM0.

Lemma 6.4. Let G be a real linear, connected, semisimple Lie group of non-compact type (i.e.
without compact factors.) Assume that M0 is abelian. Let Γ be a Zariski dense subsemigroup of
G. Then there exists

(a) a convex cone of non empty interior C0,
(b) a pair of transverse points (ξ0, ξ̌0) ∈ L(2)(Γ),
(c) a real positive number r0 > 0,

such that for all r ∈ (0, r0] and ε ∈ (0, r] and any Bruhat section s0 of domain b(ξ̌0),
there exists Fr,ε ⊂ Γ and xr,ε ∈ AMΓ such that the following holds.

♥ Fr,ε is a finite subset of at most 4 dim a+ 2dimM0 elements.
♣ Fr,ε is a subset of a strong (r, ε)-Schottky Zariski dense subsemigroup.

♦ There exists an ordering of Fr,ε = (γ1, ..., γl) such that γ−
1 = ξ̌0 and γ+

l = ξ0, for which
every element of the form w = γnl

l ...γn1

1 with n1, ..., nl ≥ 1, satisfies

(w+, w−) ∈ B(ξ0, ε)×B(ξ̌0, ε).

♠ For such an ordering, the set

Ls0

(
{γnl

l ...γn1

1 | n1, ..., nl ≥ 1}
)

is lAM0
δr,ε-dense in exp(C0)xr,εM0, where lAM0

:= 8 dim a+ 4dimM0 + 1.

The family of constants δr,ε is given in Definition 4.11, for every r > 0, they converge to 0 when
ε goes to 0.
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The first step of the proof is given by the following Lemma, which is a consequence of [Ben97b,
Proposition 4.3]. We give a reference for a proof. The last steps involve the non-arithmeticity of
Corollary 5.7 and density Lemmata 7.3, 7.5 of the appendix. These statements require that M0

is abelian.

Lemma 6.5 (Lemme 5.6 [DG20]). Let G be a connected, real linear, semisimple Lie group of
non-compact type. Let Γ ⊂ G be Zariski dense subsemigroup. For all θ in the interior of the
limit cone C(Γ), there exists a finite set S ⊂ Γ, a positive number r0 > 0 such that

(i) θ is in the interior of the convex cone C(λ(S)) :=
∑

g∈S R+λ(g),

(ii) the elements of λ(S) form a basis of a,
(iii) for all r ∈ (0, r0] and ε ∈ (0, r], there exists an integer N > 0 such that for all n ≥ N ,

the family Sn := (gn)g∈S spans a Zariski-dense strong (r, ε)-Schottky semigroup of Γ.

Proof of Lemma 6.4 . First fix θ in the interior of the limit cone. Apply now Lemma 6.5. Set
C0 :=

∑
g∈S R+λ(g). By (i), it is indeed a convex cone of non-empty interior. Let us now order

the elements S := (g1, ..., grG) where rG = dim a by (ii). By (iii), for any integer n sufficiently
large, Sn spans a strong (r, ε)-Schottky Zariski dense subsemigroup. We deduce that g+rG is in

the basin of attraction of g1, meaning that g+rG ∈ b(g−1 ), which by Proposition 2.6 is the same as

(g+rG , g
−
1 ) ∈ L(2)(Γ).

Let r ∈ (0, r0] and ε ∈ (0, r], fix a compact Bruhat section s0 of domain b(ξ̌0). Let us choose
Fr,ε ⊂ Γ. Consider a large integer N such that for every n ≥ N , the subset Sn spans a Zariski
dense, strong (r, ε)-Schottky subsemigroup.

By Theorem 5.8, the group MΓ/M0 is isomorphic to (Z/2Z)p. Consequently, for every element
m ∈ MΓ, its square m2 is in M0. In particular, for every loxodromic element γ ∈ Γ and any
suitable compact Bruhat section s such that γ+ ∈ Fs,

Ls(γ
2) =

(
Ls(γ)

)2 ∈ AM0.

Since M0 is abelian and a normal subgroup of MΓ, we deduce that the multiplicative Jordan
projection of squares does not depend on the choice of s and coincides with L ab. We therefore
remove the subscript. Denote by Γn the Zariski dense subsemigroup generated by S2n. By
Corollary 5.7 and using that M0 is abelian,

〈L ab(Γn)〉 = AMab
Γn

⊃ AM0.

Let us prove that the subset of squares L (Γn)
2 spans a dense subgroup of AM0. Every element

x ∈ AM0 admits a square root that we denote by
√
x ∈ AM0. Now we approximate it in

〈L ab(Γn)〉. For all δ > 0, there exists a finite number of integers (kj)j∈J ⊂ Z and a finite
number of elements (γj)j∈J such that

√
x ∈ B

(∏

j∈J

L
ab(γj)

kj ,
√
δ
)
.

Taking the squares, we obtain the approximation by squares,

x ∈ B
(∏

j∈J

L (γj)
2kj , δ

)
.

Hence
〈L (Γn)2〉 = AM0.

Apply density Lemma 7.3 in AM0 for the family of squares L (Γn)
2. Consider F ′

r,ε of at most

3 dim a + 2dimM0 elements such that the subgroup spanned by squares L (F ′
r,ε)

2 is δr,ε-dense
in AM0. Denote by

Fr,ε := S2n ∪ {γ2 | γ ∈ F ′
r,ε}.
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The subgroup spanned by L (Fr,ε) is δr,ε-dense in AM0. Apply now density Lemma 7.5 to such
a family. There exists vr,ε ∈ a such that the subsemigroup generated by L (Fr,ε) is δr,ε-dense in

exp

(
vr,ε +

∑

γ∈Fr,ε

R+λ(γ)

)
M0.

Now since Fr,ε contains S2n and by choice of C0,

C0 ⊂
∑

γ∈Fr,ε

R+λ(γ),

we deduce δr,ε-density of the subsemigroup generated by L (Fr,ε) in exp(vr,ε + C0)M0.
Let us now compute xr,ε ∈ AM . We order Fr,ε = (γ1, ..., γl) such that γ1 := g2n1 and γl := g2nrG .

Fix compact Bruhat sections s1, ..., sl such that for every i = 1, ..., l

B(γ+
i , ε) ⊂ Fsi .

We assume that for every i = 2, ..., l then Rsi,si−1
(γi, γ

+
i−1) ∈ AM0. Since Rsi,si−1

(γi, .) restric-

ted to the connected component of b(γ−
i ) ∩ Fsi−1

containing γ+
i−1 takes value in a connected

component of AM , by multiplying si on the right by an element of M one can always assume
that this restricted map takes value in AM0. Set Ri := Rsi,si−1

(γi, γ
+
i−1) with convention that

s0 = sl and γ0 = γl and

xr,ε := exp(vr,ε)Rl...R2R1.

Let us now check the card conditions. Since S2n contains dim a elements and generates the
strong (r, ε)-Schottky Γn and by choice of F ′

r,ε, the subset Fr,ε satisfies both ♥ and ♣.

By choice of ordering γ−
1 = g−1 = ξ̌0 and γ+

l = g+rG = ξ0. Apply Proposition 4.12, for all

n1, ..., nl ≥ 1 the element w = γnl

l ...γn1

1 is loxodromic and satisfies (w+, w−) ∈ B(ξ0, ε)×B(ξ̌0, ε).
Hence ♦ is satisfied.

Furthermore, by Proposition 4.12 we estimate the Jordan projection

Lsl(w) ∈ Lsl(γl)
nlRl...Ls1(γ1)

n1R1 B
(
eAM , 2lδr,ε

)
.

Note that Rl, ...,R2 take value in the abelian group AM0 by choice of s2, .., sl. Furthermore,
the γi are squares, hence integer powers of Lsi(γi) take value in AM0 and we can remove the
subscript. Hence by reordering the terms in AM0,

Lsl(w) ∈ L (γl)
nl ...L (γ1)

n1Rl...R1 B
(
eAM , 2lδr,ε

)
.

The first part of the left hand side

{L (γl)
nl ...L (γ1)

n1 | n1, ..., nl ≥ 1}
coincides with the subsemigroup of AM0 generated by L (Fr,ε) which is δr,ε-dense in

exp(C0) exp(vr,ε)M0.

We deduce that

{Lsl(γ
nl

l ...γn1

1 ) | n1, ..., nl ≥ 1}
is (2l+ 1)δr,ε-dense in

exp(C0) exp(vr,ε)M0 Rl...R1 = exp(C0)M0xr,ε,

using that M0 centralises A. Since M0 is a normal subgroup, we deduce (2l + 1)δr,ε-density in
exp(C0)M0xr,ε = exp(C0)xr,εM0. By ♥, then l ≤ 4 dim a+ 2dimM0, hence

(2l+ 1)δr,ε ≤ (8 dim a+ 4dimM0 + 1)δr,ε

and condition ♠ is satisfied. �
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6.3. Proof of Proposition 6.1. Let us first find the pair (ξ1, ξ̌1) ∈ L(2)(Γ) using the previous
Lemmas of this section. Consider the pair of transverse points (ξ0, ξ̌0) ∈ L(2)(Γ) given by
the decorrelation in AM0 Lemma 6.4 (b). Apply Lemma 6.2 to ξ0 to reach every connected
component of AMΓ. There exists loxodromic elements h1, ..., hp ∈ Γlox such that taking the

notation h+
0 := ξ0, the following holds.

(i) For every choice of sections s1, ..., sp such that h+
i ∈ Fsi for all 1 ≤ i ≤ p, the set

{πM/M0
(Lsi(hi))}1≤i≤p forms a basis of the vector space MΓ/M0.

(ii) For all 1 ≤ i ≤ p, the pair (h+
i−1, h

−
i ) ∈ L(2)(Γ) is transverse.

(iii) Assume now that s0, sp are compact Bruhat sections of respective domains b(h−
1 ) and

b(h−
p ), then there exists mp ∈ M and a large integer N ∈ N such that for all ν ∈ {0, 1}p,

for all n ≥ N ,

πM/M0

(
βspmp,s0(h

2n+νp
p ...h2n+ν1

1 , ξ0)
)
= ν.

Since h+
p has no reason to be transverse to ξ̌0, we need the following choice. By density of

attracting and repelling points of loxodromic elements in L(2)(Γ), there exists a loxodromic
element hp+1 ∈ Γlox such that

{
(h+

p+1, ξ̌0) ∈ L(2)(Γ)

(h+
p , h

−
p+1) ∈ L(2)(Γ)

Such a choice is always possible because there are no isolated points in the limit sets L±(Γ). Set
now

(8) (ξ1, ξ̌1) := (h+
p+1, ξ̌0).

Let us now find the positive number r1. Consider the real number r0 given by Lemma 6.4 (c).
We set

r′0 := inf
1≤i≤p+1

{
1

6
d(h+

i−1, ∂b(h
−
i )),

1

2
d(h+

i , ∂b(h
−
i ))

}
.

By (ii), choice of hp+1 and using that h1, ..., hp+1 are loxodromic, we deduce that both r0 and r′0
are positive real numbers. This leads us to define the positive real number

(9) r1 := inf(r0, r
′
0).

Let r ∈ (0, r1] and ε ∈ (0, r]. Fix a choice of compact Bruhat sections c1, č1 such that

B(ξ1, r) ⊂ Fc1 and V6r(∂b(ξ̌1))
∁ ⊂ Fč1 .

Reaching every connected component of AMΓ

By Proposition 4.6 on loxodromic elements h1, ..., hp+1, there exists a large integer Nr,ε ≥ 1 such
that for every n ≥ Nr,ε, each hn

i are (r, ε)-loxodromic.
Since ξ0 is in the basin of attraction of h1, then by Proposition 4.4, we choose another integer

N1 ≥ 1 such that for all n ≥ N1 large enough, hn
1 ξ0 ∈ B(h+

1 , ε). Set N2 := sup(N1, Nrε). By a
Ping-Pong argument using the dynamical properties of (r, ε)-loxodromic elements, this implies
that for all n1, ..., np ≥ N2, then h

np
p ...hn1

1 ξ0 ∈ B(h+
p , ε). For all n := (np, ..., n1) family of

positive integers, denote by ξp,n := h
np
p ...hn1

1 ξ0. By Proposition 4.9, for all ξp ∈ B(h+
p , ε), then

βc1,spmp
(h2n

p+1, ξp) = Rc1(hp+1;h
2n
p+1ξp)

−1
L (hp+1)

2n
Rc1,spmp

(hp+1; ξp).

Note that by choice of ε ≤ r1 the balls B(h+
p , ε) resp. B(h+

p+1, ε) are included in connected

components of b(h−
p+1)∩Fsp resp. Fc1 ∩b(h−

p+1). Therefore, using that h2n
p+1 is (r, ε)-loxodromic
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when n ≥ N2, the restriction to B(h+
p , ε) of βc1,spmp

(h2n
p+1, .) to B(h+

p , ε) is constant mod AM0.
For all n ≥ N2, the map

(
[N2,∞) ∩ N

)p −→ AM

n 7−→ βc1,s0(h
2n
p+1h

np
p ...hn1

1 , ξ0)

reaches every connected components of AMΓ. Indeed, by the cocycle relation

βc1,s0(h
2n
p+1h

np
p ...hn1

1 , ξ0) = βc1,spmp
(h2n

p+1, ξp,n)βspmp,s0(h
np
p ...hn1

1 , ξ0),

and by (iii), we control which connected component of AMΓ the right term hits, the left term
being constant mod AM0 as discussed above. Thus, for all ν ∈ {0, 1}p ≃ MΓ/M0 there exists
and we choose np(ν), ..., n1(ν) ≥ N2 such that if we denote by

{
h[ν] := h2n

p+1h
np(ν)
p ...h

n1(ν)
1

x[ν] := βc1,s0(h[ν], ξ0)

then πAM/AM0
(x[ν]) = ν.

A particular subset of loxodromic elements of Γ
Consider now the subset Fr,ε, the point xr,ε ∈ AMΓ and the convex cone of non-empty interior
C0 given by Lemma 6.4. They satisfy

♥ Fr,ε is a finite subset of at most 4 dim a+ 2dimM0 elements.
♣ Fr,ε is a subset of a strong (r, ε)-Schottky Zariski dense subsemigroup.

♦ There exists an ordering of Fr,ε = (γ1, ..., γl) such that γ−
1 = ξ̌0 and γ+

l = ξ0, for which
every element of the form w = γnl

l ...γn1

1 with n1, ..., nl ≥ 1, satisfies

(w+, w−) ∈ B(ξ0, ε)×B(ξ̌0, ε).

♠ For such an ordering, the set

Ls0

(
{γnl

l ...γn1

1 | n1, ..., nl ≥ 1}
)

is lAM0
δr,ε-dense in exp(C0)xr,εM0 where lAM0

:= 8 dim a+ 4dimM0 + 1.

We are going to choose (gi)i∈I among elements of the form h[ν]γ
nl

l ...γn1

1 , where nl, ..., n1 ≥ 1 are
integers and ν ∈ {0, 1}p.

By choice of r1, we deduce † for all elements of

{h[ν]γ
nl

l ...γnl

1 | n1, ..., nl ≥ 1 and ν ∈ (Z/2Z)p}.
Meaning that all elements of the set above are (2r, 2ε)-loxodromic with attracting and repelling
points in B(ξ1, ε)×B(ξ̌1, ε).

Cocycle estimates

By equation (8) recall that ξ̌0 = ξ̌1 = γ−
1 . Let nl, ..., n1 ≥ 1 be integers. Then by choice of r ≤ r1

and ε ≤ r, the element γ = γnl

l ...γn1

1 is (r, ε)-loxodromic, of attracting point in B(γ+
l , ε) and

repelling point in B(γ−
1 , ε). By Proposition 4.9 on loxodromic element γ and η ∈ V6r(∂b(ξ̌1))

∁,
by Definition 4.11 of the equicontinuity constant δr,ε, we deduce

βs0,č1(γ, η) ∈ Ls0(γ)Rs0,č1(γ; η)B(eAM , δr,ε).

Now, Rs0,č1(γ; η) is δr,ε close to Rs0,č1(γ
−
1 ; γ+

l , η). Hence using ξ0 = γ+
l and ξ̌1 = γ−

1 , we deduce

βs0,č1(γ, η) ∈ Ls0(γ)Rs0,č1(ξ̌1; ξ0, η)B(eAM , 2δr,ε).

For all ν ∈ {0, 1}p, by the cocycle relation,

βc1,č1(h[ν]γ, η) = βc1,s0(h[ν], γη)βs0,č1(γ, η).
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By a Ping-Pong argument on γ1, ..., γl we deduce that γη ∈ B(γ+
l , ε). Similarly, the same type

of argument on the (r, ε)-loxodromic elements h
n1(ν)
1 , ..., h

np(ν)
p , h2n

p+1 yields that

βc1,s0(h[ν], γη) ∈ βc1,s0(h[ν], γ
+
l )B(eAM , δr,ε).

Using γ+
l = ξ0 and the definition of x[ν], we deduce the following estimate

βc1,č1(h[ν]γ, η) ∈ x[ν]Ls0(γ)Rs0,č1(ξ̌1; ξ0, η)B(eAM , 3δr,ε).

To recover the term Rc1,č1(ξ̌1; ξ1, η) as in ‡, one can check using the definition of the Ratio maps

that Rs0,č1(ξ̌1; ξ0, η) = Rc1,s0(ξ̌1; ξ1, ξ0)
−1Rc1,č1(ξ̌1, ξ1, η). Denote by y0 := Rc1,s0(ξ̌1; ξ1, ξ0)

−1.

Then for all ν ∈ (Z/2Z)p, all γ ∈ {γnl

l ...γn1

1 | n1, ..., nl ≥ 1} and all η ∈ V6r(∂b(ξ̌1))
∁,

(10) βc1,č1(h[ν]γ, η) ∈ x[ν]Ls0(γ)y0Rc1,č1(ξ̌1; ξ1, η)B(eAM , 3δr,ε).

Overlapping cone argument

Using ♠ on the Jordan term, we deduce that for every η ∈ V6r(∂b(ξ̌1))
∁, the subset of cocycles

{βc1,č1(h[ν]γ
nl

l ...γn1

1 , η) | n1, ..., nl ≥ 1}
is (3+ lAM0

)δr,ε-dense in the translated cone x[ν] exp(C0)xr,εM0 y0Rc1,č1(ξ̌1; ξ1, η). The left terms
x[ν] ensures that when ν varies in (Z/2Z)p, all connected components of AMΓ are reached. Denote
by πA : AM → A the projection. Using that C0 is convex of non-empty interior, we deduce that
there exists ar,ε ∈ A such that the intersection, over the number of connected components of
AMΓ, of the projection in A of these translated cones, contains ar,ε exp(C0), i.e.

ar,ε exp(C0) ⊂
⋂

ν∈(Z/2Z)p

πA

(
x[ν] exp(C0)xr,εM0y0

)
.

Hence the disjoint union of translated cones contains ar,ε exp(C0)MΓ i.e.

ar,ε exp(C0)MΓ ⊂
⊔

ν∈(Z/2Z)p

x[ν] exp(C0)xr,εM0 y0.

Hence by right multiplication by Rc1,č1(ξ̌1; ξ1, η), we deduce that

ar,ε exp(C0)MΓRc1,č1(ξ̌1; ξ1, η) ⊂
⊔

ν∈(Z/2Z)p

x[ν] exp(C0)xr,εM0 y0Rc1,č1(ξ̌1; ξ1, η).

Using the (3 + lAM0
)δr,ε density of cocycles in the disjoint union on the right yields

ar,ε exp(C0)MΓRc1,č1(ξ̌1; ξ1, η) ⊂
⋃

ν∈(Z/2Z)p

n1,...,nl≥1

βc1,č1(h[ν]γ
nl

l ...γn1

1 , η)B(eAM , (3 + lAM0
)δr,ε).

By compacity, we choose a finite family

(gi)i∈I ⊂ {h[ν]γ
nl

l ...γnl

1 | n1, ..., nl ≥ 1 and ν ∈ (Z/2Z)p}

such that for all η ∈ V6r(∂b(ξ̌1))
∁,

ar,εMΓRc1,č1(ξ̌1; ξ1, η) ⊂
⋃

i∈I

B
(
βc1,č1(gi, η), (3 + lAM0

)δr,ε
)
.

Set δ̃r,ε := (8 dim a + 4dimM0 + 5)δr,ε = (lAM0
+ 4)δr,ε. Apply Proposition 4.9 with Definition

4.11 of the equicontinuity constants δr,ε for every family (ηi)i∈I ⊂ B(η, ε) to deduce ‡,

ar,εMΓRc1,č1(ξ̌1; ξ1, η) ⊂
⋃

i∈I

B
(
βc1,č1(gi, ηi), δ̃r,ε

)
.
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7. Conditions for topological mixing

We prove the following necessary and sufficient conditions.

Theorem 7.1. Let G be a real linear, connected, semisimple Lie group of non-compact type (i.e.
without compact factors) and Γ be a Zariski dense subgroup of G. For all θ ∈ a++, the following
topological mixing conditions occur.

(NC) If the dynamical system (Ω[eM ], φ
t
θ) is topologically mixing then θ ∈

◦

C(Γ).
(SC) Assume that the connected component of the identity M0 of M is abelian. Then the

converse is true i.e. if θ is in the interior of the Benoist cone, then the dynamical system
(Ω[eM ], φ

t
θ) is topologically mixing.

7.1. Necessary condition. Let θ ∈ a++. We prove that if the dynamical system (Ω[eM ], φ
t
θ) is

topologically mixing, then θ is in the interior of the limit cone C(Γ).
Since this dynamical system factors (Ω, φt

θ), we deduce topological mixing of the regular Weyl
chamber flow. Using now θ ∈ a++ and the necessary and sufficient condition for mixing [DG20],
we deduce that

θ ∈
◦

C(Γ).
7.2. Sufficient condition. The key arguments are given by Theorem 5.2, decorrelation Pro-
position 6.1 and the Proposition 7.2 below.

Let θ ∈ a++ be in the interior of the limit cone. We want to prove that for all non-empty
open sets U, V ⊂ Ω[eM ], there exists T > 0 such that for every t ≥ T ,

φt
θ

(
U
)
∩ V 6= ∅.

It is equivalent to prove that for all non-empty open sets U ,V ⊂ Ω̃[eM ], there exists T > 0
such that for every t ≥ T ,

Uetθ ∩ ΓV 6= ∅.
By Theorem 5.2, the action of Γ on L(2)(Γ) has dense orbits. The latter are the first and

second Bruhat-Hopf coordinates of Ω̃[eM ]. Using that left and right actions commute, we align U
and V in the same AM orbit as a right AM -invariant subsets given by Proposition 6.1: of first
and second Bruhat-Hopf coordinates in a neighbourhood of (ξ1, ξ̌1).

The Proposition 7.2, applied to θ and the neighbourhood of (ξ1, ξ̌1), proves the density in
affine half lines of direction θ, of the Jordan projection of loxodromic element whose attracting
and repelling points in that neighbourhood. Using it, we construct elements in Γ that will satisfy
the mixing statement up to right multiplication by MΓ. Finally decorrelation Proposition 6.1
allows to choose very contracting loxodromic elements in Γ whose attracting and repelling points
are in a neighbourhood of (ξ1, ξ̌1), of signed Jordan projection dense in an MΓ-invariant set.

Proposition 7.2 (Proposition 5.4 [DG20]). Let G be a real linear, connected, semisimple Lie
group of non-compact type (i.e. without compact factors) and Γ be a Zariski dense subsemigroup
of G. Fix θ ∈ a++ of norm 1 in the interior of the limit cone C(Γ).

Then for every nonempty open subset O(2) ⊂ L(2)(Γ), for all x0 ∈ A and δ0 > 0 there exists
T0 > 0 such that for all t ≥ T0 there exists a loxodromic element γt ∈ Γ with

(11)

{
(γ+

t , γ−
t ) ∈ O(2)

exp
(
λ(γt)

)
∈ B

(
x0e

tθ, δ0
)

Recall that for every non-trivial section s of the MAN -bundle G → F , we denote by Fs its

domain and by F (2)
s := (Fs ×F)∩F (2) the subset of ordered transverse pairs of first coordinate

in Fs. Denote by πA the projection AM → A.
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Proof of Theorem 7.1 (SC). Let θ ∈ a++ be in the interior of the limit cone.
We want to prove the following statement: for all non-empty open sets U (2) ⊂ L(2)(Γ) and

V(2) ⊂ L(2)(Γ), for all u, v ∈ AMΓ and δ > 0, there exists T1 > 0 such that for every t ≥ T1,

for all compact Bruhat sections cU , cV such that U (2) ⊂ F (2)
cU and V(2) ⊂ F (2)

cV , in Bruhat-Hopf
coordinates

φt
θ

(
U (2) ×B(u, δ)

)
cU

∩ Γ
(
V(2) ×B(v, δ)

)
cV

6= ∅,
meaning that there exists ht ∈ Γ such that

(
U (2) ×B(uetθ, δ)

)
cU

∩ ht

(
V(2) ×B(v, δ)

)
cV

6= ∅.

Consider the pair (ξ1, ξ̌1) ∈ L(2)(Γ), the real positive number r1 > 0 given by Proposition 6.1
and the associated compact Bruhat sections c1, č1.

Step 1: Apply topological transitivity of the action of Γ on L(2)(Γ) given by Theorem 5.2.
Then there exists hU , hV ∈ Γ such that

{
hUU (2) ∋ (ξ1, ξ̌1)

hV V(2) ∋ (ξ1, ξ̌1).

By left Γ invariance and right AMΓ invariance of Ω̃[eM ], there exists u1, v1 ∈ AMΓ such that in
Bruhat-Hopf coordinates,

{
hU

(
U (2) ×B(u, δ)

)
cU

∋ (ξ1, ξ̌1 ; u1)c1

hV

(
V(2) ×B(v, δ)

)
cV

∋ (ξ1, ξ̌1 ; v1)č1 .

Choose r ∈ (0, r1] and δ1 > 0 small enough such that in Bruhat-Hopf coordinates

{
hU

(
U (2) ×B(u, δ)

)
cU

⊃
(
B(ξ1, r)×B(ξ̌1, r) ×B(u1, δ1)

)
c1

hV

(
V(2) ×B(v, δ)

)
cV

⊃
(
B(ξ1, r)×B(ξ̌1, r) ×B(v1, δ1)

)
č1
.

By Proposition 6.1, for all ε ∈ (0, r], there exists a finite family (gi)i∈I ⊂ Γ and a point ar,ε ∈ A
satisfying the following conditions.

† For all i ∈ I, the element gi is (2r, 2ε)-loxodromic with

(g+i , g
−
i ) ∈ B(ξ1, ε)×B(ξ̌1, ε).

‡ For all η ∈ V6r

(
∂b(ξ̌1)

)∁
and (ηi)i∈I ⊂ B(η, ε), the family {βc1,č1(gi, ηi)}i∈I is δ̃r,ε-dense

in ar,εRc1,č1(ξ̌1; ξ1, η)MΓ i.e.

ar,εRc1,č1(ξ̌1; ξ1, η)MΓ ⊂ ∪i∈IB(βc1,č1(gi, ηi), δ̃r,ε).

Step 2: Choose ε ∈ (0, r] such that δ̃r,ε ≤ δ1/2. Denote by O(2) := B(ξ1, ε) × B(ξ̌1, ε).
We are going to prove the topological mixing statement for u1, v1 ∈ AMΓ, small δ1 > 0, when
U (2) = V(2) = O(2).

Let us apply Proposition 7.2 to θ which is in the interior of the limit cone, the above open
subset of L(2)(Γ), for x0 := πA

(
a−1
r,εu1v

−1
1

)
and δ1/2. We thus consider T0 > 0 and a family

of loxodromic elements (γt)t≥T0
satisfying the system (11). Apply †, since g−i is the attracting

point of g−1
i , we deduce for all i ∈ I

γ−1
t g−1

i B(ξ̌1, ε) ⊂ B(ξ̌1, ε).
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Hence for all i ∈ I and every ξ̌ ∈ γ−1
t g−1

i B(ξ̌1, ε),

giγt
(
γ+
t , ξ̌ ; v1

)
č1

=
(
giγ

+
t , giγtξ̌ ; βc1,č1(giγt, γ

+
t )v1

)
c1

=
(
giγ

+
t , giγtξ̌ ; βc1,č1(gi, γ

+
t )Lč1(γt)v1

)
c1

∈ O(2) × {βc1,č1(gi, γ
+
t )Lč1(γt)v1}.

We discuss the cocycle terms using the decorrelation. By ‡, the set

(12) {βc1,č1(gi, γ
+
t )Lč1(γt)v1 | i ∈ I}

is δ1/2-dense in (
ar,εRc1,č1(ξ̌1; ξ1, ξ1)MΓ

)
Lč1(γt)v1.

Since the ratio Rc1,č1(ξ̌1; ξ1, ξ1) is trivial and MΓ is a normal subgroup of M , we deduce that the
above subset of cocycles (12) is δ1/2-dense in ar,εLč1(γt)u1MΓ. Furthermore, by equation (11)
it is δ1- dense in ar,εx0e

tθu1MΓ. By choice of x0, remark πA(ar,εx0e
tθv1) = πA(u1e

tθ). Hence

πA(u1e
tθ)MΓ ⊂

⋃

i∈I

B(βc1,č1(giγt, γ
+
t )v1, δ1).

Since u1e
tθ ∈ πA(u1e

tθ)MΓ, we choose for all t ≥ T0 an element ht ∈ {giγt}i∈I such that

u1e
tθ ∈ B(βc1,č1(ht, γ

+
t )v1, δ1).

Consider w ∈ B(v1, δ1) such that βc1,č1(ht, γ
+
t )w = u1e

tθ. Then for all ξ̌ ∈ h−1
t B(ξ̌1, ε),

ht

(
γ+
t , ξ̌ ; w

)
č1

=
(
htγ

+
t , htξ̌ ; βc1,č1(ht, γ

+
t )w

)
c1

=
(
htγ

+
t , htξ̌ ; u1e

tθ
)
c1

∈ φt
θ

(
O(2) ×B(u1, δ1)

)
c1
.

Therefore, all points of such coordinates are in φt
θ

(
O(2) × B(u1, δ1)

)
c1

∩ ht

(
O(2) × B(v1, δ1)

)
č1
.

Hence for all t ≥ T0, there exists ht ∈ Γ such that

(13) φt
θ

(
O(2) ×B(u1, δ1)

)
c1

∩ ht

(
O(2) ×B(v1, δ1)

)
č1

6= ∅.
By choice of ε > 0, remark that

{
hU

(
U (2) ×B(u, δ)

)
cU

⊃
(
O(2) ×B(u1, δ1)

)
c1

hV

(
V(2) ×B(v, δ)

)
cV

⊃
(
O(2) ×B(v1, δ1)

)
č1
.

Note that relation (13) ensures φt
θ

(
hU

(
U (2) × B(u, δ)

)
cU

)
∩ hthV

(
V(2) × B(v, δ)

)
čV

6= ∅. Since

the flow commutes with left multiplication by Γ, we deduce that for all t ≥ T0,

φt
θ

(
U (2) ×B(u, δ)

)
cU

∩ h−1
U hthV

(
V(2) ×B(v, δ)

)
čV

6= ∅.
�

Appendix : density Lemmata

Lemma 7.3. Let C be a compact connected abelian real linear Lie group and V be a finite
dimensionnal real vector space.

Then for all subset E ⊂ V ×C that span a dense subgroup in V ×C, for all small real number
δ > 0, there exists a finite subset Fδ ⊂ E of at most 3 dimV + 2dimC elements such that the
subgroup generated by Fδ is δ-dense in V × C.

It a consequence of the following Lemma.
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Lemma 7.4 (Lemma 6.1 [DG20]). Let V be a finite dimensionnal real vector space.
Then for all subset E ⊂ V that span a dense subgroup in V , for all small real number δ > 0

and all basis B ⊂ E of V , there exists a finite subset Fδ ⊂ E of at most 2 dimV elements such
that the subgroup generated by B ∪ Fδ is δ-dense in V .

Proof of Lemma 7.3 . By Corollary 3.7 of [BtD85], the group C is isomorphic to a torus. Con-

sequently, its universal cover C̃ is a real vector space of dimension dim(C).

Fix a small real number δ > 0. Denote by Ṽ = V × C̃ the universal cover of V × C. Then Ṽ
is a real vector space of dimension d̃ = d+ dimC.

We want to apply Lemma 7.4 on this vector space. Let us first construct out of E a subset

that spans a dense additive subgroup. Denote by p : Ṽ → V × C the covering map. Fix a

basis (b1, ..., bd, bd+1, ..., bd̃) of Ṽ such that (p(b1), ..., p(bd)) is a basis of V ×{0} and the additive
subgroup generated by (bd+1, ..., bd̃) is the kernel of the covering map ker(p). With such a basis,

we explicit the isomorphism between Ṽ /〈bd+1, ..., bd̃〉 and V × C. Then the following subset

D̃ := V ect(b1, ..., bd)×
(dimC∏

j=1

[0, 1[bd+j

)
,

is a fundamental domain of the covering. Consider now the subset of elements of this fundamental
domain that project into elements of E,

Ẽ := p−1(E) ∩ D̃.

We deduce that Ẽ∪{bd+1, ..., bd̃} spans a dense additive subgroup of Ṽ . Fix now a subset B′ ⊂ Ẽ
such that πV (p(B

′)) is a basis of V .

Apply now density Lemma 7.4 on Ṽ , for the subset Ẽ ∪ {bd+1, ..., bd̃} and choice of basis

B′ ∪ {bd+1, ..., bd̃}. There exists and we choose a finite subset F̃ ⊂ Ẽ of at most 2d̃ elements,

such that F̃ ∪B′ ∪ {bd+1, ..., bd̃} spans a δ-dense additive subgroup of Ṽ .

Finally, we project F̃ ∪B′∪{bd+1, ..., bd̃} to V ×C using the covering map. Then p(F̃ ∪B′) ⊂ E
is a finite subset of at most 3d + 2dimC elements that spans a δ-dense additive subgroup of
V × C. �

Lemma 7.5. Let C be a compact connected abelian real linear Lie group and V be a finite
dimensionnal real vector space. Fix δ > 0 a small real number.

Then for all finite subset F ⊂ V × C that spans a δ-dense subset of V × C, there exist an
element vF ∈ V such that the semigroup genenerated by F is δ−dense in

(
vF +

∑

f∈F

R+πV (f)

)
× C.

Proof. We adapt a proof of Y. Benoist of Lemma 6.2 [Ben00].
Consider the compact subset of V

D̃ :=

{∑

f∈F

tfπV (f)

∣∣∣∣ 0 ≤ tf ≤ 1

}
.

Then D̃ × C is a compact subset of V × C. By hypothesis, the additive subgroup generated by
F is δ−dense in V × C. Then, applying compacity, we choose a finite subset X ⊂ 〈F 〉 that is

δ-dense in D̃ × C, i.e. such that

D̃ × C ⊂
⋃

x∈X

B(x, δ).
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Denote by 〈F 〉+ the subsemigroup generated by F . Choose an element of the additive sub-
semigroup h ∈ 〈F 〉+ such that hX ⊂ 〈F 〉+. Such a choice is possible because V × C is abelian.

Then the translate h(D̃ × C) is δ-covered by hX ⊂ 〈F 〉+, i.e.

(14) h(D̃ × C) ⊂
⋃

x∈X

B(hx, δ) ⊂
⋃

x∈〈F 〉+

B(x, δ).

Remark now that

h(D̃ × C) = (πV (h) + D̃)× πC(h)C = (πV (h) + D̃)× C.

Denote now by L the close convex cone generated by πV (F ), i.e. L :=
∑

f∈F R+πV (f). Then,

by translating on the left by 〈F 〉+ in the previous equality, a translate of L appears on the right
hand side i.e.

〈F 〉+
(
(πV (h) + D̃)× C

)
=

(
(πV (h) + L)× C

)
.

Finally, combining with (14), we deduce that 〈F 〉+ is δ-dense in
(
(πV (h) + L)× C

)
i.e.

(
(πV (h) + L)× C

)
⊂

⋃

x∈〈F 〉+

B(x, δ).

�
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