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Title

Contalactone, a Contaminant Formed During Chemical Synthesis of the 

Strigolactone Reference GR24 is also a Strigolactone Mimic

Abstract. Strigolactone (SL) plant hormones control plant architecture and are key players in 

both symbiotic and parasitic interactions. GR24, a synthetic SL analog, is the worldwide 

reference compound used in all bioassays for investigating the role of SLs in plant 

development and in rhizospheric interactions. In 2012, the first characterization of the SL 

receptor reported the detection of an unknown compound after incubation of GR24 samples 

with the SL receptor. We reveal here the origin of this compound, which comes from the 

formation of a by-product during GR24 chemical synthesis. We present the identification of 

this by-product, named contalactone. A proposed chemical pathway for its formation is 

provided as well as an evaluation of its bioactivity on pea, Arabidopsis, root parasitic plant 

seeds and AM fungi, characterizing it as a SL mimic. 

Keywords

Pisum sativum; Arabidopsis thaliana; Medicago truncatula; Root parasitic plants; 

Rhizophagus irregularis; Plant hormone; Structural determination; Strigolactone mimics; 

α/β-hydrolase

1. Introduction

Since 1966, it is known that Strigolactones (SLs), carotenoid-derived terpenoid lactones, 
exuded in the soil by host plant roots at picomolar doses, induce seed germination of Striga 

and Orobanche parasitic weeds (Cook et al., 1966; Xie et al., 2010). SLs are also involved in 

the establishment of symbiotic interactions between Arbuscular Mycorrhizal (AM) fungi and 

over 80% of plant species (Akiyama et al., 2005; Besserer et al., 2006). In 2008, SLs were 

identified as a new class of plant hormones involved in the control of shoot branching 

(Gomez-Roldan et al., 2008; Umehara et al., 2008) and many other traits (Lopez-Obando et 

al., 2015). Since then, the number of studies and publications on SLs increased dramatically 

(Waters et al., 2017). To date, more than 30 natural SLs have been isolated from plants. The 

structural core of SLs is a tricyclic lactone (ABC part, canonical SLs) or a variety of 
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structures (non-canonical SLs) connected via an enol ether bridge to an invariant -

unsaturated furanone moiety (D ring) (Yoneyama et al., 2018).

The great importance of SLs in plant chemical biology, their extremely low bio-availability, 

their sensitivity to hydrolysis and the difficulties to obtain natural SLs by organic synthesis 

due to long multi-step syntheses (Bromhead and McErlean, 2017; Yasui et al., 2017) 

prompted chemists to develop SL analogs. Numerous SL analogs and mimics easily 

accessible in sizeable quantities, more stable and with similar bioactivity as natural SLs have 

been described (Takahashi and Asami, 2018; Zwanenburg et al., 2016b). 

GR24, a synthetic aromatic SL analog, invented by Gerald Rosebery, was initially developed 

for its high activity as parasitic seed germination stimulant and its increased stability 

compared to natural SLs (Akiyama et al., 2010; Boyer et al., 2012; Johnson et al., 1981). (±)-

GR24 is accessible by organic synthesis on a multigram scale in six chemical steps from 

commercially available compounds (Mangnus et al., 1992). Today, GR24 is the reference 

compound in all bioassays investigating the role of SLs in plant development and in 

rhizospheric interactions.

Rapid progress in the understanding of SL perception has been made with the identification of 

the SL receptor (D14) in vascular plants as a member of the α/β-hydrolase superfamily 

containing the Ser, His and Asp catalytic triad located in a hydrophobic active site (Hamiaux 

et al., 2012). Biochemical analyses of D14 recombinant proteins from different species 

(Arabidopsis, pea, petunia, rice) showed that these receptors catalyze the hydrolysis of GR24 

into 5-hydroxy-3-methylbutenolide (D-OH) and ABC=CHOH tricycle. The importance of the 

hydrolysis to trigger the signaling pathway is still debating (de Saint Germain et al., 2016; 

Seto et al., 2019; Shabek et al., 2018; Yao et al., 2016). We characterized the hydrolytic 

activity of the pea SL receptor (PsD14/RMS3) by incubating (±)-GR24 with RMS3. We 

observed products corresponding to the ABC=CHOH tricycle, and an unexpected compound 

of 270 g.mol1 (hereafter referred to as P270) already detected by other groups (Hamiaux et 

al., 2012; Zhao et al., 2015). The hypothesis of a second position of hydrolysis of GR24 was 

proposed. We rather suspected that it resulted from hydrolysis of a by-product of the GR24 

synthesis. Here we present the identification of P270 and its precursor, that we named 

contalactone (for contaminant lactone of GR24), their bioactivity on different target 

organisms and a proposed chemical pathway for their formation.
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2. Results and discussion

2.1 Detection and chemical characterization of (±)-contalactone, a contaminant of GR24

In order to determine the structure of the P270 compound, purified RMS3 protein was 

incubated with (±)-GR24 synthesized in our lab according to a known procedure (Mangnus et 

al., 1992) and purified by flash chromatography on silica gel (de Saint Germain et al., 2016) 

(Supp. Fig. 1) along with samples of (±)-GR24 from three commercial suppliers (Supp. Fig. 

2-4). The analysis of products by UPLC-MS analysis led in all cases to the detection of both 

ABC=CHOH tricycle and P270 (Supp. Fig. 1-4). Compound P270 was also detected after 

incubation of (±)-GR24 samples at pH 9.4 for several hours at room temperature suggesting 

its formation by hydrolysis in alkaline aqueous condition as for ABC=CHOH tricycle (Fig. 

1A). The maximum of UV absorbance of P270 is at 280 nm different from ABC=CHOH and 

GR24 which makes it easier to detect this compound at this wavelength. We also observed the 

product P270 from (±)-2'-epi-GR24 samples after enzymatic (de Saint Germain et al., 2016) 

or chemical treatment. From this observation, we then undertook purification of P270 starting 

from a 400-mg (±)-2'-epi-GR24 sample hydrolyzed under alkaline conditions to obtain 

enough amount of the pure compound P270 for complete characterization (Supp. Fig. 5). Its 

HR-ESI-TOF-MS afforded an ion at m/z 269.0811 [M–H]– calculated for C16H13O4, m/z 

269.0814 (Supp. Fig. 6). 1H and 13C NMR spectroscopic data established unambiguously the 

chemical structure of P270 (Fig. 1B, Supp. Fig. 7). P270 shows an ABC tricycle with a 

carbon chain of 5 carbons ended by a carboxylic function that totally differs from the D ring 

of SLs.

Due to its chemical structure and because P270 appeared after hydrolysis of (±)-GR24, we 

hypothesized that it derived from the C-alkylated precursor represented in Fig. 1B, and called 

this compound contalactone. We established P270 formation from contalactone, itself 

synthesized by C-alkylation of ABC=CHOH at very low level (<3%) (Fig. 1B) as described 

below. Zwanenburg and coll. (Thuring et al., 1997) have already reported the possibility to 

form, during the synthesis of SL analogs, substantial amounts of C-alkylated derivatives 

depending on the substrates and conditions. After several attempts involving modifications of 

base, solvent and temperature (Supp. Table 1), we were able to synthesize a significant 

amount of (±)-contalactone, isolated by careful purification with preparative HPLC. (±)-

Contalactone was unambiguously identified by X-ray, mass and NMR analyses (Supp. Fig. 8-
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11) as a mixture (1:1) of two diastereomers (contalactoneF1 and contalactoneF2) (Fig. 2, 

Supp. Fig. 12, Supp. Table 2). (±)-Contalactone is an ABC tricycle lactone with a five 

carbons chain, connected via an ester bridge to the D ring. As expected if the precursor of 

P270 was a contaminant, we did not detect P270 in assays performed with (±)-GR24 purified 

by preparative HPLC as reported (de Saint Germain et al., 2016)) and see Supp. Fig. 13. 

Contalactone was initially difficult to detect in GR24 or 2’-epi-GR24 samples due to its low 

abundance (2-4%) and its close retention time relative to that of GR24 isomers in 

UPLC/HPLC analyses that mask its presence (de Saint Germain et al., 2016; Hamiaux et al., 

2012; Zhao et al., 2015).

A pathway for contalactone formation is proposed involving the C-alkylation of ABC=CHOH 

with D-Br, the formation of carboxylate either by a direct loss of formic acid, or by a loss of 

CO2 via a base-induced redox reaction to an intermediate carboxylate, and a subsequent 

esterification with a second D-Br (Supp. Fig. 14).

2.2 (±)-Contalactone is hydrolyzed by RMS3, AtD14 and AtKAI2

To confirm that acid P270 can be formed from (±)-contalactone by RMS3 with a mechanism 

similar to GR24 cleavage we performed enzymatic assays by incubation of the purified 

contaclactone with the pea and Arabidopsis SL receptor RMS3 and AtD14. Both RMS3 and 

AtD14 recombinant proteins hydrolyze (±)-contalactone efficiently (Fig. 2A). In the absence 

of RMS3 or in the presence of the catalytic triad mutant protein RMS3S96A unable to 

hydrolyze SLs (de Saint Germain et al., 2016), no P270 was formed (Supp. Fig. 15A). We can 

unambiguously conclude that the P270 is coming from the hydrolysis of contalactone by SL 

receptor.  Moreover, the hydrolysis of (±)-contalactone in basic aqueous medium led to the 

formation of (±)-P270 (Supp. Fig. 15B). Surprisingly, the recombinant AtKAI2 protein (also 

known as AtHTL), a paralog of AtD14 involved in hypocotyl development (Waters et al., 

2012), hydrolyzed (±)-contalactone more efficiently than (±)-GR24 (Fig. 2A). The chemical 

hydrolysis of (±)-contalactone in comparison with (±)-GR24 was evaluated in a mixture 

ethanol/water at pH 6.8, corresponding to that used for enzymatic hydrolysis. (±)-

Contalactone was less stable than (±)-GR24 (contalactone t1/2 ≈ 40 h, GR24 t1/2 ≈ 290 h) (Fig. 

2B). We can hypothesize that contalactone may be an efficient substrate of AtKAI2 as GR24 

in connection to its high sensitivity to hydrolysis as demonstrated by its low stability in 

aqueous solution.
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2.3 (±)-Contalactone is able to inhibit branching in pea and interacts with the SL receptor 

RMS3

The discovery of the contaminant in GR24 samples raises the question of its bioactivity. The 

biological activities of (±)-contalactone and (±)-P270 were evaluated using a pea branching 

assay with the highly branched SL-deficient rms1-10 mutant (de Saint Germain et al., 2016). 

(±)-Contalactone showed activity at a concentration of 5 µM but was found to be significantly 

less active than (±)-GR24 since contalactone was not active at 500 nM or below (Fig. 3, Supp. 

Table 3). Moreover, (±)-contalactone was inactive on the branching of the pea rms3-5 

perception mutant (Fig. 3, Supp. Table 4). No bioactivity of the contalactone hydrolysis 

product,  (±)-P270, was detected even at high concentration (10 M) as for ABC=CHOH 

tricycle (Supp. Table 3). These results suggest that (±)-contalactone, as GR24, is a specific 

bioactive SL mimic and inhibits bud outgrowth via the RMS3 receptor, and not because of 

toxicity. In order to validate that (±)-contalactone is perceived by the pea SL receptor RMS3, 

we performed differential scanning fluorimetry (DSF) and revealed a shift in RMS3 melting 

temperature in the presence of (±)-contalactone, corresponding to a protein destabilization as 

for the SL bioactive analogs (see (±)-GR24). No interaction between the RMS3 protein and 

(±)-P270 was observed (Fig. 4). We estimated the binding affinity of (±)-contalactone 

towards RMS3 by intrinsic fluorescence and found a KD value of 64.12 ± 16.09 M slightly 

lower than for (±)-GR24 (KD = 14.66 ± 9.63 M) (Fig. 4B-C). The lower affinity of (±)-

contalactone for RMS3 is in agreement with the lower bioactivity of these compounds on pea 

branching inhibition.

2.4 (±)-Contalactone represses hypocotyl elongation in Arabidopsis via AtD14 and AtKAI2

We also tested the bioactivity of (±)-contalactone and (±)-P270 on Arabidopsis hypocotyl 

elongation with SL biosynthesis (max3-11) and perception (Atd14-1, htl-3, max2-1) mutants. 

In Arabidopsis, (±)-GR24 inhibits hypocotyl growth via AtD14 and AtKAI2 (AtHTL) 

(Waters et al., 2017; Waters et al., 2012). Like (±)-GR24, (±)-contalactone significantly 

suppressed hypocotyl elongation in wild-type plant and also in max3-11, Atd14-1 and htl-3 

mutants seedlings, but not in the max2-1 mutant. These results confirm that (±)-contalactone 

can mimic the GR24 effect not only on branching but also on hypocotyl elongation. These 

results show that (±)-contalactone repressed hypocotyl elongation via AtMAX2, and 

redundantly via AtD14 and AtKAI2, as already demonstrated for GR24 (Nelson et al., 2011). 
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This suggests that AtKAI2 can perceive (±)-contalactone. However, (±)-P270 does not 

repress hypocotyl elongation in wild-type, max3-11 or Atd14-1 mutant seedlings. We 

observed a slight inhibition of hypocotyl elongation in htl-3 and especially in max2-1 mutant 

probably due to a toxic effect (Fig. 5). 

2.5 (±)-Contalactone is a potent germination stimulant of various root parasitic plants

Root parasitic seed germination is the most sensitive assay to evaluate the SL activity of 

compounds and also to detect the presence of natural SLs in samples. The germination 

stimulant (GS) activities of (±)-contalactone on Orobanche cumana, Phelipanche ramosa and 

Striga hermonthica parasitic plant seeds were determined by measuring the maximum of GS 

activity as well as half maximal effective concentrations (EC50). GS activities of (±)-

contalactone reached the maxima induced by GR24 isomers or other GSs (an isothiocyanate 

(2-PEITC) (Auger et al., 2012) or the terpenoid dehydrocostus lactone (DCL) (Joel et al., 

2011)) for P. ramosa and O. cumana, respectively (Fig. 6A), except with S. hermonthica 

(54%). The lowest EC50 was observed with (+)-GR24 for all tested parasitic plant species. In 

P. ramosa, the EC50 of (±)-contalactone was intermediate compared to (+)-GR24 (about 100-

fold less active), similar to ()-GR24 or (+)-2’-epi-GR24, but better or similar to 2-PEITC 

depending on the genetic population (Fig. 6B, Supp. Fig. 16). For S. hermonthica seeds, the 

(±)-contalactone activity was also moderate compared to (+)-GR24 (about 100-fold less 

active) but similar to the three other GR24 isomers. For O. cumana, (±)-contalactone 

exhibited very high EC50 in comparison with (+)-GR24 and DCL (1,000,000 and 10,000-fold 

less activity, respectively) but possessed similar activity to ()- and (+)-2’-epi-GR24. 

Additionally, no significant difference of germination activity was found between the two 

diastereomers of (±)-contalactone except for S. hermonthica at 10-7-10-8 M (Supp. Fig. 17). 

To summarize, (±)-contalactone is an efficient GS compared with many SL analogs and 

mimics described in the literature (Takahashi and Asami, 2018; Zwanenburg et al., 2016b).

2.6 (±)-Contalactone induces the colonization of AM fungi in Medicago truncatula

SLs are known to increase hyphal branching of AM fungi (Akiyama et al., 2005; Besserer et 

al., 2006) and this biological response can be measured in vitro to characterize the activity of 

SLs, SL analogs and mimics (Akiyama et al., 2010; Mori et al., 2016). However, a causal link 

between this branching response and symbiosis has not been established. Here, we used a 
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different assay in which SL-deficient mutants of M. truncatula are inoculated with the AM 

fungus Rhizophagus irregularis. The roots of these mutants are hardly colonized, likely due to 

deficient stimulation of the AM fungus. Treatment with (±)-GR24 can increase the number of 

root infection units (Fig. 7), and thus this test can be used as a bioassay to assess the effect of 

SL mimics on AM symbiotic ability. (±)-Contalactone applied at 100 nM was able to enhance 

significantly the level of root colonization by R. irregularis, although the activity was slightly 

lower than that of (±)-GR24 (Fig. 7). Thus, in addition to the effects on plants reported above, 

(±)-contalactone also shows significant bioactivity on symbiotic fungi. 

3. Concluding remarks

To summarize, our results show that a contaminant, that we named contalactone, can be 

present in GR24 samples. Contalactone is obtained in the last synthesis step of GR24. 

Because the last step of chemical synthesis process of all SLs and analogs is similar to that of 

GR24 (Bromhead and McErlean, 2017; Yasui et al., 2017; Zwanenburg et al., 2016a), we can 

speculate that all SLs and analogs could be contaminated by this type of compound. 

Contalactone is bioactive as plant hormone, as inducer of colonization of plants by AM fungi 

and GS for root parasitic plant seeds. Contalactone can be identified as a novel SL mimic 

structurally similar to previously described aroyloxy butenolides which have been 

characterized as GS for S. hermonthica, O. cernua and P. ramosa seeds. However these 

aroyloxy butenolides showed lower bioactivity (Zwanenburg and Mwakaboko, 2011; 

Zwanenburg et al., 2013; Zwanenburg et al., 2016b). Contalactone is rapidly transformed by 

the SL receptor into a non-bioactive compound P270. Because contalactone is bioactive, it is 

important to synthesize GR24 by a method producing low amounts of contalactone (Entry 1, 

Supp. Table 1) and to remove it from GR24 samples by careful purification (HPLC). Since 

contalactone is hydrolyzed faster than GR24, we can also suggest to purify GR24 sample by a 

final step of alkaline hydrolyze to eliminate residual contalactone. The quality of GR24 

samples can also be checked by carrying out microscale hydrolysis in a basic aqueous 

medium that makes it easier to detect P270 than contalactone in the starting samples. The 

purity of chemicals used for biology experiments is essential and deviations to this rule can 

easily lead to misinterpretations of biochemistry results and biological effects. An alternative 

to GR24 could be the use of SL mimics (Takahashi and Asami, 2018) for which it is not 

possible to form contalactone-like compounds during coupling to incorporate the D ring and 
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for which an identical mode of action was demonstrated, e.g. GC242 (de Saint Germain et al., 

2016).

4. Experimental 

4.1 General chemical procedures

 All non-aqueous reactions were run under an inert atmosphere (argon), by using standard 

techniques for manipulating air-sensitive compounds. All glassware was stored in the oven 

and/or was flame-dried prior to use. Anhydrous solvents were obtained by filtration through 

drying columns. Analytical thin-layer chromatographies (TLC) were performed on plates 

precoated with silica gel layers. Compounds were visualized by one or more of the following 

methods: (1) illumination with a short wavelength UV lamp (i.e.,  = 254 nm), (2) spray with 

a 3.5% (w/v) phosphomolybdic acid solution in absolute ethanol. Flash column 

chromatography was performed using 40-63 mesh silica. Nuclear magnetic resonance spectra 

(1H ; 13C NMR) were recorded respectively at [500; 125] MHz on a Bruker DPX 500 

spectrometer. For the 1H spectra, data are reported as follows: chemical shift, multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singulet, coupling 

constant in Hz and integration. IR spectra are reported in reciprocal centimeters (cm-1). 

Buffers and aqueous mobile-phases for HPLC were prepared using water purified with a 

Milli-Q system. Mass spectra (MS) and high-resolution mass spectra (HRMS) were 

determined by electrospray ionization (ESI) coupled to a time-of-flight analyser (Waters LCT 

Premier XE).

4.2 Preparation of GR24 isomers

(±)-2’-epi-GR24 and (±)-GR24 were prepared according to described procedures (Mangnus et 

al., 1992). (±)-GR24 suppliers used in this manuscript are Chiralix™, Strigolab™ and 

OlChemIm™. (+)-GR24, ()-GR24, (+)-2’-epi-GR24, ()-2’-epi-GR24 were separated from 

(±)-2’-epi-GR24 and (±)-GR24 by chiral supercritical fluid chromatography as described in 

(de Saint Germain et al., 2016). Dehydrocostus lactone (DCL) and 2-phenethyl isothiocyanate 

(2-PEITC) are commercially available. (±)-GR24 can be purified by semi-preparative HPLC. 

Semi-preparative HPLC was performed using an Interchim puriFlash® 4250 instrument, 

combined with a fraction collector with integrated ELSD, a PDA and a Phenomenex Luna 
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C18, 250 × 21.2 mm, 5 μm column (H2O/CH3CN : 6 /4) or Interchim Uptisphere Strategy SI, 

250 × 21.2 mm, 5 μm column (Heptane/EtOAc : 1 /1).

4.3 Preparation and isolation of (±)-contalactone

To solid K2CO3 (1.851 g, 13.4 mmol) dried under reduced pressure was added at room 

temperature under argon anhydrous acetone (27 mL). After 10 min, a mixture of 

ABC=CHOH (1.354 g, 6.7 mmol) and D-Br (1.778 g, 10.5 mmol) in anhydrous acetone (67 

mL) was added dropwise to the preceding solution. The resulting reaction mixture was stirred 

for 20 h at room temperature under argon and acetone evaporated under reduced pressure. 

The residue was diluted in EtOAc and filtered. This reaction was performed at this scale 

several times to obtain a crude product (38.39 g) which contains a mixture of (±)-GR24, (±)-

2’-epi-GR24 and (±)-contalactone (45.5:45.5:9) (ratio determined by 1H NMR). The crude 

mixture was purified by medium pressure chromatography on silica gel and HPLC (Interchim 

Uptisphere Strategy SI, 250 × 21.2 mm, 5 μm column) (Heptane/EtOAc : 1 /1) to furnish pure 

(±)-GR24, (±)-2’-epi-GR24 and (±)-contalactone. However, the two diastereomers of (±)-

contalactone can be separated by HPLC using a Hypercarb porous graphitic carbon column 

(100 × 4.6 mm, 5 μm) (MeOH/iPrOH 1/1, Formic acid 0.1%, 2 mL/min) to furnish 

contalactoneF1 (1.5 mg) (>99%) and contalactoneF2 (0.7 mg) (>95%) after 30 injections and 

evaporation under reduced pressure.

(±)-Contalactone: mixture of two diastereomers (1:1): M.p. 185.0-209.4 °C. 1H NMR (300 

MHz, CDCl3) : 7.92 (d, J = 12.0 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.40-7.24 (m, 3H), 7.02-

6.95 (m, 2H), 6.72 (d, J = 12.0 Hz, 1H), 6.00 (d, J = 8.0 Hz, 1H), 4.11-4.02 (m, 1H), 3.69 (dd, 

J = 16.5 Hz, J = 10.0 Hz, 1H), 2.97 (dd, J = 16.5 Hz, J = 3.0 Hz, 1H), 2.18 (s, 3H), 2.03 (s, 

3H). 13C NMR (75.5 MHz, CDCl3) : 171.1 (Cq), 170.1 (Cq), 164.6 (Cq), 143.1 (Cq), 142.4 

(Cq), 142.0 (CH), 138.7 (Cq), 136.6 (Cq), 134.9 (Cq), 134.8 (CH), 134.7 (CH), 134.49 (Cq), 

134.46 (Cq), 131.7 (CH), 130.5 (CH), 127.9 (CH), 126.7 (CH), 125.2 (CH), 97.1 (CH), 93.1 

(CH), 85.9 (CH), 39.82 (CH2), 39.77 (CH2), 21.6 (CH3), 10.90 (CH3). IR  (film, cm-1): 2952, 

2924, 2853 (CH), 1780 and 1748 (C=O). HRMS (ESI): Calculated for C21H18O6Na [M  

Na+]: 389.1001. Found: 389.0996.

4.4 Preparation and isolation of (±)-P270
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To a sample of (±)-2’-epi-GR24 purified by flash chromatography on silica gel (Mangnus et 

al., 1992) (400 mg, 1.34 mmol) in THF (10 mL) was added a phosphate buffered saline (PBS 

buffer, pH 6.8) solution (10 mL) and dropwise a aqueous solution of KOH (1 M) until pH 9.5. 

The resultant solution was stirred for 10 h at room temperature and extracted with CH2Cl2 (3 

 20 mL). The combined organic layer was dried (Na2SO4), filtered and evaporated under 

reduced pressure to afford 370 mg of (±)-2’-epi-GR24 containing no P270. The aqueous 

phase was acidified until pH 2 and extracted with CH2Cl2 (3  20 mL).  The combined organic 

layers were dried (Na2SO4), filtered and evaporated under reduced pressure to afford 79 mg of 

crude product containing a small amount of (±)-2’-epi-GR24, ABC=CHOH and P270. P270 

was purified by semi-preparative HPLC which was performed using an Interchim puriFlash® 

4250 instrument, combined with a fraction collector with integrated ELSD, a PDA and a 

Phenomenex Luna C18, 250 × 21.2 mm, 5 μm column (0.1% formic acid in CH3CN (solvent 

B) and 0.1% formic acid in water (solvent A). A/B (7/3) isocratic 5 min then linear gradient to 

A/B (2/8) in 20 min at a flow rate of 1 mL/min. P270 was obtained as a white solid after 

lyophilisation (5 mg, 0.018 mmol, 1.4%).

P270: 1H NMR (500 MHz, CDCl3) : 7.82 (dd, J = 12.0 Hz, J = 10.2 Hz, 1H), 7.53 (d, J = 

7.2 Hz, 1H), 7.37 (dd, J = 8.0 Hz, J = 7.2 Hz, 1H), 7.30-7.27 (m, 2H), 6.71 (d, J = 12.0 Hz, 

1H), 5.96 (d, J = 7.6 Hz, 1H), 4.15-4.09 (m, 1H), 3.69 (dd, J = 17.0 Hz, J = 10.0 Hz, 1H), 

2.97 (dd, J = 17.0 Hz, J = 2.4 Hz, 1H), 2.11 (s, 3H). 13C NMR (125 MHz, CDCl3) : 172.2 

(Cq), 169.3 (Cq), 149.1 (Cq), 147.9 (Cq), 144.4 (Cq), 140.2 (Cq), 133.0 (CH), 132.0 (CH), 

131.1 (CH), 128.4 (CH), 127.3 (CH), 126.3 (CH), 86.9 (CH), 40.6 (CH), 40.3 (CH2), 21.9 

(CH3). IR  (film, cm-1): 3600-2400 (br, COOH), 2935, 1747 (C=O), 1638. HRMS (ESI): 

Calculated for C16H13O4 [M  H]: 269.0814. Found: 269.0811.

4.5 Crystallographic data collection, structure determination and refinement

X-ray structure determination for contalactone (FDB2980F1) was carried out at low 

temperature (173K) using a RIGAKU XtaLabPro diffractometer equipped with a Mo 

microfocus sealed tube generator coupled to a double-bounce confocal Max-Flux® multilayer 

optic and a HPAD PILATUS3 R 200K detector. Data collection and processing were 

performed with the CrysalisPro software (Rigaku, 2015). The structure was solved by 

intrinsic phasing methods (SHELXT program) (Sheldrick, 2015b) then refined by full-matrix 

least-squares methods (SHELXL-2018/3 program) (Sheldrick, 2015a). Non-hydrogen atoms 
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improved by anisotropic refinement, whereas H atoms bonded to C atoms were included in 

the structure at idealized positions, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) 

and C—H = 0.95-0.99-1.00 Å for aromatic, methylene, and methine H atoms, respectively, 

whereas for methyl groups, Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å. A second polymorph 

coexists in the crystallization medium, more massive than the elongated platelet, and was 

characterized at 173 K as a triclinic crystal. The diastereomer that was determined 

subsequently differs from the monoclinic one at the level of the lactone tail (torsion angles 

C9’ – O14’ -C2’- O1’ 110.8° (triclinic) vs -77.6° (monoclinic)) (see the model overlay in the 

Figure 1C). Crystallographic data (including structure factors) for the structures, FDB2980F1 

dia1 and FDB2980F1 dia2, reported in this paper have been deposited with the Cambridge 

Crystallographic Data Centre as supplementary publication no. CCDC-1870390-1870391 

respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 

Union Road, Cambridge CB21EZ, [fax: (internat.) + 44 1223/336-033; e-

mail: deposit@ccdc.cam.ac.uk].

4.6 Plant material and growth conditions

Pea (Pisum sativum) branching mutant plants used in this study were derived from various 

cultivars of pea after ethyl methanesulfonate (EMS) mutagenesis and were described 

previously (Rameau et al., 1997). The rms1-10 (M3T-884) and rms3-5 (M2T-32) mutants 

were obtained from the dwarf cv Térèse. Plants were grown in a greenhouse under long days 

as described in (Braun et al., 2012).

All A. thaliana plants used in this study originated from the Columbia (Col-0) ecotype 

background and have been described previously: Atd14-1, max2-1 (Stirnberg et al., 2002) and 

htl-3 (Toh et al., 2014). The max2-1 mutant was provided by P. Brewer (University of 

Queensland,), Atd14-1 mutant was provided by M. Waters (University of Western Australia), 

and htl-3 was provided by P. McCourt (University of Toronto). Plants were grown in a 

growth room under long-day conditions (16 h light/8 h dark). Seeds were sown onto solid 

agar (0.8%, w/v) in Petri dishes and stratified at 4 °C in darkness for 48 h, then transferred to 

white light (120 mol m2 s1). Seedlings were grown for 5 d or 6 d and were transplanted to 

individual plastic pots (0.2 L) with a 1:1:1 vermiculite:perlite:peat mixture, and grown in a 

glasshouse under natural light, until they were 48 d old. The greenhouse experiments were 

carried out in the spring, under long photoperiods (15–16 h per day); daily temperatures 
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fluctuated between 18 °C and 25 °C. Peak levels of PAR were between 700 and 1,000 mol 

m2 s1. Plants were watered twice a week with tap water.

Four batches of parasitic plant seeds were used in this study. A population of seeds of 

Phelipanche ramosa (L.) Pomel associated to genetic group 1 (P. ramosa 1) was collected 

from Saint Martin-de-Fraigneau, France, on broomrape parasitizing winter oilseed rape 

(Brassica napus L.) in 2015 and seeds of P. ramosa from genetic subclade 2a (P. ramosa 2a) 

from Saint Martin-de-Bossenay, France, on broomrape developed on hemp (Cannabis sativa 

L.) in 2012 (Stojanova et al., 2019). Orobanche cumana Wallr. seeds were harvested on 

broomrape parasitizing sunflower (Helianthus annus L.; Longeville-sur-mer, France, 2017). 

Seeds of Striga hermonthica (Delile) Benth. (Sudan, 2007) were provided by Lukas Spichal 

(The Czech Republic). Seeds were surface sterilized and conditioned according to (Pouvreau 

et al., 2013) (dark condition; 21 °C for P. ramosa and O. cumana; 30 °C for S. hermonthica).

4.7 Pea shoot branching assay

The compounds to be tested were applied directly to the axillary bud with a micropipette as 

10 µL of a solution containing 0.1% DMSO with 2% polyethylene glycol 1450, 50% ethanol 

and 0.4% DMSO (Boyer et al., 2012). The control-0 is the treatment with 0.1% DMSO 

without compound. 24 plants were sown per treatment in trays (2 repetitions of 12 plants). 

The treatment was generally done 10 days after sowing, on the axillary bud at node 3. The 

branches at nodes 1 to 2 were removed to encourage the outgrowth of axillary buds at nodes 

above. Nodes were numbered acropetally from the first scale leaf as node 1 and cotyledonary 

node as node 0. Bud growth at node 3 was measured with digital callipers 8 to 10 days after 

treatment. Plants with damaged main shoot apex or showing a dead white treated-bud were 

discarded from the analysis. The SL-deficient rms1-10 pea mutant was used for all 

experiments.

4.8 Arabidopsis hypocotyl elongation assays

Arabidopsis seeds were sterilized with 95% ethanol for 10 min, and were plated on half 

Linsmaier and Skoog (LS) media (Caisson laboratories) containing 0.8% agar, supplemented 

with indicated concentrations of (±)-contalactone and (±)-GR24 (stock 1000 × in DMSO) or 

with DMSO (control). Seeds were stratified at 4 °C (2 days in dark) then transferred in growth 

chamber at 22 °C, under 20-30 µE /m2/sec of white light in long day conditions (16 hr light/ 8 
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hr dark). Plates were photographed and hypocotyl lengths were quantified using ImageJ 

(http://imagej.nih.gov/ij/).

4.9 Germination stimulation activity assay on root parasitic plant seeds

Germination Stimulant activity (GS) of chemicals on seeds of parasitic plants were 

determined using a method described previously (Pouvreau et al., 2013). Chemicals were 

suspended in DMSO at 10 mmol L-1, then diluted with water at 1 mmol L-1 (water/DMSO; 

v/v; 9/1). Dilutions of 110-5 mol L-1 to 110-12 mol L-1 are then performed in water/DMSO 

(v/v; 9/1). For each compound, a range of concentrations from 10-13 to 10-6 mol L-1 

(water/DMSO; 99/1) were applied to conditioned parasitic seeds. DMSO 1% was used as 

negative control (seed germination < 1%) and (±)-GR24 at a concentration of 1 µmol L-1 was 

used as a positive control and induced 72-87 % of seed germination for P. ramosa 1, 80–90% 

for P. ramosa 2a, 85-95 % for O. cumana and 50-65% for S. hermonthica. To avoid 

variations related to sterilization events percentages of germination are reported as a ratio 

relative to the positive control ((±)-GR24, 1 µmol L-1) included in each germination assay. 

Each dilution and germination assay was repeated at least three times. For each compound 

tested, dose-response curves (GS = f(c), Germination Stimulant activity relative to (±)-GR24 

1 µmol L-1 ; c : concentration (mol. L-1), half maximal effective concentration (EC50), and 

maximum of germination stimulant activity were determined using a Four Parameter Logistic 

Curve computed with SigmaPlot® 10.0.

4.10 Assay of activity on Rhizophagus irregularis

SL-deficient ccd8-1 mutants of Medicago truncatula (Lauressergues et al., 2015) were placed 

in 50-mL pierced Falcon tubes containing OilDri substrate inoculated with 150 spores of R. 

irregularis. 1000X concentrated solutions of SL analogs in acetone were added to the nutrient 

solution, to reach a final concentration of 10-7 M. Mock treatments (CTL0) were performed 

with the solvent alone. The number of infection points in the whole root system was recorded 

three weeks post-inoculation, allowing to assess the improved symbiotic ability of R. 

irregularis following treatment with SL analogs.

4.11 Expression and purification of proteins

Expression and purification of proteins RMS3, RMS3S96A, RMS3H247A, RMS3D218A, 
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RMS3S96C and AtKAI2 with cleavable GST tag were performed in accordance with (de Saint 

Germain et al., 2016).

4.12 Enzymatic degradation of (±)-contalactone and (±)-GR24, by purified RMS3 /AtKAI2 

proteins

The ligand (10 µM) was incubated without and with purified RMS3/RMS3S96A/AtKAI2 (5 

µM) for 210 min at 25 ºC in PBS (0.1 mL, pH = 6.8) in presence of (±)-1-indanol (100 µM) 

as internal standard. The solutions were acidified to pH = 1 by addition of trifluoroacetic acid 

(2 µL) to quench the reaction and centrifugated (12 min, 12,000 tr/min). Thereafter the 

samples were subjected to RP-UPLC-MS analyses. The instrument used for all the analysis 

was an Ultra Performance Liquid Chromatography system equipped with a PDA and a Triple 

Quadrupole mass spectrometer Detector (Acquity UPLC-TQD, Waters, USA). RP-UPLC 

(HSS C18 column, 1.8 μm, 2.1 mm × 50 mm) with 0.1% formic acid in CH3CN and 0.1% 

formic acid in water (aq. FA, 0.1%, v/v, pH 2.8) as eluents [5% CH3CN, followed by linear 

gradient from 5 to 100% of CH3CN (7 min)] at a flow rate of 0.6 mL/min. The detection was 

performed by PDA and using the TQD mass spectrometer operated in Electrospray ionization 

positive mode at 3.2 kV capillary voltage. The cone voltage and collision energy were 

optimized to maximize the signal and was respectively 20 V for cone voltage and 12 eV for 

collision energy and the collision gas was argon at a pressure maintained near of 4.5.10-3 

mBar.

4.13 Hydrolysis of (±)-contalactone and (±)-GR24 in aqueous solution

 (±)-GR24 and (±)-contalactone were tested for their chemical stability in an aqueous 

solution. Aqueous solutions of the compound to be tested (50 μg/mL) were incubated at 22 °C 

in the HPLC vials. The compounds were first dissolved in DMSO (2 mg/mL). Then, 25 μL of 

the previous solutions (GR24 and contalactone) were diluted to the final concentration with 

H2O (750 μL) and EtOH (175 μL) and the solution adjusted to pH 6.8. Aqueous solutions of 

the compounds to be tested (50 μg/mL) were incubated at 22 °C in the HPLC vials. Indanol 

(Alfa Aesar, purity > 97.5% (GC)) (25 μL of a 1 mg/mL solution in DMSO) as internal 

standard was added to each solution. The time-course of degradation was monitored by UPLC 

analysis using the system described for the enzymatic degradation of GR24 and contalactone. 

Compounds eluted from the column were detected with a photodiode array detector. The 
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relative quantity of remaining (non degraded) product was determined by integration 

comparison with the internal standard.

4.14 Differential Scanning Fluorimetry (DSF)

DSF experiments were performed on a CFX384 Touch™ Real-Time PCR Detection System 

(Biorad) using excitation and emission wavelengths of 490 and 575 nm, respectively. Sypro 

Orange (Ex/Em: 490/610 nm; life technologie) was used as the reporter dye. Samples were 

heat-denatured using a linear 25 to 95°C gradient at a rate of 1.3 °C per minute after 

incubation of 25 °C for 30 min in the absence of light. The denaturation curve was obtained 

using CFX manager software. Final reaction mixtures were prepared in triplicate in 384-well 

white microplates, and each reaction was carried out in 20-μL scale in PB buffer pH 6.8 

containing 10 μg protein, each concentration of SL derivatives (DMSO solution, final DMSO 

concentration was 4%), and 0.008 μL Sypro Orange. In the control reaction, DMSO was 

added instead of chemical solution. 

4.15 Intrinsic tryptophan fluorescence assays and determination of the dissociation constant 

KD.

Interaction of recombinant proteins with SL analogues was monitored by measuring the 

intrinsic tryptophan fluorescence using a Tecan Safire II Plate Reader in a 96-well format. In 

the assay, to a 50 µL ligand solution (10 different compound concentrations ranging from 0 to 

800 µM were prepared from a 2 mM stock solution in 100% DMSO) in PBS buffer at pH 6.8, 

50 µL of a solution of protein in same buffer was added simultaneously in a flat-bottomed, 

black 96-well plate using a Integra Viaflo 96 robot, to obtain 10 µM final protein 

concentration. The volume of DMSO in each well was identical. After 1 h incubation at 25 

°C, fluorescence was measured. The excitation wavelength at 280 nm was used and an 

emission spectrum was recorded 5 times over the range of 300 to 400 nm and excitation and 

emission slit widths of 5 nm. The gain was set to 70, the number of flashes to 50, the flash 

frequency to 400 Hz, and the integration time to 2 ms.

To quantify the interaction between protein and ligand, the intensities of fluorescence at a 

fixed wavelength (333 nm) were measured. The degree of saturation ( ) was determined by 𝐹𝑎

transforming the experimental data to the form: 
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𝐹𝑎 = | 𝐹𝑜𝑏𝑠 ‒ 𝐹0

𝐹𝑚𝑎𝑥 ‒ 𝐹0|
where F0 is the fluorescence intensity in the absence of ligand, Fobs is the fluorescence 

intensity in the presence of non-saturating concentrations of ligand and Fmax is the 

fluorescence intensity at saturation.  For the Kd determination, the data were fitted by 

nonlinear regression with hyperbolic function using GraphPad Prism 5.0 software for overall 

one-site binding.

4.16 Statistical analyses

Because deviations from normality were observed for axillary bud length  and hypocotyl 

length after SL treatment, the Kruskal–Wallis test was used to assess the significance of one 

treatment with one compound in comparison to treatment with another using R Commander 

version 1.7–3 (Fox, 2005). The Mann-Whitney test was also used.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/.

Supplementary Table 1. Conditions for the preparation of (±)-GR24 isomers and (±)-

contalactone. 

Supplementary Table 2. Experimental details for X-ray analysis of contalactone.

Supplementary Table 3. Bud outgrowth inhibition activity assay results for SL derivatives 

using rms1-10 pea plants.
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Supplementary Table 4. Bud outgrowth inhibition activity assay for (±)-contalactone and (±)-

GR24 using rms3-5 pea plants. 

Supplementary Figure 1. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 prepared according to (Mangnus et al., 1992).

Supplementary Figure 2. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 purchased from supplier #1. 

Supplementary Figure 3. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 purchased from supplier #2. 

Supplementary Figure 4. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 purchased from supplier #3.

Supplementary Figure 5. Characterization of P270 by UPLC analysis. 

Supplementary Figure 6. UPLC analysis and High Resolution Mass Spectrometry (HRMS) 

spectrum of P270 after purification. 

Supplementary Figure 7. NMR spectra of P270.

Supplementary Figure 8. UPLC analysis of (±)-contalactone after preparative HPLC 

purification and UV spectrum of (±)-contalactone.

Supplementary Figure 9. MS spectrum and (±)-contalactone, and High Resolution Mass 

Spectrometry (HRMS) spectrum of (±)-contalactone.

Supplementary Figure 10. NMR spectra of of (±)-contalactone.

Supplementary Figure 11. An ORTEP plot of (±)-contalactone. 

Supplementary Figure 12. HPLC separation of both diastereomers of (±)-contalactone.

Supplementary Figure 13. Elution profile of the enzymatic assay (RMS3) and the chemical 

assay (KOH) with (±)-GR24 obtained by careful purification with preparative HPLC.
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Supplementary Figure 14. Proposed mechanism for the formation of (±)-contalactone (P270 

precursor).

Supplementary Figure 15. Elution profile of the enzymatic assay (RMS3) and the chemical 

assay (KOH) with (±)-contalactone obtained by careful purification by preparative HPLC.

Supplementart Figure 16. Dose response activities and modeled curves for the Germination 

Stimulation (GS) activity on seeds of P. ramosa, O. cumana and S. hermonthica by (±)-

contalactone. Comparison with GR24 isomers, dehydrocostus lactone (DCL) and 2-phenethyl 

isothiocyanate (2-PEITC).

Supplementary Figure 17. Germination Stimulation (GS) activity on seeds of P. ramosa, O. 

cumana and S. hermonthica by (±)-contalactoneF1, (±)-contalactoneF2 and (±)-contalactone.
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Figures and Legends

Figure 1. Detection of (±)-P270 and structure of (±)-P270 and (±)-contalactone. (A) Elution 

profile of the enzymatic assay of (±)-GR24 by RMS3, pH 6.8, (orange and red curves) or by 

alkaline hydrolysis at pH 9.4, (green curves) purified by flash chromatography on silica gel. 

UPLC with diode array detection (200-400 nm) shows the formation of ABC=CHOH (254 

nm) and compound P270 (280 nm). (±)-Contalactone is not detected. (B) Synthetic scheme 

for the synthesis of (±)-GR24, (±)-2’-epi-GR24, (±)-contalactone and (±)-P270. (C) Model 

overlay of both diastereomers of (±)-contalactone obtained by X-ray analysis.
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Figure 2. Hydrolysis assays with (±)-contalactone and (±)-GR24. (A) Enzymatic hydrolysis 

rate of (±)-contalactone and (±)-GR24 by RMS3, AtD14 and AtKAI2 proteins. UPLC-UV 

(260 nm) analysis shows the formation of the ABC=CHOH tricycle from (±)-GR24 and P270 

from (±)-contalactone (confirmed by mass spectrometry analyses). The indicated percentage 

corresponds to the hydrolysis rate calculated from the remaining (±)-GR24 or (±)-

contalactone, respectively. Protein + ligand in PBS buffer (pH 6.8) for 150 min at 22 °C. (B) 

Chemical hydrolysis of (±)-contalactone and (±)-GR24 in ethanol/water at pH 6.8. Data are 

means ± SE (n = 3).

Figure 3. Length of the axillary buds of rms1-10 and rms3-5 pea plants, 8 d after direct 

application of (±)-GR24 or (±)-contalactone (= (±)-contalac.) ; CTL0 = DMSO treatment ; 

WT Térèse plants were used as controls without treatment. Data are means ± SE (20 plants). 

*P < 0.05; ***P < 0.001, Kruskal-Wallis rank sum test, compared to CTL0 value. 

Figure 4. Biochemical analysis of the interaction between the RMS3 protein and (±)-

contalactone. (A) Melting temperature curves for RMS3 at indicated concentrations of (±)-

GR24, P270 and (±)-contalactone, as assessed by DSF. Each line represents the average 

protein melting curve for three technical replicates and the experiment was carried out three 

times. (B) Changes in intrinsic fluorescence emission spectra of RMS3 in the presence of 

various concentrations of (±)-GR24, P270 or (±)-contalactone. (C) Intrinsic tryptophan 

fluorescence of RMS3 protein in the presence of SL analogs. Plots of fluorescence intensity 

versus (±)-GR24 or (±)-contalactone concentrations were used to determine the apparent KD 

values. The plots represent the mean of two replicates and the experiments were repeated at 

least three times.

Figure 5. Effect of (±)-GR24, (±)-270 and (±)-contalactone on hypocotyl elongation in Col-0, 

max3-11, Atd14-1, htl3 and max2-1 Arabidopsis plants. Data are means ± SE (n = 14 plants). 

***P < 0.001, Kruskal-Wallis rank sum test, compared to control values (CTL0).

Figure 6. Germination Stimulation (GS) activity on seeds of P. ramosa, O. cumana and S. 

hermonthica by (±)-contalactone. Comparison with GR24 isomers, dehydrocostus lactone 

(DCL) and 2-phenethyl isothiocyanate (2-PEITC). (A) Maximum of Germination Stimulant 

activity relative to (±)-GR24 (1 M). Data are presented ± SE. (B) EC50 (half maximal 

effective concentration) (mol.L-1) of (±)-contalactone, GR24 isomers, DCL and 2-PEITC 
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toward Phelipanche ramosa (1 and 2a), Orobanche cumana, Striga hermonthica root parasitic 

plant seed germination. EC50 are presented ± SE.

Figure 7. Effect of (±)-contalactone on symbiotic ability of the AM fungus Rhizophagus 

irregularis. This fungus was inoculated on Medicago truncatula SL-deficient mutants, in the 

absence (CTL0) or presence of SL analogs at 10-7 M. The number of infection points was 

recorded three weeks post-inoculation. Bars represent the mean ± SE of 9-12 replicates per 

condition. ***P < 0.001, ** P < 0.01, Mann-Whitney test, compared to control values 

(CTL0).
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Supplementary Tables 

Supplementary Table 1. Conditions for the preparation of (±)-GR24 isomers and (±)-

contalactone. a Measured by 1H NMR and UPLC-DAD analysis of the crude reaction mixture. 

Entry Conditions Ratio (GR24/2’-epi-GR24 : contalactone)a 

1 1) tBuOK, THF, 0 °C, 1 h 
2) D-Br, DMF −70 °C to rt, 

17 h 

>97: 3 

2 1) K2CO3, acetone, 0 °C, 40 
min 

2) D-Br, acetone, −70 °C to 
rt, 17 h 

94: 6 

3 1) K2CO3, acetone, 0 °C, 10 
min 

2) 2) D-Br, acetone, rt, 4 h 

93: 7 

4 1) K2CO3, acetone, rt, 15 
min 

2) D-Br, acetone, reflux, 12 
h 

91: 9 

5 1) D-Br, K2CO3, toluene, 55 
°C, 2 h 30  

92: 8 

 
  



Supplementary Table 2. Experimental details for X-ray analysis of contalactone 
(FDB2980F1). 

Identification code FDB2980F1 – diastereomer 1 FDB2980F1 – diastereomer 2 

Empirical formula C21 H18 O6 C21 H18 O6 

Formula weight 366.35 366.35 

Temperature (K) 173(2) 173(2) 

Wavelength (Å) 0.71073  0.71073  

Crystal system,  

Space group 

Monoclinic,  

P 21/c 

Triclinic,  

P -1 

Unit cell 

dimensions 

 

 

a (Å) 

b 

c 

18.1868(12)  

14.0611(13) 

6.8870(4) 

7.811(2)  

10.187(3) 

12.717(10) 

 

α (°) 

β 

γ 

90 

94.276(6) 

90 

112.22(5)  

104.93(5) 

93.47(2) 

Volume (Å3) 1756.3(2) 890.9(8) 

Z,  

Calculated density (Mg/m3) 

4,   

1.386 

2,   

1.366 

Absorption coefficient (mm-1) 0.102 0.101 

F(000) 768 384 

Crystal  habit Elongated platelet Squared tab 

Crystal size (mm) 0.26 x 0.09 x 0.03 0.12 x 0.10 x 0.05 

θ range for data collection (°) 3.558 to 26.732 2.742 to 25.350 

Limiting indices 

 

 

-23 ≤ h ≤ 23,  

-17 ≤ k ≤ 17,  

-8 ≤ l ≤ 8 

-9 ≤ h ≤ 9,  

-12 ≤ k ≤ 11,  

-15 ≤ l ≤ 15 

Reflections collected / unique 

R(int) 

20087 / 3717 

0.0854 

11480 / 3240 

0.060 

Completeness to θ full (%) 99.7 99.0 

Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents 

Max. and min. transmission 1.000 and 0.537 1.000 and 0.434 

Refinement method Full-matrix least-squares on F2 Full-matrix least-squares on F2 

Data / restraints / parameters 3714 / 0 / 246 3233 / 0 / 246 

Goodness-of-fit on F2 1.098 1.083 

Final R indices 

[I>2σ(I)] 

 

R1 

wR2 

0.0623,  

 0.1210 

0.0797,  

0.2285 

R indices (all 

data) 

R1 

wR2 

0.0834,  

0.1293 

0.0981,  

0.2459 

Largest ∆ peak and hole (e.Å-3) 0.255 and -0.197 0.646 and -0.487 

CCDC deposit number  1870390 1870391 

  



Supplementary Table 3. Bud outgrowth inhibition activity assay results for SL derivatives. a 

Data are means ± SE (n ≥ 20), 8 days after treatment	of rms1-10 pea plants. b Comparison of 

the treatment to the control treatment (0 nM) using the Kruskal-Wallis rank sum test. 

Compound 

 

 

Concentration Length of bud at node 3 p-value 
(no. of replicates)  /branch (mm)a  

(±)-GR24 1,000 nM 1.90 ± 0.08 0.00e-00 b 
 1,000 nM 1.80 ± 0.11 0.00e-00 b 
 1,000 nM 3.18 ± 0.50 0.00e-00 b 
 1,000 nM 2.82 ± 0.22  0.00e-00 b 
 1,000 nM 3.65 ± 0.69 0.00e-00 b 
 1,000 nM 2.89 ± 0.39 0.00e-00 b 
 100 nM 3.03 ± 0.83 1.09e-03 b 
 100 nM 1.97 ± 0.10 0.00e-00 b 
 100 nM 7.60 ± 2.53 2.40e-07 b 
 100 nM 4.58 ± 1.11 0.00e-00 b 
 100 nM 3.69 ± 0.56 0.00e-00 b 
 10 nM 6.37 ± 1.01 2.99e-03 b 

(±)-Contalactone 10,000 nM 3.31 ± 1.57 0.00e-00 b 
 10,000 nM 8.09 ± 1.57 1.09e-11 b 
 5,000 nM 8.20 ± 1.43 4.12e-11 b 
 5,000 nM 7.72 ± 1.65 5.55e-15 b 
 1,000 nM 13.35 ± 1.82 0.00e-00 b 
 1,000 nM 14.73 ± 1.62 6.91e-01 b 
 1,000 nM 15.73 ± 1.58 3.35e-02 b 
 500 nM 19.34 ± 0.78 9.97e-01 b 
 500 nM 19.45 ± 1.54 9.9989e-01 b 
 100 nM 26.63 ± 1.15 0.46e+00 b 
 100 nM 18.41 ± 0.87 9.9989e-01 b 

(±)-P270 10,000 nM 8.80 ± 1.17 8.31e-01 b 
 1,000 nM 10.66 ± 1.06 1.00e+00 b 
 1,000 nM 12.44 ± 2.29 3.44e-01 b 
 1,000 nM 8.77 ± 2.03 9.94e-01 b 
 100 nM 11.23 ± 2.65 9.49e-01 b 
 100 nM 5.80 ± 1.31 5.22e-01 b 

ABC=CHOH 10,000 nM 13.00 ± 1.78 1.00e+00 b 
 1,000 nM 10.39 ± 1.09 9.63e-01 b 

 
  



Supplementary Table 4. Bud outgrowth inhibition activity assay for (±)-contalactone and (±)-

GR24. a Data are means ± SE (n ≥ 20), 8 days after treatment	 of rms3-5 pea plants. b 

Comparison of the treatment to the control treatment (0 nM) using the Kruskal-Wallis rank 

sum test. 

Compound 

 

 

Concentration Length of bud at node 3 p-value 
(no. of replicates)  /branch (mm)a  

(±)-GR24 5,000 nM 21.44 ± 1.21 0.9999897 b 
 5,000 nM 18.78 ± 1.30 0.9972101 b 

(±)-Contalactone 10,000 nM 20.98 ± 2.27 5.862260e-02 b 
 5,000 nM 19.44 ± 1.30 0.8567548 b 
 5,000 nM 23.73 ± 0.77 0.6399994 b 
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Supplementary Figures 

 

 

 

 

Supplementary Figure 1. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 prepared according to (Mangnus et al., 1992). 

Elution profile of the enzymatic assay with buffer (pH 6.8), RMS3, RMS3S96A and (±)-GR24 

purified by flash chromatography on silica gel. UPLC with diode array detection (200-400 

nm) shows the formation of ABC=CHOH and compound P270. (±)-Contalactone is not 

detected. 

ABC=CHOH 

P270 

(±)-GR24 

(±)-GR24	+	RMS3S96A 

(±)-GR24	+	RMS3 
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Supplementary Figure 2. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 purchased from supplier #1. Elution profile of the 

enzymatic assay with buffer (pH 6.8), RMS3, RMS3S96A and (±)-GR24 purchased from 

supplier #1. UPLC with diode array detection (200-400 nm) shows the formation of 

ABC=CHOH and compound P270. (±)-Contalactone is not detected. 

(±)-GR24 

(±)-GR24	+	RMS3S96A 

(±)-GR24	+	RMS3 P270 
ABC=CHOH 



 

 3 

 

Supplementary Figure 3. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 purchased from supplier #2. Elution profile of the 

enzymatic assay with buffer (pH 6.8), RMS3, RMS3S96A and (±)-GR24 purchased from 

supplier #2. UPLC with diode array detection (200-400 nm) shows the formation of 

ABC=CHOH and compound P270. (±)-Contalactone is not detected. 

(±)-GR24 

(±)-GR24	+	RMS3S96A 

(±)-GR24	+	RMS3 

	P270 
ABC=CHOH 
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Supplementary Figure 4. Detection of the novel compound (P270) following enzymatic 

activity of the SL receptor from (±)-GR24 purchased from supplier #3. Elution profile of the 

enzymatic assay with buffer (pH 6.8), RMS3, RMS3S96A and (±)-GR24 purchased from 

supplier #3. UPLC with diode array detection (200-400 nm) shows the formation of 

ABC=CHOH and compound P270. (±)-Contalactone is not detected. 

 

(±)-GR24 

(±)-GR24	+	RMS3S96A 

(±)-GR24	+	RMS3 
P27
0 

ABC=CHOH 
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Supplementary Figure 5. Characterization of P270 by HPLC analysis. (A) Elution profile of 

the aqueous phase obtained after the chemical hydrolysis with buffer (pH 9.5) of (±)-2’-epi-

GR24 prepared according to (Mangnus et al., 1992) and washed with CH2Cl2. UPLC with 

diode array detection (200-400 nm) shows ABC=CHOH and P270 and traces of (±)-2’-epi-

GR24. (B) Elution profile of CH2Cl2 phase obtained after the chemical hydrolysis with buffer 

(pH 9.5) of (±)-2’-epi-GR24 prepared according to (Mangnus et al., 1992). UPLC with diode 

array detection (200-400 nm) shows (±)-2’-epi-GR24 as major compound, the presence of 

traces of ABC=CHOH and no compound P270. (C) Elution profile of the chemical hydrolysis 

with buffer (pH 9.5) of (±)-2’-epi-GR24 obtained by a first chemical hydrolysis at pH 9.5 and 

extraction with CH2Cl2. UPLC with diode array detection (200-400 nm) shows the formation 

of ABC=CHOH and no compound P270. (±)-Contalactone is not detected. 

C: (±)-2’-epi-GR24		pH	9.5 

A 

B 

ABC	=CHOH 

P270 
(±)-2’-epi-GR24 



 

 6 

 

 

Supplementary Figure 6. (A) HPLC analysis of P270 after preparative HPLC purification and 

UV spectrum of P270. (B) High Resolution Mass Spectrometry (HRMS) spectrum of P270 

(negative mode). 

  

A 
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Supplementary Figure 7. (A) 1H NMR spectrum of P270, (B) 13C NMR spectrum of P270.  

A 
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Supplementary Figure 8. (A) HPLC analysis of (±)-contalactone after preparative HPLC 

purification and (B) UV spectrum of (±)-contalactone.  

A 

B 



 

 9 

 

 

Supplementary Figure 9. (A) MS spectrum and (B) High Resolution Mass Spectrometry 

(HRMS) spectrum of (±)-contalactone (positive mode). 

A 
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Supplementary Figure 10. (A) 1H NMR spectrum of (±)-contalactone and (B) 13C NMR 

spectrum of (±)-contalactone. 

A 
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Supplementary Figure 11. An ORTEP plot of  (±)-contalactone (FDB2980F1) showing one 

copy of the monoclinic asymmetric unit. Ellipsoids are drawn at the 30% probability level and 

H atoms are shown as small spheres of arbitrary radii.  
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Supplementary Figure 12. HPLC separation of both diastereomers of (±)-contalactone. 
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Supplementary Figure 13. Elution profile of the enzymatic assay (A) with buffer (pH 6.8),  

RMS3, RMS3S96A, RMS3H247A, RMS3D218A, RMS3S96C and the chemical assay (B) (KOH, pH 

12) with (±)-GR24 obtained by careful purification with preparative HPLC. UPLC with diode 

array detection (254, 280 nm) shows the formation of ABC=CHOH and no compound P270. 

  

(±)-GR24, 254 nm 

(±)-GR24, pH 12 254 nm 

(±)-GR24 pH 6.8 + RMS3, 280 nm 

(±)-GR24 pH 6.8 + RMS3, 254 nm 

(±)-GR24 pH 6.8 + RMS3
S96A

, 254 nm 

(±)-GR24 pH 6.8 + RMS3
H247A

, 254 nm 

(±)-GR24 pH 6.8 + RMS3
D218A

, 254 nm 

(±)-GR24 pH 6.8 + RMS3
S96C

, 254 nm   

ABC=CHOH	tricycle 

(±)-GR24 pH 12, 254 nm 

(±)-GR24, 254 nm 
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A 

ABC=CHOH	tricycle 

ABC=CHOH	tricycle 
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Supplementary Figure 14. Proposed mechanism for the formation of (±)-contalactone (P270 

precursor). 
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Supplementary Figure 15. Elution profile of the enzymatic assay (A) in buffer (pH 6.8), with 

RMS3, RMS3S96A and chemical assay (B) (KOH, pH 12) with (±)-contalactone obtained by 

careful purification by preparative HPLC. UPLC with diode array detection (260, 280 nm) 

shows the formation of P270. 

(±)-contalactone	 

(±)-contalactone	+	RMS3S96A 

(±)-contalactone	+	
RMS3

MW	
P270

A 

(±)-contalactone,	pH	6.8	 
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Supplementary Figure 16. Germination Stimulation (GS) activity on seeds of P. ramosa, O. 

cumana and S. hermonthica by (±)-contalactone. Comparison with GR24 isomers, 

dehydrocostus lactone (DCL) and 2-phenethyl isothiocyanate (2-PEITC). Dose response 

activities and modeled curves of (±)-GR24 blue; (+)-GR24 dash blue; (−)-GR24 dot blue; (+)-

2’-epi-GR24 dash red; (−)-2’-epi-GR24 dot red; (±)-contalactone black; 2-PEITC green; DCL 

yellow.  
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Supplementary Figure 17. Germination Stimulation (GS) activity on seeds of P. ramosa, O. 

cumana and S. hermonthica by (±)-contalactoneF1, (±)-contalactoneF2 and (±)-contalactone. 

(A) Dose response GS activities and modeled curves. (B) EC50 (half maximal effective 

concentration) (mol.L-1) (C) Maximum of GS activity relative to (±)-GR24 (1 µM). Data are 

presented ± SE. (±)-contalactone = (±)-contalactoneF1 + (±)-contalactoneF2 (1:1).  
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