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Abstract: In the Yucatan Peninsula, the ponerine ant Neoponera villosa nests almost exclusively in 14 

tank bromeliads, Aechmea bracteata. We aimed at determining factors influencing nest-site selection 15 
during nest relocation regularly promoted by hurricanes in this area. Using ants with and without 16 
previous experience of Ae. bracteata, we tested their preference for refuges consisting of Ae. bracteata 17 
leaves over two other bromeliads, Ae. bromeliifolia and Ananas comosus. We further evaluated 18 
bromeliad-associated traits that might influence nest-site selection (form, size). Workers with and 19 
without previous contact with Ae. bracteata significantly preferred this species over others, 20 
suggesting the existence of an innate attraction to this bromeliad. However, preference was not 21 
influenced by previous contact with Ae. bracteata: workers easily discriminated between shelters of 22 
Ae. bracteata and A. comosus, but not those of the closely related Ae. bromeliifolia. In marked contrast, 23 
ants discriminated between similar sized Ae. bracteata and Ae. bromeliifolia plants, suggesting that 24 
chemical cues and plant structure play an important role. Size was also significant as they selected 25 
the largest plant when provided two dissimilar Ae. bracteata plants. Nest-site selection by N. villosa 26 
workers seems to depend on both innate preferences but familiarization with plant stimuli is not 27 
excluded.  28 

Keywords: Aechmea bracteata; bromeliad; Ponerinae; tandem running; colony relocation; adaptation.  29 
 30 

1. Introduction 31 

Many species of social hymenoptera frequently move to new nests sites although emigration 32 
presents significant challenges and risks [1,2], and often implies a fitness cost [3,4]. Colony relocation 33 
is a common phenomenon in ants [1,5]. Some ant species move their nests as part of their life history 34 
(e.g. army ants), but the majority do so in response to numerous biotic and abiotic factors, including 35 
microclimate fluctuation [6–8], physical disturbance [9,10], intra and interspecific competition 36 
[1,4,11–13], resource availability [14,15], and predator or parasite pressure [5,12,14,16]. Arboreal ants 37 
are particularly prone to move their colonies from one site to another [1] as occurs commonly in the 38 
Neotropical ponerine ant, Neoponera villosa (Fabricius) (Hymenoptera: Formicidae) [17]  39 

Neoponera villosa is a generalist arboreal predatory ant [18–20] with a wide geographical 40 
distribution, from Texas to Argentina [21]. This species occurs both in wet and dry forests [22], and 41 
is an opportunistic cavity-breeder that nests in dead and live trees, and in bromeliads [17,23,24]. In 42 
the southern part of the Yucatan Peninsula, Mexico, N. villosa nests mainly in the epiphytic bromeliad 43 



Insects 2020, 11, x FOR PEER REVIEW 2 of 16 

 

Aechmea bracteata (Sw.) Griseb [23,25,26] although other species of Aechmea with the same type of 44 
growth are available in this area [27]. Workers measure 12 - 13 mm [28] and colonies nesting in Ae. 45 
bracteata contain 97.8 ± 7.9 workers (mean ± SEM, n = 82; range: 3 – 322) [29]. Aechmea bracteata is a 46 
"phytotelm tank" type bromeliad; mature plants present a waterproof central cavity suitable for 47 
housing ants [23,26]; large groups of shoots at different stages of maturity develop from a rhizome 48 
[30]. This bromeliad is characteristic of the inundated forest of the Sian Ka’an Biosphere Reserve 49 
where clusters are found established at a mean height of 1.3 m [26]. Like other large tank bromeliads, 50 
Ae. bracteata individuals offer permanent shelter to a wide diversity of organisms, both specialists 51 
and opportunists [23,26, 31,32], and during extreme flooding and other climatic events they constitute 52 
ecological refuges for many other ground-dwelling arthropods [33]. As with most myrmecophytes, 53 
Ae. bracteata can be associated with several ant species, including N. villosa [26]; however, it does not 54 
depend on ants for its germination [34]. 55 

Neoponera villosa is not an obligate inhabitant of myrmecophytes; however, in the southern 56 
region of the Yucatan Peninsula, this ant uses the tank-bromeliad as a nest throughout the year, 57 
displaying a very marked local specialization [25]. There is little knowledge regarding the evolution 58 
of host–plant specialization between plants and ants in facultative associations. In the case of ants 59 
that nest in specific plants, it has been shown that host plant recognition is primarily based on two 60 
factors: an innate (genetically determined) attraction towards certain plants rather than others, and 61 
the influence of the environment during development and early adult life (pre-imaginal learning and 62 
conditioning through contact with the host plant during larval life and the first days of adult life), 63 
that may even supplant a genetically determined attraction or deterrence [25,35–37]. For instance, the 64 
African arboreal ants Tetramorium aculeatum (Mayr) (Myrmicinae) and Oecophylla longinoda (Latreille) 65 
(Formicinae) present a familiarization process (early learning) that can replace the innate attraction 66 
of both species [36,37]. This learning only takes place during the neonatal stage, a sensitive period 67 
after which the influence of the environment ceases [see 35]. Attraction to Ae. bracteata by alate queens 68 
(gynes) and young N. villosa workers (nurses) has been studied in the context of new colony 69 
foundation by foundress females [25]. Gynes from colonies nesting in Ae. bracteata are attracted to 70 
this bromeliad, a preference that appears to be learned during the larval stage. This pre-imaginal 71 
learning may be further strengthened at the beginning of the imago life, causing local fidelity toward 72 
Ae. bracteata over other available species [25]. However, nest-site selection in N. villosa has not been 73 
studied in the context of nest-relocation, a distributed, nonhierarchical decision-making process 74 
which is performed by several scouts who find potential nest sites. Informed scouts lead nestmates 75 
to the chosen new nest sites through tandem running, with only one nest mate being recruited at a 76 
time. The new nest site is defined by a quorum sensing mechanism, i.e. when more ants are present 77 
at one of the alternatives [5].  78 

The Yucatan Peninsula has been identified as a region that is affected by hurricanes and 79 
droughts [38], which can result in bromeliads dislodging from their host tree and falling to the 80 
ground, thus requiring complete ant colonies to relocate. For cavity-nesting species such as N. villosa, 81 
there is only a limited number of potential nest sites that can meet the requirements of a mature 82 
colony. Furthermore, nesting sites are competitively searched for by other species, specifically 83 
Dolichoderus bispinosus (Olivier) and Nasutitermes sp. [23,26]. In most cases, scouts encounter various 84 
candidate shelters and have to decide which is the most suitable. Some characteristics of the potential 85 
nest site, in particular the size of the nesting cavity, can constrain colony growth [39–43] and this 86 
factor is expected to influence nest-site choice in N. villosa [23]. Furthermore, some ant species can 87 
assess nest-site suitability through various physical characteristics such as darkness, cavity height, 88 
entrance width and configuration [44,45]. However, with regard to N. villosa, the stimuli which 89 
intervene during nest-site selection have not been identified. In various species of ants that establish 90 
obligate interactions with plants, it has been demonstrated that host plant recognition is primarily 91 
based on chemical cues that attract foundresses [46–51]. However, plant height, nest-site geometry 92 
or clear areas around trees that provide information on the size of the potential nest candidate or on 93 
its protective potential, are used by various animal species as cues during nest-site selection [42,52–94 
55] and may also play an important role during nest relocation in N. villosa.  95 
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In the present study, we performed different experiments (two-choice bioassays) to determine 96 
how N. villosa workers select a nest-site in the eventuality of nest relocation. Because rearing workers 97 
from egg to adult was not feasible, we took advantage of the fact that N. villosa nests almost 98 
exclusively in cavities of live trees in northern Yucatan where Ae. bracteata is rare, to investigate nest-99 
site selection of N. villosa workers without previous contact with this bromeliad. Our research 100 
addressed the following questions: 1) Do N. villosa workers have an innate preference for Ae. 101 
bracteata? 2) Is the preference modulated by the pre-imaginal or neonatal ant experience linked to the 102 
origin of the colony (workers with or without previous contact with Ae. bracteata)? 3) Are the 103 
recognition and localization of Ae. bracteata regulated by chemical stimuli? 4) Does Ae. bracteata size 104 
influence nest-site selection? 105 

2. Materials and Methods  106 

2.1. Ant collection and identification  107 

Ants in bromeliads were collected in five sites in the southern part of the Yucatan Peninsula: 108 
Ejido Blasillo (18°7'37.98"N, 89°20'20.93"W, 261 m.a.s.l.), Nuevo Becal (18°36'39.36"N, 89°16'15.54"W, 109 
239 m.a.s.l.) and Zoh-Laguna (18°35'11.61"N, 89°25'4.67"W, 257 m a.s.l.) in Campeche; Kohunlich 110 
(18°25'31.08"N, 88°48'9.89"W, 143 m.a.s.l.) and Sian Ka'an Biosphere Reserve (19°41'56.17"N, 111 
87°50'18.31"W, 18 m.a.s.l.) in Quintana Roo. Ants nesting in tree cavities (mainly Lysiloma latisiliquum 112 
(L.) Benth., Caesalpinia gaumeri (Britton and Rose) Greenm., and Leucaena leucocephala (Lam.) de Wit 113 
(Fabaceae), and Bursera simaruba (L.) Sarg. (Burseraceae)) were collected essentially in Cuxtal 114 
Ecological Reserve (20°51'46.58"N, 89°36'40.68"W, 17 m.a.s.l.) in Yucatan, in the northern part of the 115 
Peninsula, but a few were collected in the south, in Chetumal (18°32'37.90"N, 88°15'46.38"W, 10 116 
m.a.s.l.) in Quintana Roo. In the latter two sites, Ae. bracteata is rare or absent. Each epiphyte was cut 117 
off from the supporting branch, dismantled leaf-by-leaf in plastic bins coated with Fluon (Whitford 118 
GmbH, Diez, Germany), and all N. villosa ants and their brood were collected. Both ants from 119 
epiphytes and those from tree cavities were housed in plastic jars under laboratory conditions until 120 
bioassays (see below). 121 

Neoponera villosa belongs to the neotropical species complex of N. foetida (L.), which includes 12 122 
other species [56,57]. Due to their morphological similarity, N. villosa has been confused in the past 123 
with two other species with a wide distribution, N. inversa (Smith) and N. curvinodis (Forel). Until 124 
now, however, only N. villosa has been reported in the Yucatan Peninsula [58]. Nevertheless, in order 125 
to confirm ant identity and further support our comparisons, five workers nesting in bromeliads and 126 
five workers nesting in live trees were DNA extracted and barcoded as part of an independent study 127 
(Lachaud and Pérez-Lachaud, unpubl.). DNA extraction and amplification followed the protocol in 128 
[59], with a freezing step after initial incubation according to the recommendation of [60] for 129 
Hymenoptera. Sequences were edited using CodonCode v. 3.0.1 (CodonCode Corporation, Dedham, 130 
MA, USA) and uploaded to Barcode of Life Database (BOLD, boldsystems.org). Voucher specimens 131 
were deposited in the Formicidae Collection of El Colegio de la Frontera Sur at Chetumal, Quintana 132 
Roo, Mexico (ECO-CH-F). 133 

2.2. Nest site selection  134 

As our study is focused on nest relocation, only workers were used for the two-choice tests 135 
implemented to evaluate nest-site selection. This parallels nest relocation following disturbance or 136 
destruction of the old nest whereby emigrations are organized by workers (scouts) that set out from 137 
the damaged nest to find a new home, thoroughly inspecting any candidate nest that they find [2]. 138 
As in various other ponerine species such as N. verenae (Forel) (referred to as Pachycondyla 139 
obscuricornis Emery; [61]), N. apicalis (Latreille) [62], or Diacamma indicum (Santschi) [63,64], N. villosa 140 
uses a specific behavior called tandem running in which a single worker attracts a single recruit (or 141 
two in some occasions) and leads her towards the new nest site [17]. As in other Neoponera [61,62] 142 
such recruitment by N. villosa is exclusively used during nest relocation and never during foraging 143 
[see 18]. 144 
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2.2.1. Experimental set up 145 

Ants from 35 colonies living in Ae. bracteata and 11 colonies (or parts of colonies) nesting in tree 146 
cavities were used in bioassays (Table S1). Observations were conducted from 26 January 2017 to 12 147 
February 2018. Bioassays were carried out two weeks after field collection; during this period of 148 
acclimatization, and during bioassays, ants were held under natural illumination and at room 149 
temperature (26 ± 1 ºC). Workers were randomly selected from the original nest and only evaluated 150 
once. Two-choice tests were conducted using transparent plastic jars (14 cm in diameter x 25 cm in 151 
height, 3 l vol.) into which the ants were deposited. Each jar was connected via a transparent plastic 152 
tube (1.5 cm in diameter x 20 cm in length) to an election chamber (bioassays with live plants: 45 x 30 153 
x 60 cm plastic box; bioassays with parts of plants (leaves): 40 x 21 x 14 cm). Each election chamber 154 
included a glass tube (2 cm in diameter x 8 cm in length) filled with water and stuffed with cotton at 155 
one end. The ants were fed sliced apple pulp, which was placed in the election chamber for the 156 
duration of the bioassay. 157 

The protocol for the observations followed that of [25]. Behavioral heterogeneity among colony 158 
members is common in insect societies and individual behavioral specialization during nest moving 159 
has been signaled for example in the model ant genus Temnothorax [65,66]; however, specialized 160 
Temnothorax workers are readily replaced in removal experiments showing organizational resilience 161 
of ant colonies [65]. As colony size in N. villosa varies greatly from one colony to another, and because 162 
it was not feasible to collect a sufficient number of complete colonies to perform the required number 163 
of replicates per bioassay, a fixed sample-size of 20 ants per bioassay was used. This is furthermore a 164 
common procedure in experiments with large ants (see for example: [36,37]). For each bioassay, two 165 
different refuges or “nest-sites”, consisting in tubular shelters to eliminate the influence of plant 166 
architecture, were placed in the election chamber. Subsequently, a group of 20 workers randomly 167 
obtained from those foraging and some brood were gently placed into the adjacent transparent jar. 168 
We carried out 21 to 30 replicates for each comparison and each replicate consisted of individuals 169 
from the same colony. The experimental device was then closed and set aside for 24 h, allowing the 170 
ants to install themselves in one shelter along with the brood (see [36]). The stimulus for the initiation 171 
of movement towards a potential nest (no shelter in the jar and artificial illumination) was constant 172 
across experiments and across replicates within experiments. This is a standard procedure used to 173 
trigger colony relocation in ants [67]. After 24 hours we evaluated the number of workers in any of 174 
the two refuge options (“nest-site”) and those that remained in the jar or that were wandering or 175 
foraging.  176 

2.2.2. Experiment 1. 177 

To evaluate whether N. villosa nests in any available cavity or whether it prefers the refuge 178 
provided by Ae. bracteata, workers were presented with two tubular shelters (4 cm in diameter x 10 179 
cm in length, with only one opening) made from: a) the rolled leaves of Ae. bracteata (treatment) and 180 
b) from a cardboard (control). Thirty replicates were performed with workers originating from 181 
colonies living in bromeliads and thirty with workers from colonies collected in tree cavities. 182 

2.2.3. Experiment 2.  183 

To evaluate whether N. villosa workers are able to discriminate Ae. bracteata through chemical 184 
stimuli emitted by the plant, shelters made of leaves of two other species belonging also to the 185 
Bromeliaceae family (Ae. bromeliifolia (Rudge) Baker, and Ananas comosus (L.) Merr.) where offered in 186 
combination with Ae. bracteata in two-choice bioassays as in the previous experiment. Thirty 187 
replicates were performed for each comparison with workers originating from colonies living in 188 
bromeliads, and 21 to 26 replicates with ants from colonies collected in tree cavities. For each 189 
replicate, the ants had the choice between two shelters: one shelter made from the leaves of Ae. 190 
bracteata (control), and another made from the leaves of one of the two other bromeliad species.  191 

2.2.4. Experiment 3. 192 
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To evaluate the influence of other bromeliad-related traits (structure of the plant), ants were 193 
offered the choice between whole plants of similar size of the two Aechmea species. Thirty replicates 194 
were performed with both types of workers. 195 

2.2.5. Experiment 4. 196 

As the results of the previous experiments showed that both shelters made of Ae. bracteata leaves 197 
and whole plants of this species were preferred (see Results), we evaluated whether the choice by N. 198 
villosa ants could be influenced by the size of the available Ae. bracteata. Twenty-nine replicates with 199 
workers from colonies nesting in Ae. bracteata were set up. In each replicate, Ae. bracteata bromeliads 200 
of two different sizes were offered: small (25 cm) vs. large (80 cm). 201 

2.3. Statistical analyses 202 

Not all ants were found inside refuges; some workers were foraging and others were inactive. 203 
Inactivity is very common in social insects and is an intrinsic feature of the ants' behavior [68], making 204 
up to 40% of the members in a colony (e.g. [69]); furthermore, specific workers are consistently 205 
inactive [70]. Inactive workers are quantitatively important in N. villosa colonies [19]. To avoid 206 
inconsistencies due to a number of ants not choosing or performing other activities, we calculated the 207 
total number of ants found inside the proposed refuges or plants, and used proportions of ants as the 208 
variable response.  209 

The probability of ants being in any of the proposed refuges or plants was analyzed fitting a 210 
Generalized linear mixed model with a binomial error distribution and a logit link (maximum 211 
likelihood). To control for any bias due to colony-level effects, colony was included as a random 212 
effect, and the treatments (with or without experience with Ae. bracteata) as a fixed effect. To explore 213 
the magnitude of the fixed effect, we performed a Likelihood ratio test (Wald chi-square test).  214 
Inferences about sample proportions were analyzed with one sample proportion Z tests under the 215 
null hypothesis of random selection (p0 = 0.5). Analyses were performed in package LME4 in R 216 
version 3.6.2 [71, 72].  217 

2.4. Ethics statement 218 

Sampling comply with the current laws of Mexico and was carried out under permit number 219 
FAUT-0277 from Secretaría de Medio Ambiente y Recursos Naturales, Dirección General de Vida 220 
Silvestre, granted to G.P.-L. Only the biological material required for this study was collected. 221 

3. Results 222 

3.1. Species identification  223 

DNA sequences generated in the present work (Genbank accession numbers MK779595 to 224 
MK779604) confirmed that both populations (ants nesting in Ae. bracteata and ants nesting in live tree 225 
cavities) did not diverge genetically: all ants used in this work belonged to N. villosa. DNA sequences 226 
of both populations represent a single molecular operational taxonomic unit, and cluster with all 227 
other N. villosa molecular public data (Figure S1).  228 

3.2. Tandem running behavior  229 

In the bioassays, N. villosa workers began exploring the new area (election chamber) and the 230 
proposed refuges, then selected one shelter. Afterwards, workers returned to the nest box and 231 
recruited nestmates through tandem running behavior. These recruited workers moved to the 232 
selected refuge, inspected it, and returned to the “old nest” to recruit new nestmates. Qualitatively 233 
we found that several tandem running ants followed the same path, suggesting trail laying behavior, 234 
although marking of the trail was not observed (Video S1). Similar trail laying through hind gut fluids 235 
or pygidial gland secretions has been reported in other ponerine species using tandem running [73–236 
76]. The recruitment process was initiated through a "jerking" movement of a recruiting ant 237 
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stimulating a nestmate to follow her to the new nest site, whereby the ant performs a rapid and 238 
vertical shaking of the body. Such rapid, vertical shaking of the body displayed by the recruiting ant 239 
to enhance the chemical signal has been reported in other ant species from various subfamilies [77,78]. 240 
Nestmates reacted by replicating the jerking movements and then initiated tandem running along 241 
the trail of the recruiting ant toward the new nest site. A single worker, or occasionally a maximum 242 
of two, were recruited and travelled in a single column. In some cases, when contact between the 243 
scout and the follower was broken, the recruiting ant pulled the legs of the nestmate with their jaws 244 
to reinforce the recruitment signal. 245 

3.3. Nest site selection 246 

3.3.1. Experiment 1.  247 

Ants from both origins (whether originally nesting in bromeliads or in tree cavities) significantly 248 
preferred refuges made up of the leaves of Ae. bracteata over cardboard shelters (one sample Z tests, 249 
Z = 5.20, p ˂ 0.05; and Z = 5.34, p ˂ 0.05 for ants originally nesting in Ae. bracteata and those nesting in 250 
tree cavities, respectively; Figure 1). However, the origin of ants had a significant influence in their 251 
choices (type II Wald χ2 = 8338.5, df =1, p ˂ 0.0001) as ants originally nesting in bromeliads had a 252 
significantly lower probability of choosing the refuge made up of leaves of the bromeliad (0.978 ± 253 
0.0002, mean ± SEM; 95% CI [0.9774 - 0.9781] than ants originally nesting in tree cavities (0.989 ± 254 
0.0001; 95% CI [0.9892 - 0.9897]. In general, the brood was transported to the shelters with the higher 255 
proportion of workers. 256 

 257 

Figure 1. Mean proportion of N. villosa workers (± SEM) in shelters consisting of Ae. bracteata leaves 258 
(empty bars) vs. cardboard shelters (dotted bars). Workers from colonies of two distinct origins were 259 
tested: ants originally nesting in Ae. bracteata (n = 30 trials, grey bars), and ants from colonies 260 
previously nesting in tree cavities (n = 30 trials, white bars). ** p ˂ 0.05, one sample Z test; *** p ˂ 261 
0.0001, type II Wald χ2. 262 

3.3.2. Experiment 2.  263 

When ants had to select between refuges made up of leaves of two Aechmea species, their choice 264 
was significantly influenced by their previous nesting site (χ2 = 13.067, p = 0.00035): ants from tree 265 
cavities, which did not have any previous contact with Ae. bracteata have a higher probability of 266 
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choosing Ae. bracteata over Ae. bromeliifolia (0.960 ± 0.027, mean ± SEM; 95% CI [0.8592 - 0.9895], than 267 
ants from colonies originally nesting in Ae. bracteata (0.581 ± 0.089; [0.4043 - 0.7391]. Ants from colonies 268 
nesting in Ae. bracteata did not show any marked preference (Z = 1.18, p ˃ 0.10; Figure 2). However, 269 
when the choice concerned refuges made up of leaves of species from two different Bromeliaceae 270 
genera, ants from both origins preferred Ae. bracteata over A. comosus (ants nesting in bromeliads: 271 
0.952 ± 0.018, mean ± SEM; 95% CI [0.9015 - 0.9776]; ants in tree cavities: 0.929 ± 0.033, mean ± SEM; 272 
95% CI [0.8296 - 0.9720]); Figure 2); and although this pattern was stronger in ants originally nesting 273 
in Ae. bracteata, the probability of choosing between Ae. bracteata and A. comosus was not influenced 274 
by the origin of ants (χ2 = 0.486, p = 0.48). 275 

 276 

Figure 2. Mean proportion of N. villosa workers (± SEM) in shelters consisting of leaves of Aechmea 277 
bracteata (empty bars) vs. leaves of two other bromeliads: Ae. bromeliifolia (stripped bars) or Ananas 278 
comosus (dotted bars). Workers from colonies of two distinct origins were tested: workers originally 279 
nesting in Ae. bracteata (n = 30 trials, grey bars), and workers from colonies previously nesting in tree 280 
cavities (n = 21 or n = 26 trials, white bars). ** p ˂ 0.05, one sample Z test; *** p ˂ 0.0001, type II Wald 281 
χ2. 282 

3.3.3. Experiment 3.  283 

The origin of the ants had no effect on the probability of choosing between whole plants of Ae. 284 
bracteata and Ae. bromeliifolia (χ2 = 0.011, p = 0.916). Ants of both origins preferred Ae. bracteata over Ae. 285 
bromeliifolia plants (ants originally nesting in Ae. bracteata: 0.661 ± 0.034, mean ± SEM; 95% CI [0.5915 286 
- 0.7249]; ants nesting in tree cavities: 0.667 ± 0.041, mean ± SEM; 95% CI [0.5814 - 0.7430]; Figure 3). 287 
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 288 

Figure 3. Mean proportion of N. villosa workers (± SEM) in bioassays of whole plants of Ae. bracteata 289 
(empty bars) vs. Ae. bromeliifolia (dotted bars) of the same size. Bioassays were performed with two 290 
different experimental groups: workers originating from colonies originally nesting in Ae. bracteata (n 291 
= 30 trials, grey bars) and workers from colonies collected in tree cavities (n = 30 trials, white bars). * 292 
p = ˂ 0.05; *** p ˂ 0. 01; one sample Z test. 293 

3.3.4. Experiment 4.  294 

Neoponera villosa workers originating from colonies established in Ae. bracteata significantly chose 295 
large Ae. bracteata bromeliads over small ones (One sample Z test, Z = 4.30, p ˂ 0.01; Figure 4). The 296 
mean proportion of ants choosing the large over the small bromeliad was 0.899; 95% CI [0.8489 -297 
0.9510] 298 

 299 
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Figure 4. Mean proportion of N. villosa workers (± SEM) in bioassays with two Ae. bracteata of different 300 
sizes: large (80 cm) vs. small (25 cm). All workers tested were originally nesting in Ae. bracteata (n = 301 
29 trials). One sample Z test, ** p < 0.01. 302 

4. Discussion 303 

Most animals, if not all, exhibit innate behaviors in response to specific sensory stimuli [79,80]. 304 
Bumble bees and honeybees, for example, exhibit innate color preferences, notably yellow and 305 
purple, which reflects the peak sensitivity of their color receptors [81–84], while the 306 
pseudomyrmecine ant Tetraponera aethiops Smith shows an innate attraction to its natural host plant 307 
Barteria fistulosa Mast (Passifloraceae) even when young callows were reared in laboratory conditions 308 
without any further contact with this plant post emergence [37]. Our experiments provide a similar 309 
example of innate attraction of N. villosa workers towards the bromeliad Ae. bracteata. Whatever the 310 
origin of the ants (with or without previous experience with Ae. bracteata), our data show that N. 311 
villosa workers exhibit a significant preference for refuges made up of leaves of Ae. bracteata over other 312 
available potential refuges consisting of leaves of another bromeliad species, A. comosus, or of 313 
cardboard, but ants with a previous experience with Ae. bracteata did not differentiate between 314 
refuges made up of leaves of this bromeliad and those of the close Ae. bromeliifolia. Contrary to the 315 
results obtained by [25], which did not demonstrate any spontaneous preference of N. villosa for Ae. 316 
bracteata (workers reared in the laboratory without any contact with plants were attracted 317 
indifferently towards Ae. bracteata or towards the orchid Myrmecophila tibicinis (Batem.) Rolfe), our 318 
results point to the existence of an innate preference for Ae. bracteata. In all of the bioassays, workers 319 
without previous experience with this bromeliad significantly preferred Ae. bracteata, although a 320 
proportion of ants did not engage in emigrations (inactive ants).  321 

The influence of the environment, through pre-imaginal and neonatal learning (early 322 
experience), can interfere and replace any innate attraction or repulsion [85,86]. In ants, 323 
environmental induction of adult choices by passive familiarization during early adulthood has been 324 
demonstrated for various species. For example, although under natural conditions thyme (Thymus 325 
vulgaris L.) repels adult workers of the formicines Formica polyctena Foerster and Camponotus vagus 326 
Scopoli, workers of these species chose to settle in tubes that contained this plant if they have been 327 
reared in its presence when they were callow neonates [35,87]. Similarly, in the African arboreal ants 328 
T. aculeatum and O. longinoda, early learning during the first part of the life of adult workers and 329 
gynes can supersede innate attraction to guava (Psidium guajava L.) and cocoa (Theobroma cacao L.) or 330 
to mango leaves (Mangifera indica L.), respectively [36]. Early learning during the larval life and just 331 
after adult emergence appears to occur to some extent in N. villosa, as our data show that the 332 
preference for Ae. bracteata was modulated by the original nesting substrate: previous experience with 333 
Ae. bracteata enhancing the preference towards this plant over cardboard or A. comosus. These results 334 
confirm previous studies on foundresses of N. villosa which have shown that the influence of the 335 
original nest site environment on subsequent individual choice during nest site selection for colony 336 
foundation is due to an imprinting during larval life, strengthened at the beginning of the imago life 337 
through early learning [25]. When given the choice between a refuge containing Ae. bracteata or 338 
nothing, gynes of N. villosa that have previously experienced contact with the bromeliad during their 339 
larval and the first part of their nymphal life significantly preferred Ae. bracteata, whereas gynes 340 
which completed their nymphal life on another epiphyte (M. tibicinis) did not discriminate between 341 
both options. However, gynes which completed their nymphal life on M. tibicinis displayed a 342 
significant preference to this plant when presented with a choice between Ae. bracteata and M. tibicinis 343 
[25]. The local fidelity towards Ae. bracteata over other available nest-sites observed in our study area 344 
and the marked preference for this epiphyte during our experiments might be explained through 345 
early learning by winged queens as suggested by [25], combined to an innate attraction to Ae. bracteata 346 
in workers, influencing their choice during nest relocation events. The evolution of such an innate 347 
attraction, leading to local specialization in Ae. bracteata as a nesting-site, may be due to the 348 
predominance of this particular bromeliad throughout the biogeographic area of N. villosa (Ae. 349 
bracteata occurs from E Mexico to N Colombia and NW Venezuela [88]), and also because this 350 
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bromeliad as microhabitat provides specific benefits to ants, both as shelter and as foraging site, and 351 
further constitutes refuge during extreme stochastic climatic events [33,89]. Preference in N. villosa 352 
workers for Ae. bracteata may be an adaptive response driven by climatic events in our study area, 353 
promoting the selection of such a stable microhabitat. 354 

Various other bromeliad associated traits (size, chemical profile) may also be involved in nest-355 
site selection as demonstrated by the preference of N. villosa workers for large Ae. bracteata when 356 
presented with small and large plants, or by the differences in preference demonstrated when 357 
choosing between closely related bromeliad species (both when offered as refuges and complete 358 
plants), most likely related to the chemical substances they produce. The bromeliads used in this 359 
study share similar traits (e.g. long and narrow leaves), and the texture of their leaves and general 360 
architecture are similar, but not identical; furthermore, the nature and composition of their chemical 361 
signals are different, particularly between species from different genera [90], and it is possible that 362 
ants use any small difference in structure or composition of the leaves during nest-site selection. In 363 
addition, the architectural form and complexity of the plant may facilitate the emergence of different 364 
temperature and humidity microhabitats suitable for ants to settle, and it is known that other 365 
specialist arthropods (e.g. bromeliad-dwelling salticids) choose bromeliads based on rosette and leaf 366 
architectures [91]; furthermore, larger individual plants with a complex structure may facilitate the 367 
development of large ant populations and promote the maintenance of a diverse community of 368 
potential prey [92]. The use of chemical cues for host localization has been reported in a wide range 369 
of insects, including both herbivores [93–96] and predators or parasites [97–99]. In ants, chemical 370 
volatiles are also used to identify potential host plants. For example, Crematogaster spp. foundress 371 
queens can recognize their Macaranga host plant species, identifying chemical compounds of the stem 372 
surfaces of seedlings [46]; and queens of Azteca spp. and Allomerus octoarticulatus Mayr use chemical 373 
cues to select their myrmecophyte Cordia nodosa Lam. [47]. In our experiments, it was evident that N. 374 
villosa workers originally nesting in Ae. bracteata, had difficulty in arriving at a consensus when in the 375 
presence of shelters of two Aechmea species, without further information on the suitability of the 376 
potential nest-sites (plant structure or size of the cavity, for example) and therefore, the probabilities 377 
of choosing either bromeliad were similar (Fig. 2). Contrastingly, choosing between complete plants 378 
of these two bromeliads was straight forward and significantly in favor of Ae. bracteata over the other 379 
species, although some ants also settled inside Ae. bromeliifolia plants. Noteworthy, a proportion of 380 
ants did not engage in emigrations (inactive ants). Our failure to show any statistical difference when 381 
ants chose between refuges of these two bromeliads might have arisen, in part, due to the presence 382 
of inactive workers and the possible exclusion of specialized workers in our reduced experimental 383 
groups. This may have influenced the number of ants in shelters after 24h, as a significant higher 384 
latency in performing emigration tasks has been reported for workers not specialized on emigration 385 
tasks in Temnothorax ants [65]. Considered together, these results suggest that workers of N. villosa 386 
select Ae. bracteata through some plant stimuli, probably of chemical nature, supplemented with 387 
information provided by the whole plant. The ability to discriminate between distinct plant species 388 
and genera is an obvious advantage, as the time and energy to find a suitable nest-site is minimized. 389 

Evidently, nearly all ant species have the capability of shifting their nests if they become 390 
unsuitable [1], and selecting the best nest-site among numerous alternatives may be critical to the 391 
success and survival of the colony. As our results show, in most instances N. villosa workers preferred 392 
to settle in Ae. bracteata shelters and plants over other possibilities, and preferred large Aechmea plants 393 
over small ones. Behavioral flexibility constitutes an essential component of the adaptive repertoires 394 
of animals. In this context, it is not impossible that modulation of the innate attraction of N. villosa 395 
workers towards Ae. bracteata through early experience may facilitate the replacement of this plant as 396 
the most suitable nest-site in habitats where Ae. bracteata is rare, as occurs in the northern part of the 397 
Yucatan Peninsula where this species nests in cavities of several live trees. 398 

5. Conclusions 399 

In our experiments, nest-site choice by N. villosa workers was influenced by an innate attraction 400 
to the bromeliad Aechmea bracteata. The local fidelity towards Ae. bracteata over other available nest-401 
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sites in the southern region of the Yucatan Peninsula and the marked preference for this epiphyte in 402 
our experiments might be explained through this innate attraction to Ae. bracteata influencing the 403 
choice of workers during nest relocation events. Reinforcement of this preference by pre-imaginal 404 
and early learning during adulthood is not excluded, but more experiments are needed. Preference 405 
of N. villosa workers for Ae. bracteata may be an adaptive response driven by extreme climatic events 406 
in our study area, promoting the selection of such a stable microhabitat as nesting-site.  407 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: Table S1. Original 408 
composition of the Neoponera villosa colonies used in the two-choice bioassays. Figure S1. Taxon ID tree of N. 409 
villosa molecular public data, including the 10 sequences from this study (highlighted in yellow). Video S1. 410 
Characteristic recruitment behavior in Neoponera villosa. Note that two tandem pairs are following the same path, 411 
suggesting the existence of chemical trail laying. 412 
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