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Abstract

In this contribution is addressed the issue of modeling a SiC/SiC composite
micro-structure at the fiber scale with elementary features. As the development
of new grades of Ceramic Matrix Composites (CMC) for civil aviation grows,
different manufacturing processes are used successively and lead to different
types of micro-structures and a variable material quality. Consequently a versa-
tile model should be developed in order to compare these materials and create
a tool to help engineers to predict the mechanical behavior at the fiber scale.
Here the Generalized Finite Element Method (GFEM) is proposed which con-
sists in enriching the classical Finite Element (FE) approached displacement by
numerical functions to deliver an accurate description of the fiber-scale structure
while limiting the number of degrees of freedom compared to a classical finite
element description. A pattern-based description of the microscale is depicted
using an industrial code for an engineering purpose. Four main difficulties are
highlighted (i) the choice of the enrichment functions regarding the literature
(ii) their stiffness matrix computation in a commercial code (iii) the construc-
tion of the pattern-based structure and (iv) the post-processing. Two GFEM
strategies are presented and demonstrate the feasibility of an enriched kine-

matics within a classical finite element modeler. The selection of such modeler
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is conditioned by the possibility of weakly intrusive automation of the various
stages of construction of the enriched patterns with the help of an external
scripting language.
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1. Introduction

Ceramic Matrix Composites are good candidates for the aeronautic or the
nuclear industries due to their high refractoriness, their low density and their
resistance to oxidation compared to metals. In the specific application of gas
turbine engines for aviation propulsion, the research of high temperature perfor-
mance is motivated by a desire of reducing fuel consumption. Indeed a weight
loss is not the only motivation for integrating CMCs within hot parts: elevat-
ing the operating temperatures of the gas turbine engines enables a gain in
propulsion efficiency [I]. Improvements in temperature capabilities allowed an
increasing work under service conditions of approximately 35°C per decade [2]
in the past.

CMC research has led to the development of various manufacturing processes
that have resulted to the creation of several types of structures with different
thermal and mechanical properties. For chosen components, two factors have
an influence on the thermomechanical behavior: the architecture of the textile
reinforcement with unidirectional plies [3], 2D or 3D fabrics [4, 5] and the ma-
trix deposition process. Typically four types of processes can be used for the
matrix deposition: the Chemical Vapor Infiltration (CVI), the Chemical Vapor
Deposition (CVD), the Melt Infiltration (MI) and the Polymer Impregnation
and Pyrolisis (PIP). The chemical vapor processes are employed for a thickness-
controled preform coating [0] at the cost of a high porosity rate [7] and a long
deposit time. They also can be used to lay an interphase coating such as Pyro-
Carbon (PyC) or Boron Nitride (BN) around the fibers. MI and PIP come as a
complement to fill the residual porosities (see and accelerate the matrix
deposition. A review of the different manufacturing processes is available in [§].
In particular the matrix deposition processes lead to different micro-structures.

Furthermore many studies have been conducted at the fiber scale in order
to quantify the first damages that lead to the material ruin. Degradation mech-
anisms like fiber debonding [0], fiber cracking due to oxidation [I0] and creep

[11L [12] have been observed. Silicon Carbide (SiC) textile and matrix (SiC/SiC)



composites behavior under quasi-static indentation [I3] or low velocity impact
[14] have been observed through micrographic or tomographic studies in order
to analyze the damages at the yarn scale. Initial state is also of importance since
the post-processing cooling implies a residual stress [15] [16] due to different val-
ues of the expansion coefficient for the different phases of the micro-structure
7).

The succession of possible manufacturing processes coupled with the exis-
tence of non linear phenomena such as degradation mechanisms at the micro-
scale raises the issue of a modeling strategy to predict CMCs behavior and
compare solutions for different configurations and loads.

Models for Ceramic Matrix Composites at the fiber scale have been devel-
oped for computational applications like crack initiation and propagation cri-
teria [I8] [I9] or environmental effects modeling [20]. However, the simulation
of such phenomena requires the development of calculation tools whose effec-
tiveness depends on the quality of the description of the structure. Thus an
adapted strategy for the micro-structure description must be implemented up-
stream to facilitate the mechanical modeling. For an industrial purpose such
modeling method must be implemented in a commercial code so the following
developments are chosen to be made with the Abaqus 6.14 software.

The aim of the following paragraphs is to introduce classical strategies used
to model composites numerically. A review of the homogenization and domain
decomposition strategies is proposed with the purpose of contextualizing the
chosen method which will be precised further.

Homogenization consists in averaging quantities such as stresses and strains
within a heterogeneous Representative Volume Element (RVE) whose definition
can be found in [2T]. A satisfying RVE must be statistically representative which
implies an upstream study of the volume fraction of the different constituents
within the RVE and their allocation. It must have a small characteristic length
compared to the macrostructure dimensions so the RVE is assumed to be ho-
mogeneous at the macroscale. For non linear investigations applied to periodic

RVE, iterative methods based on an asymptotic homogenization [22] applied
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Fig. Comparison between two yarn-scaled structures obtained with a CVI or a CVI-MI
process for a SiC-fiber and SiC-matrix (SiC/SiC) composite. Hybrid CVI and MI process

results in a fully dense matrix. Micrography from [7].

to coupled scales (reviewed in [23]), FE? [24] or Fast Fourier Transform [25]
have been suggested for composite applications. However these homogenization
strategies suffer from the simplifying assumption of periodicity and uncoupled
global-local methods encounter significant errors in the portions with high gra-
dients. Moreover no solution for the micro-structure description is provided and
the information to be given is too rich compared to the information at the end
of the operation, then homogenization has a limited interest for this study.
Domain Decomposition Methods (DDM) enable to split a global structure
into non-overlapping substructures and interfaces. Consequently they allow a
fine description of a large structure due to a parallelized computation of the
different submodels. Then computation is made with accuracy. Studies have
been conducted for laminate composites submitted to time-dependant mecha-
nisms [26 27]. A crack propagation has also been performed using a hybrid
eXtended FEM and DDM formulation [2§]. Nonetheless DDM have limitations

concerning the sorting of extracted information caused by the accuracy of the



computation. Indeed the output information may be too rich to enable an im-
pact on the selection of the manufacturing processes. Consequently the desired
versatility for the composite depiction seems lost.

In addition to the Galerkin formulation, other kinematics descriptions are
possible to approach the real displacement. The Superposition Finite Element
Method (S-FEM) [29], the Variable size h and Polynomial degree p called hp-
adaptivity [30] are some examples. The Partition of Unity Method [3I] can
be seen as a generalization of the hp-adaptivity and constitutes the foundation
of the Generalized Finite Element Method (GFEM) [32]. The key point of
the GFEM is to enrich the kinematics with enrichment - also called special -
functions in order to describe a structure and its behavior on each element patch
of the mesh.

The GFEM is a method halfway between those of homogenization and those
of HPC. Indeed, an upstream calculation allows to generate patterns on a macro-
scopic scale from a local description before storing the solutions in a Handbook.
The enrichment functions enable to keep a coupling between the micro scale and
the macro scale. The problem to be solved is then broken down into patterns
but the calculation is done in a monolithic way.

For that reason of this contribution emphases the Generalized Fi-
nite Element Method as a Partition of Unity Method and underlines the difficul-

ties of the method. Then three GFEM implementation strategies are presented

in [Section [3| [Section |4 draws the statement of the tools available in Abaqus

in order to estimate the most relevant strategy to implement. Eventually
presents a weakly intrusive implementation of the GFEM with the help
of Abaqus and Python in the particular case of an elastic problem. The novelty
of the presented method do not lies in the numerical enrichments generation
or the choice of the patterns but in their use in a commercial software. It will
be shown that the feasibility of the implemented method is easily automatable

through a scripting language.



2. Generalized Finite Element Method

The following section draws a state of the art of the GFEM. Strategies
of kinematics enrichment generation are summarized from the literature and

discussed in order to select the most appropriate for an easy implementation.

2.1. Problem definition

A domain denoted € is considered. Boundary conditions can be applied on

00 = 00 @ 09, as:

g.n:Fd on 8QF (1)

u = ug on 0f), (2)

Where n is the outward unit normal vector to dQr and g is the Cauchy
stress tensor. Such {2 domain is approached by a mesh denoted 2. Centered
on the node number k can be defined a patch of elements Q. An illustration
of the model problem definition is available in The strain is assumed to

be small and given by the symmetric gradient of the displacement w:

e(u) = 5 (Y(u) + Y(w)) (3)

For the heterogeneous material the Hooke’s elasticity tensor at the coordi-
nate x denoted H(x) can be broken down as the sum of a homogeneous part

H, and a perturbation part AH(x) such as:

vx € Q, H(x) = Hy + AH(x) (4)

Then the stress tensor ¢ is linked to the strain tensor by:



Defining Uy = {u* € H1(Q)?,u* = 0 on 0Q,} and U = {u € H;(Q)3,u =
ug on 0§, } enable to write the Principle of Virtual Work which reads: Find
u € U such that Vu* € Uy,

- /Qg(u) tH(x) @ e(u”)dQ + . Fyu*d(09Q) =0 (6)

2.2. Partition of unity

Fig. El Exemple of patches constitutive of a mesh 2 approaching a real structure €2, subject
to load boundary conditions Fz on boundary 9Qp and displacement boundary conditions ug

on boundary 0€.

Based on the Partition of Unity (PU) hypotheses [31], the GFEM formula-
tion suggested in [32] enables to write the displacement approximation as the
sum of the regular Finite Element (FE) interpolation and an enriched contribu-

tion. In a point x of the studied domain, such a displacement wuy,(x) is written



as presented in

(k)

N N enr
w(x) = > er@u + > en(x) > v (x)a) (7)
k=1 k=1 j=1
FE interpolation enriched contribution

N is the number of element patches inside the mesh representing the studied
structure, @y, is the same "hat” function as defined in the classic Finite Element
Method (FEM) for the element patch number k called 2 and illustrated in
, uy, is the displacement vector calculated at the node number k, né’,?r
is the number of enrichment functions inside the patch number k, 1/1,(3 ) is the
enrichment function number j associated with the patch j and a,](Cj ) is the ad-
ditionnal nodal unknown associated with the enrichment number j of Q. It
has been shown in [31] that the richer the enrichment functions, the closer the
approached displacement wuy, is to the exact displacement w. The immediate
consequence is the emancipation of an explicit mesh due to the presence of fea-
tures within the micro-structure, thanks to the enrichment functions ¢,&j). The
gokw,(j ) products ensure the continuity of the fields between two superimposed

or adjacent patches.

2.3. XFEM and GFEM

A distinction between the Extended Finite Element Method (XFEM) and
the GFEM is made in this contribution: despite both of the two strategies are
consequences of the PU hypotheses, the first method will designate the extension
of the standard FE with analytical enrichments and the second one will refer to
the use of numerical special functions.

The XFEM has already been integrated into commercial softwares and is
principaly used to model the position and the propagation of cracks by using
level-set functions and adding a set of tip functions at the crack fronts explicited
in [33]. These tip functions are defined from the asymptotic displacement so-
lution and determine the crack deflection. A modified Partition of Unity using

Shepard analytical functions [34] was also suggested to describe a crack in a



homogeneous field [35] or to treat problems with multiple junctions in poly-
cristalline structures under thermal loads [36]. It can be noted that the XFEM
has been used in Abaqus to model crack deflection at the interface between the
matrix and the fiber interphase [37]. A homemade code also made it possible to
perform crack propagation in a homogenized composite structure via XFEM us-
ing the abaqus modeler [38]. Many studies [39, 40} [4T], 42| [43] have been lead in
order to improve the implementation and the stability of the method. Nonethe-
less two limitations of the analytic description of a crack can be highlighted.
First the asymptotic displacements used as crack tip enrichment functions are
generally valid in an infinite homogeneous domain. Second level-set functions
give a rough approximation of a crack path if a coarse mesh is used (see ,
then element partitioning is required since usual Gauss quadrature is only accu-
rate for polynomials. Moreover a multi-material domain demands a fine mesh
in order to take into account the structural details which can be small within
CMCs micro-structures (such as residual porosities for instance). The XFEM
is able to describe a weak discontinuity as a frontier between two materials
but it would demand a large number of additional nodal unknowns to describe
the whole micro-structure. The GFEM seems to be more flexible due to the
numerical enrichment functions, for instance a 3D model of a crack has been
treated in [44] avoiding asymptotic expansion of the elasticity solution required
in XFEM through the help of a local description of the crack by a geometri-
cally conforming refined mesh. The number of structural details delivers mesh
complication as noted in [45] and GFEM can potentially overcome such issue.
The difficulty of treating numerous structural details were also overcome [46].
Proper Orthogonal Decomposition (POD) modes were used as GFEM enrich-
ment functions [47]. More recently a Proper Generalized Decomposition (PGD)
enrichment generation strategy adapted to transient problems has been devel-
opped [48] and allows an off-line storage of the enrichment functions which can
be seen as a Handbook problem defined in [45], [46]. The Handbook classifies
pre-calculated patterns used as numerical enrichment functions like a library of

features. The main idea of this method is the richer the Handbook, the more
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Fig. Crack approximation due to XFEM level-set functions.

scenarios and structures can be described.
Before introducing the different implementation strategies existing in the
literature, a review of the difficulties associated with the enrichment functions

generation is proposed in the following section.

2.4. Difficulties associated with the GFEM and its implementation

The aim of this paper is to present the implementation of a versatile model
through the Abaqus software. Such commercial code uses a classical finite ele-

ment description of the kinematics so the first difficulty is the next:

1. The approached displacement must be imposed on the mesh 2, using

classical kinematic description tools.

Another point of the implementation of the GFEM is to build the stiffness
matrix with regard to the displacement formulation. The virtual work of the
internal forces [, e(uy) : H(x) : e(u;;)dQ2 with u;; € Uy provides the form of the
stiffness matrix and its components [(9))

Kreyv  Kreumjenr
Kerem =

T
FEM/enr Kenr

11



(Krem)1s = / H(x)V(pr)V(p.)dQ (9a)

QN y

(K rpatjon ) 10 = / H(x)V (1) ¥ (2,07 )d2 (9b)
QrNQ,

(Kon s = / H(x) V(2,007 ¥ (1,02 (9¢)
Q,N0,

Indices o and 8 are explicited in |(10)| and a reminder of the development
used to obtain these different terms is available in

p—1 q—1
a= nll+k; B=7 n) +1 (10)
m=1 n=1

The question of the GFEM stiffness matrix conditioning has been raised
[49]. If R(A) denotes a scaled condition number of a matrix A and h << 1
is the characteristic length of the mesh then is verified and highlights the
ill-conditioned GFEM stiffness matrix compared to the classical FEM stiffness

matrix.

R(Krenm)
R(Karem)

As a consequence convergence of an iterative solution method may be dete-

= O(h?) (11)

riorated. Modified enrichment functions have been used in order to correct the
ill-conditioning of the GFEM stiffness matrix and reach the same order than
R(Krgar). This result is obtained by deleting the linear part of the enrichment
functions from a patch [49, 50]. An illustration is shown in the modi-
fied enrichment function 12,(5 ) enables to obtain a condition number of the same
order of magnitude as for the FEM one.

The main difficulty associated with the GFEM stiffness matrix is to evaluate
the integration of the cross-products V(@I)V(gopwl(,k)) and mainly V(@pqp;k))v(@q@bé”)
between superimposed patches Q7 N €, and 2, N Q, respectivelly. Indeed hat
functions are associated to the coarse mesh €);, while special functions ’(/J](Cj ) po-
’(cj)

tentially come from explicit meshes of support w,’’ describing structural details

12
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Fig. El Construction of a SGFEM enrichment function. The piecewise linear interpolant
of the enrichment function is substracted from the enrichment function wl(cj ) to obtain the

SGFEM enrichment function J}(ﬂj).

and their behavior. Depending on the description strategy of the local domains
w,(cj ) an integration issue may occur due to non-conforming meshes. Then a
refined grid is necessary to project fields or the developpement of an adaptive
quadrature can be suggested [45]. However, such an operation requires addi-
tional calculations to be performed that require the permanent rewriting of files
in a commercial code. The calculation time would potentially become too long,
especially in order to deal with non-linear problems in the future. The field
projection on a commercial code like Abaqus would therefore undermine the

effectiveness of the method proposed in this paper. Consequently the second

difficulty to overcome is the next:

2. The integration of cross-products V(gopw](,k))V(goqwél)) in|(9)| must be sim-
plified.

With the aim of responding to the two difficulties highlighted in this section
a review of the different enrichment strategies is suggested in Then

13



an analysis of the Abaqus capacities will be presented in in order to
help to choose a relevant implementation method using this modeler and weakly

intrusive languages such as Python for instance.

3. Enrichment functions generation strategies

This section draws the state of the art of the existing numerical enrichment

strategies available in the literature in a chronological order.

3.1. Enrichment by precalculated solutions

A natural idea lies in the generation of enrichment functions coming from a
combination of canonic loads illustrated in and introduced by Strouboulis
in [45]. These canonic loads allow these patterns to accommodate a combination
of the precalculated loads in an elastic problem. Such precalculated solutions
are stored in a Handbook and overlaid to a coarse mesh representing the geom-
etry of the homogeneous part of the studied structure. A Computer-Assisted
Design (CAD) representation is required so that the geometry of the Handbook
problems can be extracted and meshed. Nonetheless the nonconformity between
superimposed meshes implies a step of field interpolation and the difficulties in
the calculus of the cross-products introduced in A heavy adaptive procedure

has been developped [45] to solve that non-conforming problem.

3.2. Enrichment by geometrically conforming meshes

Each macroscopic patch which contains a structural detail such as cracks,
porosities, fibers or other observable phases of the composite micro-structure
must be enriched. The main idea of this strategy later called Duarte’s method
is to impose the GFEM kinematics to the macroscopic nodes of a patch knowing
the local behavior within. To simplify the cross-products for superimposed
patches a refined mesh containing the structural details is added to the entire
coarse global mesh in order to ensure the geometric conformity between the

patches then to guarantee the same local description at the intersection between

14
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Fig. Enrichment generation by load base: patterns are chosen from a homogeneous
structure. A canonic load base applied on a refined mesh including structure details is used
to calculate numerical enrichment functions. Then such patterns can be superimposed to the

global structure to approach the desired model.

two patches. Moreover for the patch ), one enrichment function 1/1,8’ ) associated
with the "hat” function ¢y is computed following at a point x :
e () = i) = i), (%) (12)

,(f )(x) is the difference between the displacement ugfn)t(x) obtained for the

(7)

real behavior and the displacement u;_

(x) calculated for the global homoge-
neous behavior at the local scale: it is seen as a perturbation contribution of
the homogeneous displacement field. By construction such enrichment functions
respect the SGFEM. Eventually the created features stored in the Handbook are

reinjected in the global model as shown in |F'ig. [0]

3.3. Enrichment by scale separation

In addition to the partition of unity hypotheses, scale separation hypotheses

have been introduced in [51] and withdrawn below:
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Fig. El Illustration of the different steps to fill the Handbook. First a simulation is performed
on a macroscopic coarse mesh (at the left). Secondly a geometrically conforming local mesh is
generated in the whole structure. Then patches are extracted to compute the special functions

before their reinjection in the model.

(@)

1. The support w;’’ of the enrichment function z/),(cj )

is small in comparison

with the support Q of the hat function ¢y

2. The enrichment functions do not interact with each other.

The first assumption can be interpreted as the hat functions ¢y are almost

constant on the support w,(cj ), so if C;Cj ) is the center of w,(cj ) it can be written:

or(x) ~ o (CY)) vx € W) (13)

The second assumption results in an empty intersection between two different
enrichment supports. Since the enrichment functions are located on a support
w,(cj) with a center Cg) a modified then by setting IZ,(cj) = wk(C,(cj))w,(cj) the
approached displacement @ can be simplified and written as shown in

(k)

N N Tenp _
w(x) =Y @+ Y > o (x)ay (14)
k=1 k=1 j=1

It can be noted that the enrichment contribution is independent from the

hat functions. Consequently the additional nodes afcj ) can be placed anywhere

16



within the patch. As a convention the additional nodes ag ) will be located at
the centers C,(cj ) of the enrichment supports w,(f ),
Moreover the terms of the associated stiffness matrix can be calculated sim-

ilarly to the demonstration of the GFEM stiffness matrix terms and give:

(KFEM)IJ:/Q . H(x)V(¢1)V(ps)dS (15a)
Krpaenr)ry = [ HE V() V(@) (15b)
Kenhos = [ BV V(5400 (15¢)

The issue of cross-products highlighted in is then avoided, more pre-
cisely the scale separation hypotheses allow the superimposition of nonconform-
ing meshes used as support of features. The enrichment functions generation
strategy using load base described ahead is brought more versatile, at the price
of an approached kinematics which does not fully respect the Partition of Unity
hypotheses. Nonetheless such simplification is considered sufficient through a
development of a comprehension tool [51I]. An application in the crack prop-
agation case has been implemented in Castem [52]. To summarize multi-scale
GFEM (MS-GFEM) enrichment strategy is close to the load based one and il-
lustrated in Either a stress or strain basis can be used to generate the
numerical enrichment functions. the main difference between the GFEM and
the MS-GFEM is the emancipation of interactions between feature supports. It
can also be noted that the description of the structure only relies on the pre-
calculated Handbook and the enrichment functions as defined in satisfy the
SGFEM conditions.

4. Available tools in commercial codes

The following section presents useful Abaqus tools in order to prove the

feasability of the different strategies concerning the GFEM implementation in-

17
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Fig. H. Enrichment functions patches chosen from the Handbook positioned in the global
domain to take in account the structural details, regarding the MS-GFEM hypotheses. Here

a canonic strain base is used to generate the enrichment functions.

troduced previously. For this section the names of Abaqus functionalities will

be written in Italic.

4.1. Geometrically conforming meshes

A geometrically conforming refined mesh with a macroscopic one allows a
same local description in regards to the intersection of two patches. It would re-
sult in a simplification of the cross-products within the GFEM stiffness matrix.
Nonetheless only one mesh can be associated with a given CAD structure in
Abaqus. Consequently it is not possible to realize a coarse mesh and to super-
impose a refined mesh respecting the edges of the macroscopic one. One solution
consists in operating a Partition on the CAD to draw manually the edges of the
global mesh. In a second time the model can be copied and a refined mesh can
be generated on the new structure. The partition edges will impose the shape

of the local mesh and the conformity with the macroscopic one. It is illustrated

with the point @ in [Fig.[8

18
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and the local mesh
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structure mesh
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Local mesh Patch mesh

Fig. Structure partitioning. The partition tool imposes the edges in the global structure
so the global and local meshes are forced to fit them. Heterogeneous inclusions are highlighted
in red. The characteristic size of the global mesh is about a hundred times larger than that

of the local mesh.

4.2. Macroscopic kinematics imposed to the local mesh

In the global-local GFEM and the MS-GFEM the numerical enrichment
functions can be generated from the local response of the structure to the
macroscopic kinematics. Then it is necessary to be able to project the global
displacements onto the local mesh. In Abaqus the Submodeling tool drives the
local model with the results from the global model. An interpolation is then
performed to determine the solution of the submodel. For instance the point
@ of the illustrates a hat function of a macroscopic patch. Nodes at the
boundary of the patch are fixed and the central one is associated with a unitary
displacement. Point @) shows the displacements calculated for the submodel of
the patch if the macroscopic kinematics is imposed on the whole surface of the

patch.
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Fig. El Projection of a global field on a local mesh through a submodeling strategy. The local
mesh is assumed to be a submodel of the macroscopic structure and follows its kinematics.

Then each local node is subject to a displacement boundary condition (in orange).

4.3. Enrichment functions seen as perturbation functions

Since the numerical enrichment functions can be seen as a perturbation func-
tion between the heterogeneous and the homogeneous structure, the question
arises as to how to substract two different displacement fields from two different
Abaqus simulations. It is possible to extract the nodal displacements and store
them in a Python list for instance. Indeed Python is able to read the Abaqus
result file. For instance in the points @ and @) of the the same macro-
scopic kinematics is imposed at the boundaries of the homogeneous patch and
the heterogeneous patch. The difference between the two displacement field can

be made with Python and gives the point @) if reinjected in Abaqus.

4.4. Imposing the GFEM approached displacement

The GFEM approached displacement@must be implemented in Abaqus to

replace the Galerkin displacement formulation. If uﬁlow” denotes a local nodal

displacement at the point x; (with i € [[l,Nl(fC)al ), up (with k € [[1,N;fo)bal]}) is

the macroscopic displacement number k and al(f ) designates the additional nodal
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Fig. Numerical enrichment function seen as the perturbation between the heterogeneous

response and the homogeneous response to identical boundary conditions.

unknown associated with the enrichment function number j (with j € [1, ngﬂ),« )

then it is possible to impose the GFEM (or the MS-GFEM) kinematics thanks
to the Equation tool available in the Constraint module by writing (here in the

case of the GFEM):

(p) (p)
Ngfobal Ngfobal n(l:l)

ul(local) _ Z w,ii)uk _ Z 9055) Z w}(cj,i) ag) -0 (16)
k=1 Jj=1

k=1

Considering a patch €, Nl(fc)al, Néf 3bal and ngﬁ),, refer respectively to the

number of nodes within the local mesh, the number of nodes within the macro-
scopic mesh and the number of enrichment functions. gogj) indicates the value of

the macroscopic hat function interpolated at the coordinate x; and z/),(gj D denotes
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the value of the enrichment function at the same point x;. Nodal displacements
u, and enrichment unknown nodes a,(cj ) must be added due to the definition
of new Reference Points in order to be reused for other equation definitions.

Indeed Abaqus eliminates the terms used to describe the local displacements

l l
U( ocal)

s for a memory gain purpose. Assimilating the macroscopic nodes with

Reference Points forbids Abaqus to erase them.

4.5. Substructuring operation with GFEM kinematics

In the GFEM approached displacement unknowns u;, and a,(j ) are de-
fined on macroscopic nodes. Nonetheless the structure behavior is contained
in the local description and more particularly in the enrichment functions w,(cj ).
A static condensation will be necessary to integrate the stiffness matrix taking
into account the GFEM kinematics. For that purpose the Substructuring tool
enables an elimination of the internal nodes of a structure and keeps the Re-
tained Nodal Degrees of Freedom while ensuring a linear response of the created
substructure. The substructuring strategy can work in conjunction with the
Equation Constraint introduced previously. The local nodes uglocal) described
by the GFEM kinematics are assumed to be the internal nodes of the mesh to
be substructured and the macroscopic nodes v and ag ) are supposed to be the
retained nodal degrees of freedom. The Reference Points which are necessary in
the definition of the Constraint Equations can also be associated with retained

nodal degrees of freedom. If Uj is the vector containing all the local displace-

local
ments ug ocal)

and U, is the vector containing all the macroscopic displacements
uj, and the enrichment unknowns a}cj ) the linear problem to solve for the patch

illustrated in can be expressed as shown in|(17)} with f; and f, the nodal

forces.

Ky Kp U _ fi (17)
K K U, Ty
As a matter of fact, the set of internal displacements U; is equal to zero

because of the links between the macroscopic displacements and the local ones
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established in Consequently the previous system of equations does not
need to be solved to find the U, set. The Substructuring tool used in accordance
with the Constraints simply allows the construction of a macroscopic object
with the desired GFEM stiffness matrix.

Definition of
retained nodal

@ degrees of freedom
on the macroscopic

nodes (in red).

T T
T

Substructuring

operation. The
local mesh is still H

@ visible but only the| [ { o

macroscopic nodes H

remain (in red). : TH

T
i

T T

T

ey

Fig. Substructuring operation. A static condensation is performed in order to express
the stiffness matrix on the macroscopic nodes of a patch. The local nodes are represented by

the yellow square, the macroscopic nodes by the red circles.

4.6. Patch connection applied to the global-local GFEM

Once the Duarte’s enriched patches are generated separately they must be
repositioned. Then the difficulty lies in the macroscopic nodes superimposition.
[Fig- ]2 shows two superimposed patches composed of four macroscopic elements
each. The enrichment nodes are represented by the square points for one patch
and by triangles for the other patch. Macroscopic displacement nodes are rep-
resented by the circle points. The common macroscopic element is in red and
two circular heterogeneities are drawn. Superimposed nodes schematized by
the same geometric shape are assumed to have the same kinematics. The Tie
tool enables to impose the same displacement between two nodes with the same

coordinates.
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Fig. Two superimposed patches composed of four macroscopic element each. Super-
imposed nodes with the same geometric shape (circle, square or triangle) are assumed to be

equal.

4.7. Substructure positioning in Abaqus

For the specific application to the MS-GFEM, once the enriched patches have
been generated and stored in the Handbook, the question is how to link them to
the macroscopic kinematics of the structure. A natural idea is to superimpose
the patches over the global structure as shown in but two issues can be

underlined caused by the enrichment procedure:

1. The stiffness matrix of each patch takes into account the total behavior

H in the finite element part Kpgps in

2. A substructuring operation forbids an interpolation between the macro-

scopic kinematics and the u; nodes in each patch

The first difficulty implies a stiffening of the structure because of the super-
position of the homogeneous part between the patch and the global structure.
Indeed if in the decomposition of behavior H defined in the homogeneous
part corresponds to the silicium MI matrix behavior and AH is induced by the

structural details then the homogeneous behavior is taken into account both in
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MS-GFEM
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ubstructure
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Fig. Superimposition of an enriched patch over a homogeneous global structure.

the finite element part of the GFEM stiffness matrix and in the homoge-
neous global structure. Consequently the behavior Hy must be removed from
the finite element part of Kgrgy. It is possible by inserting a macroscopic
element with the same size as the patch. A negative homogeneous behavior
—Hj is adopted for that element and a master-slave nodes procedure imposes
the same nodal displacement between the enriched patch and its finite element
support.

An interpolation of the global kinematics must be performed on the features
placed to model the desired micro-structure. It is technically possible with
Abaqus to interpolate the macroscopic FE kinematics from a mesh to another
with the function Embedded Elements. So the patch support presented previ-
ously enables such operation and avoids the second difficulty highlighted. The

patch positioning procedure is illustrated in

4.8. Partial conclusion: choice of an enrichment strategy

Strouboulis defines a Handbook problem. Each precalculated pattern is su-
perimposed over a mesh used as a support. Nonetheless the pre-treatment by
adaptive procedure and the constraint imposed by the commercial code Abaqus

encourages not to adopt that strategy.
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Fig. Superimposition of an enriched patch over an intermediate homogeneous patch with

an opposite behavior to compensate the homgeneous one from the global structure.

The Duarte’s global-local GFEM approach permits an accurate solution
thanks to the respect of the PUM in the GFEM kinematics provided that the lo-
cal description (and then the mesh size) is fine enough. Moreover the enrichment
generation can be parallelized since each patch can be processed independently
and patch connections are easy to process. A limitation of this method is that
each heterogeneity is taken into account by different enrichment functions due
to the local description so the same structural details such as circular fibers with
a constant radius are subject to numerous enrichment operations. It also can
be noticed that Abaqus requires licenses for each calculus thus a parallelization
is potentially greedyﬂ

Similarly to the Strouboulis’s Handbook problem, stored precalculated pat-
terns can be used as enrichment functions and called in the global structure
in order to build the desired model. The scale separation hypotheses give the
advantage of the mesh independency between the features and the macroscopic

support.

Hf Npyoc is the number of processors used for the computation, the number of Abaqus

licenses can be deduced from the formula: 5.(Nproc)0-442
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In terms of Abaqus tools available to write the GFEM kinematics, the en-
richment functions can be generated for both the three different strategies in-
troduced previously. Indeed for each presented method a macroscopic load is
imposed to the boundaries of the features and allow the numerical calculus of
the enrichment function as a perturbation function. The substructuring tool
enables local information to be fed back to the scale of the macroscopic patch.
The main advantages of the MS-GFEM compared to the global-local strategy
is (i) its ability to generate once for all the different enrichment functions and
(ii) the possibility to call one pattern many times thanks to the non-interaction
hypothesis. Then the MS-GFEM is potentially a low-cost method next to the
Duarte’s one.

In any case all the previous steps to build the numerical enriched patches can
also be automatized with a Python script. It is then possible to process easily all
the micro-structures, their behavior, their mesh parameters, the boundary con-
ditions and the nodal displacement collection to generate the enriched patches.

The different Abaqus tools introduced in the current section prove the feasabil-
ity of the GFEM implementation in Abaqus, with the Duarte and the multiscale
point of view. In the following section a numerical example of the multiscale
GFEM is presented. A choice not to present an application by geometrically
conforming meshes is volontary made due to the high cost of the reading and
writing files related to the generation of enrichment functions. Moreover the
tools described in are the same for the MS-GFEM. Eventually the
enrichment functions generation algorithm is summarized in the in
the case of the MS-GFEM.

5. Application of the MS-GFEM

5.1. Reference problem

A micro-structure of CMC is considered. It is composed of 17 Hi-Nicalon™-
S fibers coated with Boron Nitride (BN). The matrix is heterogeneous and

composed of a SiC CVI layer complemented with a silicium MI matrix. A
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tensile test is performed imposing three surface sliding boundary conditions to
prevent rigid body movements and a unitary displacement along direction x as

illustrated in

(R

A A A A

Fig. Reference Element Volume considered. The fibers are colored in red, the BN coating

in yellow, the CVI SiC in blue and the Si MI in grey. A hypothesis of plane strain is adopted.

A traction load along x is applied with uy = 1.2.

The material properties are summarized in and correspond to the
HiPerComp® SiC/SiC CMCs [53],37]. Geometric dimensions are deduced from
micrographies in the literature and are given in[Table[2} Fibers radius is assumed

to be constant and given by the manufacturer [54].

Young Modulus | Poisson ratio

Hi-Nicalon S fiber || Eyy = 420 GPa veip = 0.2
BN interphase Epn =62 GPa vgy = 0.17
SiC CVI matrix FEsic =400 GPa vsic = 0.3
Si MI matrix Eg; =165 GPa vg; = 0.3

Table material properties of interest in this study

Hexahedral elements are adopted in the reference simulation, the thickness
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REV Depth 5 um
REV Side length c =60 um
Hi-Nicalon™ -§ radius R=6pum

BN interphase thickness | egny = 0.4 um [53]
SiC CVI thickness esic = 2 pum [50]

Table Dimensions used in this model

of the structure is swept by one element. The FE model contains 524 588 degrees
of freedom and only one CPU is used. The first component of the strain tensor
is drawn on [Fig. |[16| with the Matlab software by reading the Abaqus report file

containing the strain components at the Gauss points.

5.2. Choice of the features to store in the handbook

In order to recreate the configuration of the reference REV from patterns
picked up in a Handbook it is necessary to choose such patterns. Different
features can be extracted from the observation of the reference REV: single
circular inclusion or two close circular inclusions as illustrated in and
introduced in [51]. One inclusion is composed of a Hi-Nicalon™-S fiber, the
BN coating and the CVI SiC matrix. BN coating and CVI SiC matrix can
interpenetrate in a multi-circular inclusions pattern. The main objective of
this section is to find a criterion in order to choose an enrichment support
size denoted ¢ thereafter. In the particular case where the load is plane it is
possible to draw inspiration from the work of Lekhnitskii [57]. For one circular
inhomogeneity in an infinite plate like illustrated in the stress field is
given analytically according to potential functions and Dundurs’s coeflicients
[58].

Remembering that the composite inclusions are made of several phases, just
one material can be retained to use the Lekhnitskii’s model. For a given external
stress solicitation the higher the rigidity of the inclusion, the more extensive the

deformation field around it. Consequently the chosen radius of the circular
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Fig. First component of the strain tensor denoted E71; written at the nodes with the
Matlab software.

inclusion can be taken equal to R;,. = R+ epn + egic and its Young modulus
can be set at Eyy = 420 GPa. If a patch with two fibers must be sized,
a circular inclusion embracing the two fibers will be considered. Such choice
enables to oversize the patch. Since the patches to be sized must contain as
much information as possible about the structure detail that is defined inside, a
strain energy criterion is chosen to conclude about the size of each patch. Indeed
the knowledge of the analytical strain energy w(x) leads to the knowledge of its
minimum value reached for an infinite distance of the fiber ws,. If x = 0 refers

to the center of the circular inclusion and ¢ refers to the length of the patch
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Fig. Examples of patterns extracted from the reference REV. Several features with two
fibers must be considered because of the possible different distances between them. The fiber
is in red, the interphase is yellow, the CVI matrix is blue and the MI matrix is grey. Each

feature is a square of length ¢ which must be dimensioned.

T T

Fig. Lekhnitskii’s model for the calculus of the analytical stress field around a circular

inclusion (in red) plunged in an infinite homogeneous plate (in blue).

then then the following criterion is defined:

w (x.:z: = g) =1+ 6w (18)

Here z is the base vector from [Fig.[I8] x is the position within the structure
and € is an adjustable setting. For a tensile test along direction  component o,
is predominant and spreads along the same axis . [Fig. [19] shows the evolution
of the volumic strain energy along x-axis, for ¢ = 10% the chosen relative gap
allowed here. For a patch including one fiber the theory leads to a patch size of

¢ = 60 um which is 10 times the radius of a Hi-Nicalon™.-§ fiber. For a patch
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including two fibers the maximum size calculated is of ¢ = 150 pm which is 25

times the radius of one fiber.
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Fig. Variations of the volumic strain energy along x-axis for a tensile test of amplitude
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5.8. Numerical results

Once the Handbook has been defined, one wishes to reproduce the reference
structure defined in[Fig.[T5} For that purpose the different enriched patterns are
positioned on a macroscopic finite element mesh with the procedure described in
the last point of patterns with one or two fibers are arranged as shown
in|Fig.[20] Since the patterns have been prefabricated upstream it is not possible
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to respect the identical arrangement of the fibers on the reference structure,
this will lead to a first error when comparing the reference field with the field
resulting from the MS-GFEM calculation. However this is not a problem in
practice since the arrangement of the fibers is random, it is simply necessary to
respect the volume fraction of the different components of the CMC. Moreover
by observing more carefully it is possible to anticipate bad interactions
between the fibers. Indeed some features are missing in order to take into
account all the interactions between fibers. Eventually some patterns overlap
in part which will have the effect of accumulating local enrichments.

The macroscopic structure has a larger volume than the reference REV
caused by the necessity of containing entirely the features and their support.
Indeed the Embedded Element function is reliable if the nodes with interpolated
displacements are located inside the master structure. To find conditions at
the limits similar to those of the reference problem, the homogeneous strain is
the same for the new model. The number of degrees of freedom is 708 for this

model, it is about a thousand times less than for the finite element model.

Missing
pattern for )
interaction — Feature with
between 2 fibers
fibers
Features
with 1 fiber

Fig. Patterns arrangement in order to recreate the reference REV. Features with one or

two fibers are used, they may also partially overlap each other.

The simulation enables to obtain the strain fields on each patch, nonetheless
Abaqus tools do not allow to visualize on a common support the different contri-

butions resulting from the patterns involved in the model. A first idea consists
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in projecting the contributions of the enriched patterns onto a grid with the
Abaqus function Submodel. However one comes back to the problem of field
projection stated in the assessment of the difficulties related to the calculation
of the GFEM stiffness matrix: such additional resolution is potentially costly.
Then a second idea is to convert the strain fields into a color map so the color
of a pixel is associated with a value of a component of the strain tensor. To
realize the color map of each patch the Matlab software is used. The strain field
is extracted from Abaqus in order to be recreated in Matlab. It turns out that
image generation from fields is effective in Abaqus, hence its use. shows
a sample of the first component of the strain tensor calculated for three patches
and their equivalent in terms of color map. A resolution of 512 colors is chosen
and the color scale is calculated from the strain scale which explains why the
colors around the fibers are different for the three patches.

After removing the homogeneous contribution in the strain tensor, the color
maps can be summed in order to superimpose the enrichments. Once this
step is completed, a rescaling can be made to add the homogeneous part of
the strain. The result of this operation is illustrated in It can be
noticed that the range of values taken by the strains is wider than that of
the reference calculation. This is explained by the superposition of enrichments
when two features are locally overlaid as visible in[Fig.[20] Nevertheless there is a
correspondence between the location of the strain maxima for the reconstructed
model and for the reference model. It is also possible to visualize the strain
difference e§~‘{‘”’ ) between the reference strain field denoted erf ) and the MS-

GFEM one denoted egjlws_GFEM):

a re MS—GFEM
g = e — dpa-ereno )

The €9 is shown in The greatest visible differences correspond
to the areas where the patterns overlap in This result was already
anticipated earlier in the article. Other gaps are calculated at the edges. These

differences are caused by (i) strain jumps between the different phases (ii) the
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Example of the conversion of the Abaqus strain field into a color map with a

resolution of 512 colors. Each color scale is adapted from the strain scale.
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impossibility of having identical meshes between the reference structure and the
feature-generated structure (iii) the slight possible offset between the fibers of
the reference model and the fibers of the reconstructed model. The relative gap
is also proposed in[Fig.[24] it can be noticed that the maximum error calculated
is greater than 400% in some very localized areas. In order not to overwrite the
the color scale a thresholded colormap is suggested in As illustrated
in far from the edges the relative absolute error is less than 10% in
the matrix, the interphase or the fiber and the error is higher in the zones of
superimposed features. This last example points the importance of the patterns

choice to minimize the error made in the reconstruction of the structure.

0.0669
0.0599
0.0529
0.0459
0.0390
0.0320

0.0250

0.0181

0.0111

0.0041

-0.0028
Fig. @ Strain field obtained after the post-treatment of all the contributions of the patches,

for the second positioning. The color bar scale given corresponds to the strain recalculated

from the color maps of the different patterns.
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0.0158

0.0093

0.0027

-0.0038

-0.0104

-0.0169

-0.0235

-0.0300

-0.0366

Fig. @ Field gap obtained from the reference strain field and the MS-GFEM one. The
greatest gaps are located in non-empty intersections between features. Other gaps are visible

at the edges due to the Matlab post-treatment.
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Fig. @ Relative field gap (%)
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Fig. @ Relative field gap (%) with a threshold in order not to overwrite the color scale.
The white zones are defined as ”Not a Number” and refer to the errors higher than 100% in

absolute value.
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6. Conclusion

This paper has shown the possibility of the numerical implementation of two
GFEM strategies within the Abaqus software. A discussion has been conducted
in order to select the most versatile method regarding the desire to develop a
tool for CMC micro-structures description. Then an application of the MS-
GFEM to a micro-structure of a CMC has been made in an elastic problem. It
can be noticed that the presented Abaqus tools can also be used to build the
Duarte’s GFEM.

It has been shown that Abaqus possesses functionalities to (i) generate nu-
merical enrichment functions with regard to the MS-GFEM hypotheses (ii) in-
terpolate a macroscopic kinematics on non-interacting patches which contain
structural detail information.

In term of current limitations, two can be noted. First in the MS-GFEM
strategy it is important to keep in mind the time allocated to search for the
location of patches files and read the associated information during a simula-
tion. Then the time gain due to the limited degrees of freedom is partially
compensated with that additional operation. Consequently the MS-GFEM is
worthwhile in the case of a rich structure modeling which would demand a very
fine mesh if treated by a classic finite element method. Fortunately in the case
of a CMC description many structural details must be taken into account and
the MS-GFEM becomes a relevant strategy to study such materials, at the con-
dition of an appropriate choice of the patterns and their placement. Secondly
the Abaqus substructuring tool gives a representation of a linear and static be-
havior of a selected volume. Consequently extra researches must be led to take
into account non-linear phenomena, a first step in this direction is presented in
[52]. Eventually the choice in the patch positioning must be made carefully not
to accumulate the perturbation functions describing a common feature.

Some perspectives can be highlighted. First investigations concerning the
automation of patterns selection could be carried out based on the observation

of real microstructures and automatic learning algorithms. The objective would
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then be to obtain more complex but more representative patterns of the compos-
ite while keeping as much as possible the versatile aspect of the GFEM method.
Secondly iterative enrichments could be considered in order to update the state
of each patch and to integrate degradation mechanisms such as crack propaga-
tion or creep under high temperatures. Numerical methods like POD can be
considered as suggested in [47]. Eventually statistical and random aspects such
as the variability of the fibers radius or the respect of the rates (of porosity,
fibers, matrix) can also be taken into account in order to distribute the patterns

while respecting the representative character of observable micro-structures.
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Appendix 1

If w, = upgy + Uen, denotes the GFEM kinematics as the sum of the
classical finite element displacement uggys and the enriched contribution e,
and u;, = ung + U, denotes the associated virtual field the virtual work of

the internal forces can be developed as:

/ H(2)e(w) : €(u])d0

/ H(2)e(uppar) : () pay)de

+ /H €(Uenr) : €(u,,)dQ
+ /H UFEM) (uzm)dQ
+ /H €(Uenr) : €(Uppy)dS

The Voigt convention gives e(urgn) = UppyBrgy and (Uenr) = u,..Br
where AT is the transpose tensor of column vector A. Coordinates of the dis-

placement vectors are given by (Uppas); = ur , (Uey,), = a where a =

p—1
X il + b and (Brew); = Vien)  (Biw)y = Vieqty)) where § =

qg—1
> n{™. +1. As a convention if the index p (respectively ¢) in the expression of
n=1
a (respectively ) equals 1 it is assumed that o = k (respectively 8 =1). Since
the hat functions ¢ are not equal to zero only on the patch  the domains of

integration are reduced to the ones precised in
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Macroscopic shape
functions ¢y, (k € [1;n])
projected on the local
mesh, on each local node

i the value is denoted <p§j)

Canonical strain basis €
applied on a refined mesh:

1. with a homogeneous
behavior

2. with the structural
detail behavior

Generation of 6
enrichment functions
associated to each load
case by deleting the
homogeneous part from
the patch. On each local
node i one gets wj(-z)

GFEM kinematics
imposed to each local

local
node 'u,g ocal)

Substructuring on the
macroscopic nodes uy

and a,fcj )

Patch positioning on a
macroscopic finite
element support
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