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Methods for derivation of generalized equations in the (S, 0) ⊕ (0, S) representations of the Lorentz group 1

We continue the discussion of several explicit examples of generalizations in relativistic quantum mechanics. We discussed the generalized spin-1/2 equations for neutrinos and the spin-1 equations for photon. The equations obtained by means of the Gersten-Sakurai method and those of Weinberg for spin-1 particles have been mentioned. Thus, we generalized the Maxwell and Weyl equations. Particularly, we found connections of the well-known solutions and the dark 4-spinors in the Ahluwalia-Grumiller elko model. They are also not the eigenstates of the chirality and helicity. The equations may lead to the dynamics which are different from those accepted at the present time. For instance, the photon may have non-transverse components and the neutrino may be not in the energy states and in the chirality states. The second-order equations have been considered too. They have been obtained by the Ryder method.

1. Introduction. The Gersten method and its relation to relativistic quantum equations. The content of this talk is the following. We use the van der Waerden-Sakurai procedure for derivation of the Dirac equation and its generalizations. As a consequence, for example, the scalar fields appear in the Maxwell-like equations. Next, we have massless particles (p 2 = 0) with massive parameters, which may be considered as the measures of chirality. We also discuss the massive/massless 2nd order equations.

The first part is based on recent papers [1,2,3]. Gersten [1a] writes: "We have shown how all Maxwell equations can be derived simultaneously from first principles, similar to those which have been used to derive the Dirac relativistic electron equation" and concludes: ". . . Maxwell equations should be used as a guideline for proper interpretation of quantum theories".

In fact, he used a method presented by van der Waerden and Sakurai [START_REF] Sakurai | Advanced Quantum Mechanics[END_REF]. Let us begin with the Klein-Gordon equation:

(E 2 -c 2 p 2 -m 2 c 4 )Ψ (2) = 0 . (1) 
Hence, for Ψ with two components and c = h = 1 we have (EI (2) σ • p)(EI (2) 

+ σ • p)Ψ (2) = m 2 Ψ (2) . (2) 
Let us denote Ψ (2) = η, then we have (EI (2) 

+ σ • p) m η = χ , (3) 
(EI (2) σ • p)χ = mη .

In the 4-component form one has -mI (2) EI (2) + σ • p EI (2) σ • p -mI (2) χ η = 0 (5) With the quantum-operator substitutions E → ih ∂ ∂t and p → -ih∇ we recover the Dirac equation! 2 In the S = 1 and m = 0 case one can proceed in a similar way:

E 2 c 2 -p 2 Ψ (3) = E c I (3) -S • p E c I (3) + S • p Ψ (3) - (6) 
-

  p x p y p z   p • Ψ (3) = 0 , Eq. (9) of [1a] ,
where (S i ) jk = -i ijk . 3 Gersten found that solutions are defined by E c I (3) + S • p Ψ (3) = 0 Eq. ( 10) of [1a] p • Ψ (3) = 0 Eq. ( 11) of [1a] and their complex conjugates. The latter may be interpreted as the solutions of opposite helicity.

If one assumes Ψ (3) = E -iB then after quantum operator substitutions:

ih c ∂Ψ (3) ∂t = -h∇ × Ψ (3) , (7) 
-ih∇ • Ψ (3) = 0 , (8) 
or

∇ × (E -iB) = - i c ∂(E -iB) ∂t , (9) 
∇ • (E -iB) = 0 . ( 10 
)
Please note that the Planck constant was cancelled out! The procedure of separation into real and imaginary parts leads to

∇ × E = - 1 c ∂ B ∂t , (11) 
2 One can also decompose (1) into the 4-component form from the beginning (EI (4) 

+ α • p + mβ)(EI (4) -α • p -mβ)Ψ (4) = 0
and then look for α and β. 3 Please note the difference (σ • p) 2 = p 2 , but (S • p) 3 = (S • p); the spin-1 matrices are singular.

∇ × B = 1 c ∂ E ∂t , (12) 
∇ • E = 0 , (13) 
∇ • B = 0 . ( 14 
)
The situation is the same if one starts with the complex conjugate function Ψ * (3) = E + iB. The Lagrangian for this theory has recently been presented in [1,5]:

L = -cΨ † (3) ( E c I (3) + S • p) Ψ (3) . (15) 
However, it was shown in [6] that such a form of Lagrangians is not a scalar (it is a zero component of a 4-vector; see also [7]). Next, we have

W µ W µ = -s(s + 1)p µ p µ I (s) (16) 
and

W µ p µ = 0 (17) 
by definition. Hence,

(W µ -sp µ )(W µ + sp µ ) = -s(2s + 1)p µ p µ I (s) , (18) 
which is similar to Eq. ( 9) of Ref.

[1a] if one imposes p µ p µ = m 2 = 0. Therefore, on using the definition of the Pauli-Lubanski operator we have:

(S • p -sp 0 )Ψ (s) = 0 , ( 19 
) (Sp 0 + iS × p -sp)Ψ (s) = 0 . ( 20 
)
It is easy to see that in the S = 1 case one can recover the previous consideration [1b]. The second equation can be considered as a subsidiary condition

  0 0 0 p x p y p z 0 0 0   Ψ (3) = 0 . (21) 
In [2] we corrected the Gersten's claim. The equation (9) of Ref.

[1a] (the equation ( 6) above) is satisfied also under the choice

E c I (3) + S • p Ψ (3) = pχ , (22) 
p • Ψ (3) = E c χ , (23) 
due to (S • p)p = 0. The above set leads to

∇ × E = - 1 c ∂B ∂t + ∇Imχ , (24) 
∇ × B = 1 c ∂E ∂t + ∇Reχ , (25) 
∇ • E = - 1 c ∂ ∂t Reχ , (26) 
∇ • B = 1 c ∂ ∂t Imχ , (27) 
with an additional scalar field χ. It is also possible that

E c I (3) -S • p Ψ (3) = pχ (28) p • Ψ (3) = E c χ . (29) 
If χ = χ * then Ψ (3) = E + iB and we recover the generalized Maxwell equations (24)(25)(26)(27). Kruglov found relations of χ-functions with QED and the Riemann tensor [START_REF] Kruglov | EJTP-Zacatecas Proc[END_REF]. Thus,

• We obtain p • Ψ (3) = 0, therefore the free photon may have a non-transverse component [START_REF] Imaeda | [END_REF];

• The χ-fields may be function(al) of higher-rank tensor fields, thus leading to equations which are non-linear in E and B (cf. Ref. [10]); • One can find possible relations to the Ogievetskiȋ-Polubarinov-Kalb-Ramond field [11,12,[START_REF] Dvoeglazov | Longitudinal Nature of Antisymmetric Tensor Field After Quantization and Importance of the Normalization[END_REF]. After performing the Bargmann-Wigner procedure for the spin-1 field we obtain

∂ α F αµ + m 2 A µ = 0 , (30) 
2mF µν = ∂ µ A ν -∂ ν A µ , (31) 
instead of the well-known Proca set:

∂ α F αµ + m 2 A µ = 0 , (32) 
F µν = ∂ µ A ν -∂ ν A µ , (33) 
In fact, these sets are related one to another by the re-normalization transformation: A µ → 2mA µ or F µν → 1 2m F µν . Ogievetskiȋ and Polubarinov [11] wrote: "In the massless limit the system of 2s + 1 states is no longer irreducible; it decomposes and describes a set of different particles with zero mass and helicities ±s, ±(s -1), ±1, 0 (for integer spin and if parity is conserved); the situation is analogous for half-integer spins." One can also see this after performing the Lorentz transformation in the (1/2, 1/2) representation, A µ = Λ µ ν A ν basis , and looking for massless limit. Thus, we find

u µ (p, +1) = - N √ 2m      -p r m + pxpr Ep+m im + pypr Ep+m pzpr Ep+m      , u µ (p, -1) = N √ 2m      -p l m + pxp l Ep+m -im + pyp l Ep+m pzp l Ep+m      , (34) 
and

u µ (p, 0) = N m       -p z pxpz Ep+m pypz Ep+m m + p 2 z Ep+m       , u µ (p, 0 t ) = N m     E p -p x -p y -p z     . (35) 
Please note that for helicities σ = ±1, 0 one has p µ u µ (p, σ) = 0 (an analogue of the Lorentz condition [START_REF] Dvoeglazov | Longitudinal Nature of Antisymmetric Tensor Field After Quantization and Importance of the Normalization[END_REF]). This is not the case for the "time-like" photons. In view of the fact that in the case N = 1 we have divergent behaviour of certain parts of the 4-vector momentumspace functions in m → 0, the first degree of m in the equations [START_REF] Ahluwalia | [END_REF][START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF] can cancel this divergent term in the denominators. The massless limits of the Proca-like equations are actually

∂ α F αµ = - m 2 A µ =⇒ ∂ α F αµ = ∂ µ χ . (36) 
I want to present some comments:

• Of course, when we pass over to the second quantization, the commutation relations for F µν and A µ may be changed in order to keep the correct dimensions of the fields and in order the action to be dimensionless. • Ogievetskiȋ and Polubarinov, Kalb and Ramond [11,12] analized the scalar Lagrangian of the antisymmetric tensor field [6,[START_REF] Dvoeglazov | Longitudinal Nature of Antisymmetric Tensor Field After Quantization and Importance of the Normalization[END_REF][START_REF] Dvoeglazov | [END_REF] and "gauge out" the transverse components by means of

F µν → F µν + ∂ ν Λ µ -∂ µ Λ ν , (37) 
the new "gauge" transformation. Therefore, they obtained a pure longitudinal field, the notoph (or, the Kalb-Ramond field, as it is frequently called in the US literature). • In [START_REF] Dvoeglazov | Longitudinal Nature of Antisymmetric Tensor Field After Quantization and Importance of the Normalization[END_REF][START_REF] Dvoeglazov | [END_REF] we found a map between the Ogievetskiȋ-Polubarinov formulation and the Weinberg 2(2s + 1) theory [15]. In the latter case the Lagrangian is given by

L = ∂ µ Ψ (6) γ µν ∂ ν Ψ (6) ± m 2 Ψ (6) Ψ (6) , (38) 
(or its analogues for fields of different dimensions). The γ µν is a set of covariant matrices of the (1, 0) ⊕ (0, 1) representation; Ψ (6) and Ψ (6) are bivectors. In general, various Ψ can be used, which differ each other by discrete symmetry transformations. The map exists between the equations obtained from (38) [

γ µν ∂ µ ∂ ν ∓ m 2 ]Ψ (6) = 0 (39) 
and the equation

∂ µ ∂ α F ν α -∂ ν ∂ α F αµ - 1 2 (m 2 + ∂ λ ∂ λ )F µν = -m 2 F ν µ (40)
and its dual. See also [16].

Next, we return to the van der Waerden-Sakurai derivation of the Dirac equation:

(E 2 -c 2 p 2 )I (2) Ψ (2) = EI (2) -cσ • p EI (2) + cσ • p Ψ (2) = m 2 2 c 4 Ψ (2) . ( 41 
) If one denotes Ψ (2) = η one can define χ = 1 m 1 c (ih ∂ ∂x 0 -ihσ•∇)η.
Please note that we introduced the second mass parameter m 1 . The corresponding set of 2-component equations is

(ih ∂ ∂x 0 -ihσ • ∇)η = m 1 cχ , (42) 
(ih ∂ ∂x 0 + ihσ • ∇)χ = m 2 2 c m 1 η . (43) 
In the 4-component form we have

ih(∂/∂x 0 ) ihσ • ∇ -ihσ • ∇ -ih(∂/∂x 0 ) χ + η χ -η = (44) = c 2 (m 2 2 /m 1 + m 1 ) (-m 2 2 /m 1 + m 1 ) (-m 2 2 /m 1 + m 1 ) (m 2 2 /m 1 + m 1 ) χ + η χ -η , (45) 
which results in

ihγ µ ∂ µ - m 2 2 c m 1 1 -γ 5 2 -m 1 c 1 + γ 5 2 Ψ (4) = 0 . (46) 
The "new" massless equation is (m 2 → 0, p 2 = 0, m 1 = 0)

iγ µ ∂ µ - m 1 c h 1 + γ 5 2 Ψ (4) = 0 . ( 47 
)
It is easy to check that dispersion relations are E = ±|p|, that give us rights to call it massless, even though there is a "mass" parameter in (47).

In the 2-component formalism we do not know the parity properties of the 2-spinors Ψ (2) . It is possible to obtain yet another equation differing from (47) by the sign at the γ 5 term. The equation is

[iγ µ ∂ µ - m 3 c h 1 -γ 5 2 ]Ψ (4) = 0 . (48) 
Moreover, instead of (1 ± γ 5 )/2 one can use any singular 4 × 4 matrix of appropriate physical dimension and still have massless particles. The relevant equations can be found in the old [17] and new literature [18,[START_REF] Raspini | A Review of Some Alternative Descriptions of Neutrino[END_REF] literature.

Is the physical content of the generalized S = 1/2 massless equations the same as that of the Weyl equation? Our answer is 'No'. The excellent discussion can be found in [17a,b]. First of all, the theory does not have chiral invariance. Those authors call the additional parameters as measures of the degree of chirality. Apart of this, Tokuoka introduced the concept of the gauge transformations (not to confuse with phase transformations) for the 4-spinor fields. He also found some strange properties of the anti-commutation relations (see §3 in [17a]). And finally, the equation describes four states, two of which answer for the positive energy E = |p|, and two others answer for the negative energy E = -|p|. I just want to add the following to the discussion. The operator of the chiral-helicity η = (α • p) does not commute, e.g., with the Hamiltonian of the equation (47

): 4 [H, α • p] -= 2 m 1 c h 1 -γ 5 2 (γ • p) . ( 49 
)
For the eigenstates of the chiral-helicity the system of corresponding equations can be read (η =↑, ↓)

iγ µ ∂ µ Ψ η - m 1 c h 1 + γ 5 2 Ψ -η = 0 . (50) 
The conjugated eigenstates of the Hamiltonian |Ψ ↑ +Ψ ↓ > and |Ψ ↑ -Ψ ↓ > are connected, in fact, by γ 5 transformation Ψ → γ 5 Ψ ∼ (α • p)Ψ (or m 1 → -m 1 ). However, the γ 5 transformation is related to the P T (t → -t only) transformation [17b], which, in its turn, can be interpreted as the change of the energy sign p 0 → -p 0 , if one accepts the Stueckelberg idea about antiparticles. For example, we may associate |Ψ ↑ +Ψ ↓ > with the positive-energy eigenvalue of the Hamiltonian and |Ψ ↑ -Ψ ↓ >, with the negative-energy eigenvalue of the Hamiltonian. Thus, the free chiral-helicity massless eigenstates may oscillate one to another with the frequency ω = E/h (as the massive chiral-helicity eigenstates, see [START_REF] Dvoeglazov | [END_REF] for details). Moreover, a special kind of interaction which is not symmetric with respect to the chiral-helicity states (for instance, if the left chiral-helicity eigenstates interact with the matter only) may induce changes in the oscillation frequency, like in the Wolfenstein (MSW) formalism.

The second-order equations.

A correct equation for an adequate description of neutrinos was sought for a long time [17,21,22]. This problem is, in general, connected with the problem of taking the massless limit of relativistic equations. For instance, it has been known for a long time that "one cannot simply set the mass equal to zero in a manifestly covariant massive-particle equation, in order to obtain the corresponding massless case", e. g., Ref.

[17d].

Secondly, in the seventies the second-order equation in the 4-dimensional representation of the O(4, 2) group was proposed by Barut et al. in order to solve the problem of the mass splitting of leptons [23,24,25] and by Fushchich et al., for describing various spin states in this representation [26,27]. The equations (they proposed) may depend on two parameters. Recently we derived the Barut-Wilson equation on the basis of the first principles [28]. Briefly, the scheme for derivation of the equation

[iγ µ ∂ µ + α 2 ∂ µ ∂ µ -κ] φ(x) = 0 (51)
is the following. First, apply the generalized Ryder relation [START_REF] Ryder | Quantum Field Theory[END_REF] (see also below, Eq. ( 61)) and the standard scheme for the derivation of relativistic wave equations [30, footnote # 1], [16].

Then form the Dirac 4-spinors; the left-and right parts of them are connected as follows:

φ ↑ L (p µ ) = -Θ [1/2] [φ ↓ R (p µ )] * , φ ↓ L (p µ ) = +Θ [1/2] [φ ↑ R (p µ )] * , (52) 
φ ↑ R (p µ ) = -Θ [1/2] [φ ↓ L (p µ )] * , φ ↓ R (p µ ) = +Θ [1/2] [φ ↑ L (p µ )] * , (53) 
in order to obtain

a iγ µ ∂ µ m + b CK -1 Ψ(x µ ) = 0 (54)
in the coordinate space. Transfer to the Majorana representation with the unitary matrix

U = 1 2 1 -iΘ [1/2] 1 + iΘ [1/2] -1 -iΘ [1/2] 1 -iΘ [1/2] , U † = 1 2 1 -iΘ [1/2] -1 -iΘ [1/2] 1 + iΘ [1/2] 1 -iΘ [1/2] . (55) 
Finally, one obtains the set

a iγ µ ∂ µ m -1 φ -b χ = 0 , (56) 
a iγ µ ∂ µ m -1 χ -b φ = 0 (57) for φ(x) = Ψ 1 + Ψ 2 or χ(x) = Ψ 1 -Ψ 2 (where Ψ M R (x) = Ψ 1 + iΨ 2 )
. With the identification a/2m → α 2 and m(1 -b 2 )/2a → κ the above set leads to the second-order equation of the Barut type.

Thirdly, we found the possibility of generalizations of the (1, 0) ⊕ (0, 1) equations (namely, the Maxwell's equations and the Weinberg-Tucker-Hammer equations5 ) also on the basis of including two independent constants [START_REF] Dvoeglazov | [END_REF].

The following definitions and postulates are used in this Section: The operators of the discrete symmetries are defined as follows: a) the space inversion operator:

P [1/2] = 0 1 1 0 (58)
is the 4 × 4 anti-diagonal matrix; b) the charge conjugation operator:

C [1/2] = 0 iΘ [1/2] -iΘ [1/2] 0 K , Θ [1/2] = 0 -1 1 0 , (59) 
with K being the operation of complex conjugation. The left-and the right-spinors transform to the frame with the momentum p µ (from the zeromomentum frame) according to the Wigner rules, with Λ R,L = exp(±S • ϕ) being the matrices of the Lorentz boosts. S are the spin matrices for spin s, e. g., Ref. [START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]; ϕ are parameters of the given boost. They are defined, e. g., Refs. [START_REF] Ryder | Quantum Field Theory[END_REF]16], by means of

cosh(ϕ) = γ = 1 √ 1 -v 2 = E m , sinh(ϕ) = vγ = |p| m , φ = n = p |p| . ( 60 
)
The Ryder relation between spinors in the zero-momentum frame [START_REF] Ryder | Quantum Field Theory[END_REF] is established 6

φ h L (p µ ) = a(-1) 1 2 -h e i(ϑ 1 +ϑ 2 ) Θ [1/2] [φ -h L (p µ )] * + be 2iϑ h Ξ -1 [1/2] [φ h L (p µ )] * , (61) 
pµ = (m, 0) with the real constant a and b being arbitrary at this stage; h is the polarization index. Next,

Ξ [1/2] = e iφ 0 0 e -iφ , (62) 
φ is here the azimuthal angle related to p → 0. 7 One can form either Dirac 4-spinors:

u h (p µ ) = φ R (p µ ) φ L (p µ ) , v h (p µ ) = γ 5 u h (p µ ) , (63) 
or the second-type spinors [START_REF] Ahluwalia | [END_REF][START_REF] Wigner | Group theoretical concepts and methods in elementary particle physics[END_REF], see also [START_REF] Sokolik | [END_REF]35,36]:

λ(p µ ) = (ζ λ Θ [j] )φ * L (p µ ) φ L (p µ ) , ρ(p µ ) = φ R (p µ ) (ζ ρ Θ [j] ) * φ * R (p µ ) , (64) 
or even more general forms of 4-spinors depending on the phase factors between their left-and right-parts and helicity sub-spaces that they belong to. For the second-type spinors several forms of the field operators have been proposed. For example,

ν DL (x µ ) = η d 3 p (2π) 3 1 2E p λ S η (p µ )c η (p µ ) exp(-ip • x)+ + λ A η (p µ )d † η (p µ ) exp(+ip • x) . ( 65 
)
The Dirac equation has been derived by this method (the relation between 2-spinors at rest. φ R (0) = ±φ L (0), and boosts). Next, the coupled Dirac equations for λ-and ρ-spinors have also been presented [START_REF] Dvoeglazov | [END_REF]35]. The corresponding Lagrangian, projection operators, and the Feynman-Dyson-Stueckelberg propagator have been found later. However, we have surprisingly:

d † κ (p) = - ip y p σ y κτ c τ (-p) , (66) 
c κ (-p) = - ip y p σ y κτ d † τ (p) . ( 67 
)
6 It can be derived from the Faustov work [START_REF] Faustov | Relyativistskie preobrazovaniya odnochastichnykh volnovykh funktsiȋ[END_REF] too. 7 In general, one can connect also φ ↑ L and φ ↓ L . with using the Ω matrix (see formulas (22a,b) in Ref. [START_REF] Ahluwalia | [END_REF]):

φ ↑ L (0 µ ) = Ωφ ↓ L (0 µ ) , Ω = cotan(θ/2) 0 0 -tan(θ/2) = |p| p 2 -p 2 3 (σ3 + p3 |p| )
. We did not yet find the explicitly covariant form of the resulting equation.

In the Majorana-like case (c η (p) = e -iϕ d η (p)) we have difficulties in the construction of field operators.

On the basis of these definitions on using the standard rules [30, footnote # 1] one can derive: In the case ϑ 1 = 0, ϑ 2 = π the following equations are obtained for φ L (p µ ) and

χ R = ζ λ Θ [1/2] φ * L (p µ ): 8 φ h L (p µ ) = Λ L (p µ ← pµ )φ h L (0 µ ) = a ζ λ (-1) 1 2 +h Λ L (p µ ← pµ )Λ -1 R (p µ ← pµ )χ h R (p µ ) + + b ζ λ Λ L (p µ ← 0 µ )Ξ -1 [1/2] Θ -1 [1/2] Λ -1 R (p µ ← 0 µ )χ -h R (p µ ) , (68) 
χ -h R (p µ ) = Λ R (p µ ← 0 µ )χ -h R (0 µ ) = aζ λ (-1) 1 2 -h Λ R (p µ ← 0 µ )Λ -1 L (p µ ← 0 µ )φ -h L (p µ ) + +bζ λ Λ R (p µ ← 0 µ )Θ [1/2] Ξ [1/2] Λ -1 L (p µ ← 0 µ )φ h L (p µ ) . (69) 
Hence, the equations for the 4-spinors λ S,A η (p µ ) take the forms:

ia p m λ S ↑ (p µ ) -(bCK -1)λ S ↓ (p µ ) = 0 , (70) 
ia p m λ S ↓ (p µ ) + (bCK -1)λ S ↑ (p µ ) = 0 , (71) 
ia p m λ A ↑ (p µ ) -(bCK + 1)λ A ↓ (p µ ) = 0 , (72) 
ia p m λ A ↓ (p µ ) + (bCK + 1)λ A ↑ (p µ ) = 0 , (73) 
a = ±(b -1) if we want to have E 2 p -p 2 = m 2 for massive particles. We can write several forms of equations in the coordinate representation depending on the relations between creation/annihilation operators. For example, provided that we imply d ↑ (p µ ) = +ic ↓ (p µ ) and d ↓ (p µ ) = -ic ↑ (p µ ); the K operator acts on q-numbers as hermitian conjugation, then the first generalized equation in the coordinate space reads

ia γ µ ∂ µ m -(b -1)γ 5 CK Ψ(x µ ) = 0 . (74) 
Transferring into the Majorana representation one obtains two real equations:

9 ia γ µ ∂ µ m Ψ 1 (x µ ) -i(b -1)γ 5 Ψ 2 (x µ ) = 0 , (75) 
ia γ µ ∂ µ m Ψ 2 (x µ ) -i(b -1)γ 5 Ψ 1 (x µ ) = 0 . (76) 
for real and imaginary parts of the field function Ψ

M R (x µ ) = Ψ 1 (x µ ) + iΨ 2 (x µ ).
In the case of a = 1 -b and considering the field function φ = Ψ 1 + Ψ 2 we come to the equation for the spinors of the second kind [34, Eq.( 8)] and Ref. [36]. Next, we come to the second-order equation in the coordinate representation for massive particles

a 2 ∂ µ ∂ µ m 2 + (b -1) 2 Ψ 1 (x µ ) Ψ 2 (x µ ) = 0 . (77) 
Of course, it may be reduced to the Klein-Gordon equation. In general, there may exist mass splitting between various CP -conjugate states.

One can find the relation between creation/annihilation operators for another equation

(β 1 , β 2 ∈ e) ia γ µ ∂ µ m -e iα 1 β 1 γ 5 CK + e iα 2 β 2 Ψ(x µ ) = 0 , (78) 
which would be consistent with the equations (70-73). 10 In the Majorana representation the resulting set of the real equations are

ia γ µ ∂ µ m + iβ 1 sin α 1 γ 5 + β 2 Ψ 1 -iβ 1 cos α 1 γ 5 Ψ 2 = 0 , (79) 
ia γ µ ∂ µ m -iβ 1 sin α 1 γ 5 + β 2 Ψ 2 -iβ 1 cos α 1 γ 5 Ψ 1 = 0 . ( 80 
)
For instance in the α 1 = π 2 we obtain

ia γ µ ∂ µ m + iβ 1 γ 5 + β 2 Ψ 1 = 0 , (81) 
ia γ µ ∂ µ m -iβ 1 γ 5 + β 2 Ψ 2 = 0 . (82) 
But, in any case one can recover the Klein-Gordon equation for both real and imaginary parts of the field function, Eq. ( 77).

We are able to consider other constraints on the creation/annihilation operators, introduce various types of fields operators (as in [START_REF] Dvoeglazov | [END_REF]) and/or generalize the Ryder relation even more. In the general case, we suggest to start from (a p m -1)u h (p µ ) + ib(-1)

1 2 -h γ 5 Cu * -h (p µ ) = 0 ; (83) 
i. e., the equation ( 11) of [28]. But, as opposed to the cited paper, we write the coordinate-space equation in the form:

a iγ µ ∂ µ m + b 1 CK -1 Ψ(x µ ) + b 2 γ 5 CK Ψ(x µ ) = 0 , (84) 
thus introducing the third parameter. Then we can perform the same procedure as in Ref. [28].

Implying Ψ M R = Ψ 1 + iΨ 2 and Ψ M R = Ψ 3 + iΨ 4
, one obtains real equations in the Majorana representation:

(a iγ µ ∂ µ m -1)φ -b 1 χ + ib 2 γ 5 φ = 0 , ( 85 
) (a iγ µ ∂ µ m -1)χ -b 1 φ -ib 2 γ 5 χ = 0 , (86) 
for φ = Ψ 1 + Ψ 2 , χ = Ψ 1 -Ψ 2 and φ = Ψ 3 + Ψ 4 , χ = Ψ 3 -Ψ 4 .
After algebraic transformations we have:

(a iγ µ ∂ µ m -b 1 -1) 2ia γ ν ∂ ν m + a 2 ∂ ν ∂ ν m 2 + b 2 1 -1 Ψ 1 - 10 
As one can expect from this consideration the equation ( 78) may be reminiscent of the old works, Refs. [17,18].

-ib 2 γ 5 2ia

γ µ ∂ ν m -a 2 ∂ µ ∂ µ m 2 -b 2 1 + 1 Ψ 4 = 0 ; (87) (a iγ µ ∂ µ m + b 1 -1) 2ia γ ν ∂ ν m + a 2 ∂ ν ∂ ν m 2 + b 2 1 -1 Ψ 2 - -ib 2 γ 5 2ia γ µ ∂ µ m -a 2 ∂ µ ∂ µ m 2 -b 2 1 + 1 Ψ 3 = 0 , (88) 
the third-order equations. However, the field operator Ψ may be linear dependent on the states included in the Ψ. So, relations may exist between Ψ 3,4 and Ψ 1,2 . If we apply the simplest constraints Ψ 1 = -iγ 5 Ψ 4 and Ψ 2 = iγ 5 Ψ 3 one should recover the Dirac-Barut-like equation with three mass eigenvalues:

iγ µ ∂ µ -m 1 ± b 1 ± b 2 a × iγ ν ∂ ν + a 2m ∂ ν ∂ ν + m b 2 1 -1 2a Ψ 1,2 = 0 . (89) 
Furthermore, we apparently note that the similar results can be obtained by consecutive applications of the generalized Ryder relations. As indicated by Barut himself, several ways for introdcution of interaction with 4-vector potential exist in second-order equations. Only considering the correct one (and, probably, taking into account γ 5 axial currents), we shall be able to answer the question of why the α 2 parameter of the Barut works is fixed by means of the use of the classical value of the anomalous magentic moment; and on what physical basis we have to fix other parameters we introduced above.

Concerning the massless limit please note that the mass appears in the denominator within this method. So, we multiply by it in order to obtain the Dirac-like equations that is not an obvious procedure. Next, we have the d'Alembert operator ∂ µ ∂ µ , whose eigenvalues may be different from m, and even be zeros. Anyway, a) in every equations we should calculate the characteristic determinant to find out the dispersion relations; b) we should not forget about the possibility of divergent (in m → 0) terms in the solutions of the corresponding equations, and treat them properly.

Conclusions.

In conclusion, we presented two very natural ways of deriving the massive/massless equations in the (S, 0) ⊕ (0, S) representation space, which lead to the equations given by other researchers in the past. It is known that present-day neutrino physics has come across serious difficulties. Experiments and observations are not in agreement with theoretical predictions of the standard model. That was a motivation for the present work. The Barut's way of solving the hierarchy problem, which was almost forgotten, has been analized here from different viewpoint.

The terms m(1 ± γ 5 )/2 in the massless equation violate chiral invariance of the theory (due to [p, γ 5 ] -= 0). The solutions are not eigenstates of γ 5 operator, but in the case m 1,3 → 0 the chiral invariance is restored. So, they have been called measures of chirality.

In fact, the solutions of the Dirac massless/massive equation represent a mixture of various polarization states. This fact may be related to recent research of the Majorana-like constructs (m = 0) when we also mixed solutions of the Dirac equation in order to obtain self/anti-self charge conjugate states [38,36].

Dynamics of massless particles and neutrino may differ from those derived from the wellknown Weyl and Maxwell equations.
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Do not confuse with the Dirac Hamiltonian.

In general, the latter does not completely reduce to the former after taking the massless limit in the accustomed way.

The phase factors ζ are defined by various constraints imposed on the 4-spinors, e. g., the condition of the self/anti-self charge conjugacy gives ζ S,A λ = ±i. But, one should still note that phase factors also depend on the phase factor in the definition of the charge conjugation operator (59). The "mass term" of resulting dynamical equations may also be different.

This procedure can be carried out for any spin, cf.[37].