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SALZA: Practical Algorithmic Information

Theory and Sharper Universal String Similarity

François Cayre, Marion Revolle, Isabelle Sivignon and Nicolas Le Bihan

Abstract

Practical algorithmic information theory often relies on using off-the-shelf compressors, which

both limits the range of target applications and introduces inaccuracies caused by the compressors

implementation constraints and the fact that they are only able to handle multiple strings through

concatenation.

We describe SALZA, a practical implementation of algorithmic information theory based on Lempel-

Ziv routines, that is largely immune to the above issues. We focus on providing relationships that hold

strictly in practice for strings of arbitrary length. We hope this work contributes to making clearer

the links between Lempel-Ziv complexity, string similarity, and the use of compressors for computing

information distances.

The capabilities of SALZA are highlighted by computing a universal semi-distance on strings, the

NSD, and by performing causal inference using the PC algorithm, an application for which off-the-shelf

compressors are hardly usable. SALZA was designed to take advantage of multi-core machines.

Index Terms

Algorithmic Information Theory, Causal Inference, String Similarity, Universal Classification.

I. INTRODUCTION

IN the discrete finite case, information theory in the probabilistic setting relies on the definition

of a set A = {ak} and a discrete random variable X taking values in A equipped with

a probability mass function (p.m.f.) p(ak) = Pr{X = ak} to express the entropy H of X , the

An early version of this work appeared at IEEE ISIT’19, Paris, France.

Marion Revolle was supported by a French Ministry of Research PhD grant.

Authors are with the GAIA team at GIPSA-Lab, CNRS UMR 5216.

Emails: first.last@grenoble-inp.fr.

Corresponding author: François Cayre.



2

expected quantity of information that a string drawn from X conveys. Using base-2 logarithm

and ignoring zero probability events, the Shannon entropy in bits is defined as:

H(X) = Ep [− log p(X)] .

Defining another p.m.f. q on A , the relative entropy, or Kullback-Leibler (KL) divergence

between p and q is defined as:

DKL(p‖q) = Ep

[
log

p(X)

q(X)

]
.

From there, one defines the mutual information I(X ;Y ) between random variables X and Y on A

as the KL-divergence between their joint p.m.f. and the product of X and Y p.m.f.’s (marginals).

And the conditional entropy H(X |Y ) is defined as H(X)− I(X ;Y ).

Yet, as powerful as it is, probabilistic information theory says nothing about a particular

realization x of X . This was the motivation for algorithmic information theory, independently

developed by Solomonoff, Kolmogorov and Chaitin. Given a universal computer U accepting

programs c of length |c|, the Kolmogorov (prefix1) complexity K(x) of a string x is defined as:

K(x) = min
c:U(c)=x

|c|.

One similarly defines the conditional Kolmogorov complexity K(x|y) of a string x knowing an-

other string y and eventually obtains the same kind of information calculus as in the probabilistic

setting, albeit generally up to some additive constants.

With some simplification in the notations and assuming several i.i.d. xn ∼ ∏
n
i=1 p(ai), then

(Theorem 7.3.1 in [2]):

E
[

1
n

K(Xn)

]
→ H(X).

This relationship between Kolmogorov complexity and Shannon entropy shows the strong con-

nection they share. Yet, the Kolmogorov complexity is uncomputable on a universal Turing

computer and its use, following Solomonoff’s advice, should be that of a golden standard

against which practical solutions should be evaluated. In the same research line, the Normalized

Information Distance (NID) has been proposed [3], that serves as an ultimate distance between

1The Kolmogorov prefix complexity has become the standard version of algorithmic complexity (see [1], Chap. 3) because,
relying on a Turing machine accepting programs that are not the prefix of others, it is able to circumvent issues that the original,
plain Kolmogorov complexity did not consider at the time (subadditivity and non-monotonicity over prefixes), see infra.
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strings:

NID(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
. (1)

One of the most influential proposal for a computable complexity of an individual sequence

was proposed by Lempel and Ziv [4]. This work soon after gave birth to the popular LZ

family of source coding algorithms [5], [6], leading to optimal compressors for a range of

source distributions. In turn, those compressors would eventually be used as practical proxies

for the approximation of Kolmogorov complexity. In [7], Ziv and Merhav used the cross-parsing

proposed in [8] to derive an estimate of the KL-divergence between p.m.f.’s of which only one

realization is known.

Using an off-the-shelf compressor C, the Normalized Compression Distance [9], [10] is a

practical embodiment of the NID that computes a universal distance between sequences x and

y. If xy is the concatenation of x and y and |x| is the length of x, then:

NCD(x,y) =
|C(xy)|−min{|C(x)|, |C(y)|}

max{|C(x)|, |C(y)|}
. (2)

The expression of the NCD implicitly assumes |C(xy)|= |C(yx)|, which is an approximation

that depends on the particular compressor used in practice. In effect, a compressor has to deal

with a few constraints, and being aware of them may help selecting the right compressor for the

data at hand [11].

But another limitation in using compressors stems from the way they enforce the concatenation-

based approximation to compute an estimate of conditional information C(y|x)≈C(xy)−C(x):

while this is both practical and theoretically satisfying when two strings are involved in the

computation, approximations can only get worse when more strings are involved — for example,

performing causal inference would require to compute something like C(y|x1, . . . ,xn) efficiently

and reliably, for a number of varying y,x1, . . . ,xn. It is not clear how one could guarantee to

do that in practice. At the very least, this would certainly imply managing concatenations in a

somewhat cumbersome and inefficient fashion.

We argue that using off-the-shelf compressors hinders what can be actually implemented to

leverage the power of algorithmic information estimates for applications where conditioning

must be computed with much greater flexibility. Although using algorithmic information has

been justified for causal inference [12], practical realizations on this side have been scarce.
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Hence, we believe that an implementation of algorithmic information theory [13] is both possible

and needed, ensuring that (i) the required flexibility in conditioning is easily achieved and (ii)

the computed quantities verify usual information-theoretic relationships for strings of arbitrary

length.

A. Notations

The empty string, set or multiset is denoted by /0. The set of non-empty finite strings on

alphabet A is denoted by A+ and A? = A+ ∪ /0. The length of alphabets, strings, sets and

multisets are denoted with |.|. The symbol + is also used to denote addition of multisets. The

first k strings in a set are denoted with x≤k and by convention x≤0 = /0. The concatenation of two

strings x and y is denoted with xy. Logarithms are in base 2. Terms related to implementation

or simulations are typeset using monospaced font.

B. Lempel-Ziv symbols, between theory and practice

We shall make extensive use of Lempel-Ziv-type factorization [5] and cross-factorization [8].

Hence, we start by making clear some basic implementation choices.

We first remark that popular compressors from the Lempel-Ziv family (most notably gzip [14],

[15] and lzma [16]) nowadays are based on LZ77 [5] instead of LZ78 [6]. The reasons for this

are that computer memory has become cheaper and it is easier to manage a sliding window (from

32KiB in [14] to 1MiB by default and maximum 4GiB in [16]) than an evolving dictionary of

substrings not seen so far.

We will also use algorithms similar to those based on a sliding window, except that its size

will be in practice limited by the host memory (pointers are 32-bit wide in SALZA).

Further, since the inception of the Lempel-Ziv source coding techniques [5], [6], [8], where a

symbol is composed of a reference to the next substring and the next following character, most

expositions now use only references or characters — with characters being either described as

length-1 references (most notably in the computer science literature, see [17] and related works)

or transmitted as such (as in off-the-shelf compressors, e.g. as in [14]). The same discrepancy

also appears between the original exposition of [8] and some of its later uses [7], [18].

In what follows, this distinction will be irrelevant, to the exception of Sec. II-D.
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II. SALZA AS A MEASURE OF STRING SIMILARITY

The first step in this work is to explain how a generic factorization routine relates to string

similarity and to previous works [4] on computable complexity. Also, we shall discuss why

compressors may not always be the best tools for similarity assessment.

A. SALZA factorizations

SALZA is built around a routine for sequential factorization (parsing) of a string y when given

as prior knowledge a set of strings x1, . . . ,xn. Following the Lempel-Ziv basic idea, SALZA will

look for the next longest substring that matches the beginning of the remaining part of y to be

factorized. Each string is associated to its own search structure (see Appendix A-B for details)

so that the next longest substring cannot overlap between strings.

Two kinds of factorization were implemented, depending on whether the part of y that was

already factorized (the prefix of y) is included in the search space or not.

The first kind of factorization will be denoted with y|x1, . . . ,xn: at each factorization step, the

next longest substring is to be found either in one of the x1, . . . ,xn, or in the prefix of y.

The second kind of factorization will be denoted with y|+x1, . . . ,xn: at each factorization step,

the next longest substring is to be found only in one of the x1, . . . ,xn. This can be seen as a

generalization of the procedure described in [8] allowing for several "databases".

When the kind of factorization is left unspecified, it will be denoted with y o x1, . . . ,xn.

Hence, at each factorization step, we look for the longest substring in all prior knowledge

strings x1, . . . ,xn (also including the prefix of y for the factorization |) and we keep the longest

of them as the next factor.

Definition 2.1 (SALZA symbols and lengths): Given strings y,x1, . . . ,xn in A?, SALZA will

factorize y into m symbols:

y o x1, . . . ,xn = (s1, l1,z1) . . .(sk, lk,zk) . . .(sm, lm,zm),

where sk ∈ {y,x1, . . . ,xn} is (a pointer to) the string in which the next longest substring was

found, 1≤ lk ≤ |sk| is the length of the next longest substring, and 1≤ zk ≤ |sk| is a pointer in

string sk where the next longest substring starts.

All SALZA symbol lengths are collected in the multiset Lyox1,...,xn = {lk}, 1≤ k ≤ m.
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Remark 1 (Invariance of y ox1, . . . ,xn): y ox1, . . . ,xn is invariant with respect to the order of the

prior knowledge strings x1, . . . ,xn because the sequential factorization of y only evolves after all

strings have been searched for the longest substring.

Remark 2 (Integer composition of |y|): Lyox1,...,xn is an integer composition of |y| because

∑l∈Lyox1,...,xn
l = |y|.

Proposition 1 (|Lyox1,...,xn| is non-increasing by conditioning): For any three strings x,y,z∈A?,

|Lyox,z| ≤ |Lyox|.

Proof: If y = /0, Lyox = Lyox,z = /0. The following assumes y ∈ A+. Let L≤i
yox =

{
l1
yox, . . . , l

i
yox

}
be the first i lengths in the factorization y o x. To each i, we associate v(i) the smallest integer

such that
i

∑
k=1

lk
yox ≤

v(i)
∑

k=1
lk
yox,z. We shall show that ∀i , v(i)≤ i (which proves the claim by setting

i = |Lyox|). The proof is inductive:

For the base case (i = 1), v(1) = 1 because z could only bring a longer reference (so that

l1
yox ≤ l1

yox,z). Hence, v(1) = 1;

For the inductive step, we shall show that: v(i)≤ i =⇒ v(i+1)≤ i+1.

By definition of v(i), only two cases occur:

• (Case 1)
i

∑
k=1

lk
yox =

v(i)
∑

k=1
lk
yox,z. In this case, the two factorizations are in sync and the exact

next same longest substring is to be searched with or without knowledge of z. This next

substring may only be longer in z so v(i+1) = v(i)+1, and (by the premise):

v(i+1) = v(i)+1≤ i+1;

• (Case 2)
i

∑
k=1

lk
yox <

v(i)
∑

k=1
lk
yox,z. In this case, the factorization y o x,z is in advance over y o x, and

only two cases occur depending whether step i+1 in y o x will overtake step v(i) of y o x,z

or not:

(Case 2.1)
i+1
∑

k=1
lk
yox ≤

v(i)
∑

k=1
lk
yox,z. Then v(i+1) = v(i) and (also by the premise):

v(i+1) = v(i)≤ i < i+1;

(Case 2.2)
i+1
∑

k=1
lk
yox >

v(i)
∑

k=1
lk
yox,z. In the worst case, the factorization step v(i)+1 will see y o x

back in sync. Otherwise, y ox,z keeps ahead. Hence, lv(i)+1
yox,z ≥

i+1
∑
n

ln
yox−

v(i)
∑
n

ln
yox,z and v(i+1) =

v(i)+1, which finally shows the claim similarly to Case 1 above.
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Definition 2.2 (Product of SALZA factorizations): Let y1 and y2 two strings being factorized,

each with respective prior knowledge strings x1,1, . . . ,x1,m1 and x2,1, . . . ,x2,m2 . Let also:

y1 o x1,1, . . . ,x1,n1 = (s1,1, l1,1,z1,1) . . .(s1,m1, l1,m1,z1,m1), and

y2 o x2,1, . . . ,x2,n2 = (s2,1, l2,1,z2,1) . . .(s2,m2, l2,m2,z2,m2).

We define their factorization product as the concatenation of their SALZA symbols:

y1 o x1,1, . . . ,x1,n1 × y2 o x2,1, . . . ,x2,n2 =

(s1,1, l1,1,z1,1) . . .(s1,m1, l1,m1,z1,m1) (s2,1, l2,1,z2,1)

. . .(s2,m2 , l2,m2 ,z2,m2).

Definition 2.3 (SALZA joint factorization): The joint factorization of x1, . . . ,xn ∈A? is defined

as the following product of factorizations:

x1 · . . . · xn =
n

∏
i=1

xi o x≤i−1.

Hence, x| /0 may therefore be used to denote the usual LZ77 factorization of x and |x|= |Lx|+ /0|.

Remark 3 (On concatenation and symmetry): Because the factorization is a sequential opera-

tion:

1) xy| /0 = x| /0× y|x and therefore Lxy| /0 = Lx| /0 +Ly|x;

2) xy|+ /0 = x|+ /0× y|+ /0 and therefore Lxy|+ /0 = Lx|+ /0 +Ly|+ /0;

3) x · y 6= y · x in general.

B. Relative string similarity

If the multiset Lyox1,...,xn is seen as an integer composition of |y|, we can associate it to the

integer partition of |y| obtained by sorting the lengths in Lyox1,...,xn in decreasing order. In the

following, we assume Lyox1,...,xn is sorted in decreasing order and it is therefore a partition of |y|.

Definition 2.4 (Relative similarity measure): Let [|y|] the set of partitions of integer |y| and

Lyox1,...,xn ∈ [|y|]. A relative similarity measure between y and prior knowledge strings x1, . . . ,xn

is defined as a score function S : [|y|]→ R+∪{0}.

When the context makes it clear, we either write S(L) or S(y ox1, . . . ,xn) instead of S(Lyox1,...,xn).
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{1,1,1,1,1,1,1}

{2,1,1,1,1,1}

{2,2,1,1,1}

{2,2,2,1}

{3,1,1,1,1}

{3,2,1,1}

{3,2,2} {3,3,1}

{4,1,1,1}

{4,2,1}

{4,3}

{5,1,1}

{5,2} {6,1}

{7}

Fig. 1: Binary tree of the integer partitions of 7. To each level corresponds the same number
of summands. Whenever possible, growing downwards is done either by replacing two 1’s with
one 2 (left child), or by removing a 1 and increasing the smallest summand greater than 1 if it
has multiplicity 1 (right child).

Examples of score functions S include counting the elements of the multiset and the length

of the compressed string y according to the factors y o x1, . . . ,xn. We are interested in finding a

score function that is as much precise as possible, even for short strings, so as to cover the full

range of possible applications.

Even though no closed-form expression exists for the number of partitions of an integer2,

they can be constructed along a binary tree [19], see Fig. 1, that can be used to induce an order

of interest (Proposition 2 and Table I). Such a binary tree is called the partition tree of the

corresponding integer.

We slightly adapt notations from [19] to our setting. A partition of a positive integer |y| is a

m-tuple L = {l1, l2, . . . , lm} of positive integers (the summands of the partition) such that:

l1 + l2 + · · ·+ lm = |y|,

l1 ≥ l2 ≥ ·· · ≥ lm ≥ 1.

When it exists, the number of summands strictly greater than 1 is denoted by h, 1≤ h≤m, i.e.:

L = {l1, . . . , lh > 1, lh+1 = 1, . . . , lm}.

2The partition function P(n) gives the number of partitions of an integer n. In 1918, Hardy and Ramanujan proposed the
following asymptotic approximation:

P(n)≈ 1
4n
√

3
exp

(
π

√
2n
3

)
as n→ ∞.
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{1,1,1,1,1,1,1}
{2,1,1,1,1,1}
{2,2,1,1,1}
{3,1,1,1,1}
{2,2,2,1}
{3,2,1,1}
{4,1,1,1}
{3,2,2}
{3,3,1}
{4,2,1}
{5,1,1}
{4,3}
{5,2}
{6,1}
{7}

TABLE I: List of integer partitions of 7 obtained when traversing the tree of Fig. 1 in breadth-first
order.

Given a partition L, one can define two operations acting on L, namely A and B, such as:

• A: Add one summand of value 2 and remove two of value 1;

• B: If the smallest summand strictly greater than 1 has multiplicity 1 (lh−1 > lh), increase it

by 1 and remove a summand of value 1.

When operation A or B can3 be applied to a partition L, the resulting partition is denoted by LA

or LB. The binary tree enumerating all integer partitions of n is constructed starting from the

root ⊥= {l1 = 1, . . . , lm} by applying A (resp. B) to get the left (resp. right) child of a partition

whenever possible.

In the sequel, necessary conditions are assumed to hold true when the result of an operation

on a partition is stated.

In [19], Corollary 13 states that if the nodes of the partition tree are listed in top-down

left-to-right level (breadth-first) order, the resulting list is in decreasing order of the number of

summands and in lexicographic order for partitions having the same number of summands (see

Table I).

Proposition 2 (Score compliant with breadth-first order): Let [|y|] the set of integer partitions

of |y|, ⊥ = {1, . . . ,1} (|⊥| = |y|) and S : [|y|]→ R+ ∪ {0} a score function that verifies the

3The number of partitions of an integer is finite, therefore operation A or B cannot always be applied. This is made explicitly
clear in the definition of operation B, but it is more implicit in that of operation A (which requires two summands of value 1
to be applied). Thus, the partition tree is not a full binary tree, see Fig. 1.
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following conditions:

1) ∀ 0≤ i≤ |y|, S(⊥Bi)≥ S(⊥Ai+1) ;

2) ∀ 0≤ i≤ |y|, S(LABi)≥ S(LBAi).

Then S complies with the breadth-first order.

Proof: Consider the binary alphabet B = {A,B}. We label any node x of the partition tree

by the word on B? composed of the sequence of operations performed from the root ⊥ to x

and denote it by label(x). By convention, label(⊥) = /0. Then, following the notations introduced

before, the integer partition of |y| represented by the node x is denoted by r(x) =⊥label(x).

Consider the ordered sequence {xk}k of nodes given by a breadth-first traversal of the integer

partition tree of |y|. If A < B, then the nodes are ordered according to the radix order4 (also

called shortlex order) of their labels (see [20], Vol. 1, solution of Exercise 2.3-(15) p. 562 and

Sec. 2.3.3 p. 351). Assuming Conditions (1) and (2) and given two consecutive nodes xk and

xk+1, we have to show that S(r(xk))≥ S(r(xk+1)). Two cases occur:

1) if xk and xk+1 are not on the same level of the tree, then there exist 0 ≤ i ≤ |y| such

that label(xk) = Bi and label(xk+1) = Ai+1. We have S(r(xk)) = S(⊥Bi) and S(r(xk+1)) =

S(⊥Ai+1), and the result follows from Condition (1);

2) otherwise xk and xk+1 are on the same tree level and there exists 0 ≤ i ≤ |y| and a word

M on B? such that label(xk) = MABi and label(xk+1) = MBAi. S(r(xk)) = S(⊥MABi) and

S(r(xk+1)) = S(⊥MBAi), and the result follows from Condition (2) with L =⊥M.

C. Order compliant score functions

One immediately verifies that S1(L) = |L|−1 complies with the breadth-first order. However,

it is unable to make a difference between partitions located on the same tree level.

Definition 2.5 (SALZA score function Sp): The SALZA score function of a partition L =

Lyox1,...,xn = {l1, . . . , lm} is defined as:

Sp(L) =

0 if L = /0

|L|− 1
|y|+1 −∑

p
k=1(|y|+1)−klk otherwise,

(3)

where p≥ 1 is a parameter allowing to tune the precision and lk = 0 if k > m.

4The radix order is defined by x < y if (|x|< |y|) or (|x|= |y| and x = uAx′ and y = uBy′).
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In other words, the fractional part of Sp is built by writing the lk’s in radix (|y|+1) (if not

for the corrective term 1/(|y|+ 1), see below). And Sp may be seen as an arbitrary-precision

version of S1. The value of p is set according to Appendix A-A.

Proposition 3 (SALZA score is compliant with breadth-first order):

1) ∀ 0≤ i < |y|, Sp(⊥Bi)≥ Sp(⊥Ai+1) ;

2) ∀ 0≤ i < |y|, Sp(LABi)≥ Sp(LBAi).

Proof: Let L = {l1, . . . , lh > 1, lh+1 = 1, . . . , lm} a partition of |y|. In the sequel, we shall

repeatedly apply operations A and/or B to a partition, leading to different values of h (and lh)

for the resulting partitions. However, we want to express what happens to L after operations A

and/or B have been applied, so we require that h and lh refer to that of L — and the actual h

and lh of the resulting partitions can be easily deduced from the following expressions:

⊥Ai =
{

l1 = 2, . . . , li = 2, li+1 = 1, . . . , l|y|−i
}
,

⊥Bi =
{

l1 = 1+ i, l2 = 1, . . . , l|y|−i
}
,

LABi ={l1, . . . , lh, lh+1 = 2+ i, lh+2 = 1, . . . , lm−i−1} ,

LBAi ={l1, . . . , lh +1, lh+1 = 2, . . . , lh+i = 2,

lh+i+1 = 1, . . . , lm−i−1} .

Let ∆1(i) = Sp(⊥Bi)−Sp(⊥Ai+1) and p = |y|− i:

∆1(i) = 1− i−1
|y|+1

+
i+1

∑
k=2

(|y|+1)−k− (|y|+1)−(|y|−i).

The expression of ∆1(i) is written such that decreasing p removes terms starting from the

right. For instance, when p < |y| < i, the last term (|y|+ 1)|y|−i disappears. Lowest values of

∆1(i) are obtained for p = |y|− i or p = 1 (in which case all positive terms of the sum disappear.)

For p = |y|− i, since 0≤ i < |y|, (|y|+1)−(|y|−i) ≤ (|y|+1)−1, so that:

i−1
|y|+1

+
1

(|y|+1)|y|−i
≤ i
|y|+1

< 1.

For p = 1, using the fact that i < |y|, we get i−1 < |y|+1 and 1− (i−1)/(|y|+1)> 0. Hence:

∀ |y| ≥ 0,∀ p≥ 1,∀ 0≤ i < |y|,∆1(i)≥ 0.
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Let ∆2(i) = Sp(LABi)−Sp(LBAi) and p = m− i:

∆2(i) = (|y|+1)−h− i(|y|+1)−(h+1)+
h+i

∑
k=h+2

(|y|+1)−k.

One has that:
1

(|y|+1)h −
i

(|y|+1)h+1 =
|y|+1− i
(|y|+1)h+1 .

Since i < |y|:

∀ |y| ≥ 0,∀ p≥ 1,∀ 0≤ i < m≤ |y|,∆2(i)≥ 0.

Definition 2.5 provides an insight into the way SALZA implements string similarity: strings

y and x1, . . . ,xn will be all the more similar when (i) the associated factorization is shorter and

(ii) when it contains more longer factors.

When the set of prior knowledge strings is empty, two cases arise depending on the kind of

factorization used:

• Case y|+ /0: no substring can ever be found, so we end up enumerating the characters of y

and Sp(y|+ /0) will merely reflect the length of y;

• Case y| /0: substrings can only be found in the part of y that has already been parsed, and

Sp(y| /0) can therefore be seen as a measure of self-similarity.

Compared to [4] and [7] where one counts the number of factors in a factorization (thus

amounting to selecting a level on the partition tree with S1), SALZA will provide a more fine-

grained measure because it is able to make a difference between partitions (and associated

factorizations) located on the same tree level. Further, this difference is associated to a rather

intuitive measure of similarity based on the length of the factors — which is backed by empirical

evidence elsewhere [21], that longer matches help in building more discriminative features for

string similarity (the Noisy Stemming Hypothesis in [21]).

Proposition 4 (Sp(y o x1, . . . ,xn) is positive and bounded):

0≤ Sp(y o x1, . . . ,xn)< |y|. (4)

Proof: When y = /0, Lyox1,...,xn = /0 and Sp(y o x1, . . . ,xn) = 0.

When |y| > 0, Proposition 3 states that the minimum is reached when |Lyox1,...,xn| = 1 (y is
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a substring of any of the x1, . . . ,xn), and the maximum is reached when |Lyox1,...,xn| = |y| (no

substring of any of the x1, . . . ,xn matches any substring of y — this is the root of the partition

tree).

Hence, for |y|> 1, the minimum is:

1− 1
|y|+1

− |y|
|y|+1

= 0≤ Sp(y o x1, . . . ,xn),

and the maximum is:

Sp(y o x1, . . . ,xn)≤ |y|−
1

|y|+1
−

p

∑
k=1

(|y|+1)−k < |y|.

Remark 4: For strings y of size 1, both S1 and Sp equal zero.

D. Comparing with compression

Most practical compressors may be seen as two-stage pieces of software engineering. The

first stage will extract some regularity information from the string (LZ coding, Burrows-Wheeler

transform (BWT) [22]), while the second stage will use entropy coding in order to converge

faster towards entropy (Huffman [23] or arithmetic coding, possibly intertwined with Move-to-

Front strategy). The intricacies between these two stages make modeling of the performances

of real compressors a tedious task (most notably, LZ77-based compressors will further quantize

reference lengths and distances prior to encoding them). In the literature, tractable expressions

are obtained by implementing the second stage with universal coding of integers [24].

Here, we use an estimation of the compressed string length (à la LZ77) for a score function

on an integer partition of |y|. For actual compression, of course, we could not encode the factors

sorted by decreasing length, but the estimated compressed string length would be the same. Since

real LZ77-based compressors tend to transmit characters as such (and not as length-1 references),

we shall spend log |A | bits for each of them. Let d = max{|y|, |x1|, . . . , |xn|}. Using δ-codes [24]

both for the length and offset of a reference, we shall spend log lk + 2log(1+ log lk)+ logd +

2log(1+ logd) bits for a reference5.

5The zk’s in Def. 2.1 start at 1, so we do not extend the δ-code for offsets in sk’s to handle zeros.
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In this setting, the compressed string length based on the L = Lyox1,...,xn partition of |y| reads:

Sc(L) =
h

∑
k=1

log
(
c(1+ log lk)2lk

)
+

|L|

∑
k=h+1

log |A |,

where c = log
(
d(1+ logd)2). Let now ∆c,1(i) = Sc(LBi)−Sc(LAi+1):

∆c,1(i) = log(c(lh + i)(1+ log(lh + i))2)+
h+i+1

∑
k=h+1

log |A |

+
m−i−1

∑
k=h+i+2

log |A |+ log |A |− log(clh(1+ log lh)2)

−
h+i+1

∑
k=h+1

log8c−
m−i−1

∑
k=h+i+2

log |A |

∆c,1(i) = log
(
|A |(lh + i)(1+ log(lh + i))2

lh(1+ log lh)2

)
+(i+1) log

(
|A |
8c

)
.

Let ∆c,2(i) = Sc(LABi)−Sc(LBAi). Similarly:

∆c,2(i) = log
(

lh(1+ log lh)2

(lh +1)(1+ log(lh +1))2

)
+ log

(
(2+ i)(1+ log(2+ i))2

8

)
+(i−1) log

(
|A |
8c

)
.

Neither ∆c,1 nor ∆c,2 is positive for all values of i≥ 0 and |y|> 1, only when i is large enough

— meaning that compressed string length will be a meaningful score only when the differences

between the two factorizations will be large enough (the partitions corresponding to the two

factorizations are on two sufficiently distant levels of the partition tree). Even using a sliding

window of size w ≤ d would only marginally help (replacing d by w in c, although the actual

coding scheme would still have to be defined).

The above should be mitigated given the following two observations:

1) A compressor is not designed to specifically comply with the two conditions of Proposi-

tion 2 — but even if this comparison may seem not so fair, it nevertheless suggests that

compressors are likely to be less precise tools for assessing similarity in general;

2) Real compressors use several tricks that we are unable to model but that allow to converge

faster towards entropy (they are, however, unable to handle conditioning with as much
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flexibility as SALZA).

III. SALZA AS AN IMPLEMENTATION OF INFORMATION THEORY

Our notion of string similarity is not defined in the asymptotic regime, which is how perfor-

mances of compressors are evaluated. Now, even if information theory is primarily concerned

with very long strings, we are nevertheless in position to list various information-theoretic

properties for SALZA that hold strictly in practice for arbitrary string lengths.

The biggest departure from the probabilistic setting is that, because factorizations are se-

quential processes, we will be limited to asymmetric relationships. For a number of relevant

applications, however, this is not an issue (see Sec. IV and V).

We shall use the subscript f in the notation S f to denote either S1 or Sp, since both were

shown to comply with our notion of string similarity. When it is omitted, we assume S f = Sp.

A. Basic tools and conditioning

Definition 3.1 (SALZA joint and self measures): Given strings x1, . . . ,xn ∈ A∗ and following

Def. 2.3, the SALZA joint measure is defined as:

S f (x1 · . . . · xn) =
n

∑
i=1

S f (xi o x≤i−1).

Remark 5 (On joint and self measures):

1) By Def. 2.4, the order of the x1, . . . ,xn does matter;

2) When applied to a single string, the notation for joint measure may gracefully degrade

into that of the LZ77-based computation of a measure on self (factorization |). Further, in

the case of a single string, the context will help determine which kind of factorization is

meant.

Definition 3.2 (SALZA conditional mutual measure, asymmetric version): Given strings x,y,z∈

A∗, the SALZA conditional mutual measure of x and y given z is defined as:

I f (x : y o z) = S f (z · x)+S f (z · y)−S f (z · x · y)−S f (z). (5)

If I f (x : y o z) = 0, x and y are said to be independent given z.
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B. Properties

Proposition 5 (S f (y o x1, . . . ,xn) is non-increasing by conditioning):

Let y ∈ A? and {x1, . . . ,xn+1} a set of n+1 strings in A?.

∀ n≥ 0, S f (y o x≤n+1)≤ S f (y o x≤n). (6)

Proof: Proposition 1 only allows three cases:

• (Case 1) |Lyox≤n+1| < |Lyox≤n|, in which case the integer partition associated to Lyox≤n+1 is

located on a strictly lower level of the partition tree of |y| than that associated to Lyox≤n and

Proposition 3 ensures that S f (y o x≤n+1)< S f (y o x≤n) ;

• |Lyox≤n+1|= |Lyox≤n| and the integer partition associated to Lyox≤n+1 is

– (Case 2.1) the same as that associated to Lyox≤n (string xn+1 did not bring new knowledge

on y) and S f (y o x≤n+1) = S f (y o x≤n) ;

– (Case 2.2) in strictly increasing lexicographic order than that associated to Lyox≤n

(because at least one longer substring was found during the factorization y o x≤n+1

compared to y o x≤n) and Proposition 3 ensures that S f (y o x≤n+1)≤ S f (y o x≤n).

Setting n = 0 shows that the maximum is reached for S f (y o /0) = S f (y).

Proposition 6 (S f is subadditive): Given strings x,y ∈ A?,

S f (x · y)≤S f (x)+S f (y);

S f (y · x)≤S f (x)+S f (y).

Proof: By Def. 3.1:

S f (x · y) = S f (x)+S f (y o x)

≤ S f (x)+S f (y) (by Proposition 5).

The case S f (y · x) is similar.

Proposition 7 (Kolmogorov’s formula6 for SALZA): Given strings x,y,z ∈ A?,

I f (z · x : y) = I f (z : y)+ I f (x : y o z).

6For the origin of this name, see [25].
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Proof: By Eq. 5 on all three terms:

I f (z · x : y) = S f (z · x)+S f (y)−S f (z · x · y)

I f (z : y) = S f (z)+S f (y)−S f (z · y)

I f (x : y o z) = S f (z · x)+S f (z · y)−S f (z · x · y)−S f (z).

Proposition 8 (Fast computation of I f (x : y o z)):

I f (x : y o z) = S f (y o z)−S f (y o x,z). (7)

Proof: By Eq. 5 and Def. 3.1:

I f (x : y o z) = S f (z · x)+S f (z · y)−S f (z · x · y)−S f (z)

= S f (z)+S f (x o z)+S f (z)+S f (y o z)

−
[
S f (z)+S f (x o z)+S f (y o z,x)

]
−S f (z)

I f (x : y o z) = S f (y o z)−S f (y o x,z).

We have used Remark 1 relative to the invariance with respect to permutation of the prior

knowledge strings (S f (y o z,x) = S f (y o x,z)).

Proposition 9 (SALZA conditional mutual measure is positive): Given strings x,y,z ∈ A?,

0≤ I f (x : y o z). (8)

Proof: By Eq. 7 and Proposition 5.

C. SALZA as an information measure

Proposition 10 (Chain rule for SALZA conditional mutual measure, asymmetric version):

Given strings x,y,z, t ∈ A?,

I f (x : y · z o t) = I f (x : y o t)+ I f (x : z o t,y). (9)
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Proof: By Eq. 5:

I f (x : y · z o t) = S f (t · x)+S f (t · y · z)−S f (t · x · y · z)−S f (t)

= S f (t · x)−S f (t)+S f (y o t)−S f (x o t)

−S f (y o x, t)+S f (z o t,y)−S f (z o x,y, t).

Also by Eq. 5:

I f (x : y o t) = S f (t · x)−S f (t)+S f (t · y · z)−S f (t · x · y · z)

= S f (t · x)−S f (t)+S f (y o t)−S f (x o t)

−S f (y o x, t).

By Eq. 7:

I f (x : z o t,y) = S f (z o t,y)−S f (z o x,y, t).

Proposition 11 (Data processing inequality for SALZA, asymmetric version): Given strings

x,y,z ∈ A?:

S f (y o z) = 0 =⇒ I f (x : y o z) = 0 =⇒ I f (x : y)≤ I f (z : y).

Proof: The first implication is clear by the proof of Proposition 4 since S f (y o z) = 0 either

implies that y = /0 or y is a substring of z. By Eq. 7, I f (x : y o z) = 0.

Also by Eq. 7, I f (x : y o z) = 0 ⇐⇒ S f (y o z) = S f (y o x,z). The same equation further states

that:

I f (x : y) = S f (y)−S f (y o x),

I f (z : y) = S f (y)−S f (y o z).

Replacing S f (y o z) with S f (y o x,z) in the latter, one has that I f (z : y) = S f (y)− S f (y o x,z). By

Proposition 5, −S f (y o x)≤−S f (y o x,z) and the second implication holds.

We now show that S f satisfies the same requirements as in Sec. 7.1 of [13] to qualify as

a submodular information measure. Such an information measure is defined on the lattice of

strings, using the lexicographical order as ≤. We shall rephrase here the approach of [13] to

approximate submodularity using joint factorizations.
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Let s, t ∈ A? and z the concatenation of the unique substrings shared by s and t. Let x (resp.

y) the concatenation of the substrings in s (resp. t) that are not in z such that |s| = |zx| (resp.

|t|= |zy|). Then, using joint factorizations, the lattice operators are computed like s∨ t = z · x · y

and s∧t = z. Now, the submodularity property (S f (s)+S f (t)≥ S f (s∧t)+S f (s∨t)) translates into

positivity of the conditional mutual information I f (x : y o z). Note that this is only approximate

submodularity, since we do not ensure commutativity of the lattice operators (S f (x ·y) 6= S f (y ·x)

in general, see Fig. 2).

Proposition 12 (S f is an information measure in the sense of [13]): Given strings x,y,z ∈A?:

1) Normalization: S f ( /0) = 0;

2) Monotonicity (over prefixes [1], p. 197): x≤ y =⇒ S f (x)≤ S f (y);

3) Approximate submodularity: S f (z · x)+S f (z · y)≥ S f (z · x · y)+S f (z).

Proof:

1) (Normalization) By Def. 2.5;

2) (Monotonicity over prefixes) Using the lexicographic order on strings, x ≤ y implies

that one can write y = xz and therefore |y| = |x|+ |z|. Hence, depending on the kind

of factorization used:

• Case |: Ly| /0 = Lxz| /0 = Lx| /0 +Lz|x,

• Case |+: Ly|+ /0 = Lxz|+ /0 = Lx|+ /0 +Lz|+ /0.

Monotonicity over prefixes trivially holds for S1 in both cases (Lyo /0 can only have more

elements than Lxo /0). For Sp, denote by l(x)k (resp. l(y)k ) the (sorted) elements of Lxo /0 (resp.

Lyo /0) and let ∆(x,y) = Sp(Lyo /0)−Sp(Lxo /0):

∆(x,y) = |Lyo /0|− |Lxo /0|+
|z|

(|x|+ |z|+1)(|x|+1)

+
p

∑
k=1

(
(|x|+1)−kl(x)k − (|x|+ |z|+1)−kl(y)k

)
≥ |Lyo /0|− |Lxo /0|+

|z|
(|x|+ |z|+1)2

+
p

∑
k=1

(
(|x|+1)−kl(x)k − (|x|+ |z|+1)−kl(y)k

)

The first difference above is positive, as well as those in the sum for 1 ≤ p ≤ |Lxo /0| (if
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Fig. 2: Heatmap of the departure from symmetry. The mean (resp. maximum) departure is 0.24%
(resp. 3.95%.)

y = x, the l(y)k are the l(x)k ). For p > |Lxo /0|, the sum of the remaining negative terms is

always smaller than |z|/(|x|+ |z|+ 1)2 because |Lxo /0| ≥ 1 and the sum is maximal when

|Lzo /0|= 1 (thus l(y)|Lxo /0|+1 = |z|). So for any z and any p≥ 1, ∆(x,y)≥ 0;

3) (Approximate submodularity) By Def. 3.2 and Proposition 9.

The asymmetry of Sp is tedious to derive analytically. We use four datasets, namely markov

(see infra), and mammals, languages and music from [9], [10] to compute departure from

symmetry like:
2|Sp(x · y)−Sp(y · x)|

Sp(x · y)+Sp(y · x)
.

The heatmap of Fig 2 represents departure from symmetry for all pairs of strings in the four

datasets we consider. While the mean departure is 0.24%, only some strings (a handful of MIDI

music scores) will cause more severe deviation.

From now on, we start specifying explicitly the kind of factorization suited to dedicated

applications.
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IV. NORMALIZED SALZA SEMI-SISTANCE

As a first application of SALZA, we now devise a universal semi-distance on strings, the

Normalized SALZA semi-Distance (NSD). It is universal in the sense that it does not use modeling

of the data. We shall compare it to the NCD [9], [10] for classification purposes, since we seek to

provide objective measures of performance (which can be hardly derived from the phylogenetic

trees produced for clustering applications).

In doing so, we shall describe a straightforward and reproducible way of producing strings

from continuously-valued attributes — hence encompassing both discrete and continuous datasets

for clustering/classification applications. First, we review the NCD from the point of view of the

conditioning.

A. Review of NCD implementation

An information distance between strings x and y is the length of the shortest program for a

universal computer to transform x into y and y into x (see [1], p. 642). This ultimately gave birth

to the NID (Eq. 1). Using an actual compressor C as a computable proxy for the uncomputable

K, one defines the NCD (Eq. 2) as a similarity metric on strings. Note that while the NID is

actually a distance (up to negligible errors — see [1], Theorem 8.4.1, p. 662), using an actual

compressor may cause deviation from this ideal behaviour.

Let us now consider how the NCD works and focus on the numerator when a LZ77-based

compressor is used (e.g., gzip or lzma). When computing C(xy), the compression is done

sequentially. When the sliding window is moving over the boundary of x and y, it is essentially

the same as if we were using the factorization y|x. But when the sliding window is entirely

over y, no regularity information from x can ever be taken into account anymore. The same

conclusions may be drawn when considering a block-BWT compressor (e.g., bzip2). SALZA,

because it does not work by blocks or features a sliding window limited by the host memory, is

largely immune to this issue. And it enforces a clean use of the x|+y conditioning without those

side-effects.

Yet, the NCD (that assesses string similarity) is not the only approach to universal clus-

tering/classification. Ziv and Merhav [7] have proposed an approach that relies on estimating

the KL-divergence (which is akin to assessing dissimilarity between strings) by using x|+y

factorizations [8]. We shall see that assessing either similarity or dissimilarity can lead to two

semi-distances.
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B. Definition of the NSD

Definition 4.1 (Normalized SALZA Semi-Distance): Given two strings x,y defined on A such

that |x|, |y|> 1, the normalized SALZA semi-distance between them is defined as:

NSD f (x,y) =
max

{
S f (x|+y),S f (y|+x)

}
max

{
S f (x),S f (y)

} . (10)

Proposition 13 (NSD f is a normalized semi-distance):

1) NSD f (x,y) = NSD f (y,x);

2) 0≤ NSD f (x,y)≤ 1;

3) NSD f (x,y) = 0 ⇐⇒ x = y.

Proof:

1) This is clear by Def. 10;

2) By Proposition 4, NSD f (x,y)≥ 0. By Proposition 5, NSD f (x,y)≤ 1;

3) Restricting the identity of indiscernibles to cases |x|, |y| > 1 avoids the two pathological

cases for which NSD f is indeterminate (after Remark 4). We shall now write the rest

of this proof using the generic factorization symbol o because either factorization kind

would work. Setting NSD f (x,y) = 0 implies that S f (x o y) = S f (y o x) = 0, in which case

x is a substring of y and y is a substring of x, so x = y. Now setting x = y implies that

S f (x o y) = S f (y o x) = 0, in which case NSD f (x,y) = 0.

Remark 6 (Changing the conditioning): We wrote the above proof using o to emphasize that

assessing similarity also leads to a semi-distance:

NSDsim
f (x,y)

max
{

S f (x|y),S f (y|x)
}

max
{

S f (x),S f (y)
} . (11)

Remark 7 (True distance): It is easy to find counter-examples that violate the triangle inequality

for NSD f (or Eq. 11). If it is an issue, then one can use an external procedure based on Dual-

Rooted Prim Trees (DRPT) that will turn a semi-distance matrix into a true distance matrix [26],

even if renormalization may be needed afterwards. We have implemented a naive, slow version

of the DRPT procedure. For the record, we shall include results using the DRPT procedure in

the benchmark of Sec. IV-E.
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C. Datasets description

In contrast with [10] where the authors focus on clustering, we would like to assess the

performances of universal semi-/distances for classification. Another difference with [10] is that

we are seeking a way to naturally extend the application of those metrics to datasets containing

continous values describing numeric attributes, not only discrete datasets.

Of course, there should be a conversion from the real domain to discrete values. A lot of

works in the literature focus on computing thresholds to binarize each value, but this approach

seems to be very data-dependent and therefore hard to reproduce — not to mention that the

length of the strings produced is the number of attributes. Instead, we put forward the following

simple idea that for each attribute we:

1) Select a different set of two characters ;

2) Normalize each attribute value;

3) Use N characters to actually write down an attribute value.

For example, using character set {a,b} and N = 10, a value of 0.3 will produce the string

aaabbbbbbb. With a high number of attributes, character sets will ultimately repeat but this

approach can already handle a few of them. Table II summarizes the characteristics of the

datasets we consider. Obviously, the value of N should be set according to a tradeoff between

the length of the strings produced and the precision of the numerical values for the attributes.

The markov dataset is the only purely discrete dataset. It was constructed using 6 probability

transition matrices between 256 characters. For each matrix, 6 realizations where obtained to

produce strings of 15001 characters. This length was chosen to fit the internal 32KiB buffer of

gzip so that it will handle the concatenation of two strings correctly (for the NCD/gzip). The

goal for classification is to group realizations by transition matrices. This dataset is the closest

to those used in [10] and compressors are expected to perform well.

The gaussian dataset was constructed in a more involved fashion, in order to assess the

classification robustness against noise. We have chosen respectively {22,20,25,26,27,24,24}

samples of 7 classes. Each sample contains values for 1000 attributes and 1000 noisy, non-

informative values. Each informative attribute value is drawn according to N (µk,σ
2), where

µk ∈ {20, . . . ,26} is the mean value of each class and σ2 = 23.5 is their common variance.

Non-informative values are drawn according to N (19,σ2). In total, each column of the sample

matrix contains 2000 values and the rows are randomly permuted.
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Dataset String length # Strings # Classes # Attributes
markov 15001 36 6 —
gaussian 102000 168 7 1000
iris 204 150 3 4
wine 663 178 3 13

TABLE II: Datasets for classification performance assessment (N = 51).

The standard iris and wine datasets were downloaded from the UCI Machine Learning

Repository7 [27]. Each column contains respectively 4 and 13 attributes. The iris dataset is

often advertised as being easily classified. Yet, it is anticipated that the small number of attributes

it contains may represent a challenge for universal semi-/distances and the value of N may

eventually be the most important parameter. For the sake of uniformity and after taking into

account the various numerical precision of the attributes, we set N = 51 for all relevant datasets.

D. Methodology

Classification is performed on the semi-/distances matrices using spectral clustering. In order

to compute accuracy figures (see below), the true and predicted labels are matched iteratively

by selecting the most probable label each time.

Remark 8 (On the NCD): It turns out that the matrices produced by the NCD8 are neither

symmetric nor perfectly normalized. This does not come as a surprise (at least for the lack of

normalization), as it was reported in [10].

Yet, this prevents direct use of spectral clustering. Therefore, the NCD matrices are sym-

metrized by taking the maximum value of NCD(i, j) and NCD( j, i) and they are further properly

normalized by using the largest value in the matrix.

For each dataset, we have computed the NCD using four standard compressors: gzip [14], [15],

lzma [16], bzip2 [28] and ppmd [29]. gzip and lzma are both based on LZ77: gzip uses a 32KiB

sliding window with Huffman coding of the characters, the quantized lengths and distances, while

lzma uses a default 1MiB sliding window with arithmetic coding of the characters, the quantized

lengths and distances, intertwined with Move-To-Front of the distances. bzip2 is based on the

BWT of 256KiB-blocks of the input string, encoded using Huffman coding of the characters,

processed with Move-To-Front. ppmd uses prediction by partial matching to build a model of

7http://archive.ics.uci.edu/ml/datasets

8Software downloaded from https://complearn.org.

http://archive.ics.uci.edu/ml/datasets
https://complearn.org
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the next character given the previous ones, producing socalled context and transition structures

that are encoded using range coding. Both bzip2 and ppmd are noted for performing best on

natural language or source code inputs, while gzip and lzma offer more uniform performances

— with lzma being the current state of the art in general-purpose compression.

E. Results

We shall evaluate the NSD’s and the NCD’s against the following criterions:

1) accuracy: the ratio of correctly classified samples ;

2) silhouette coefficient [30]: a measure of cohesion (the mean distance of a sample to others

in the same cluster) vs. separation (the minimum distance between a sample and those in

other clusters) — the highest the silhouette coefficient value, the cleanest the clustering ;

3) wall-clock time: the NCD relies on the potential parallelism implemented at the com-

pression routine level (to the best of our knowledge, only lzma implements some form

of parallelism), while the NSD natively breaks down all factorizations so they can be

distributed on the available CPU cores. In this regard, since we did not try to rewrite the

NCD to take advantage of parallelism, it should be noted that most running times of the

NCD are actually worst-case figures.

Table III reports the overall results obtained for the four datasets and the ten semi-/distances

we have benchmarked.

As for the accuracy, the NSD’s gives more consistent results than the NCD: the NCD may

outperform the NSD (only for the gaussian dataset, NCD/gzip outperforms NSDsim — yet

not the NSD), but at the price of selecting the compressor best suited to the data at hand [11]

and with the additional issue that a given compressor may produce catastrophic results (gzip for

markov or wine, lzma for gaussian or ppmd for iris). For the NSD, the following observations

are in order:

1) the DRPT routine surprinsingly decreases the classification performances. Actually, the

DRPT routine works by inferring the manifold on which the data lives — and we likely

have not enough samples for this strategy to work ;

2) comparing NSD vs. NSDsim, the NSD consistently produces clusters with higher silhouette

coefficients, yet the accuracy is sometimes better using NSDsim ;

3) comparing NSD1 vs. NSD, the results are nearly identical — the strings are already long

enough so that the added precision of Sp does not help here.
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Dataset Semi-/Distance Accuracy (%) Silhouette Time

markov

NSD1 100 0.048 1.022s
NSD 100 0.048 1.080s
NSDsim

1
100 0.036 1.045s

NSDsim 100 0.036 1.219s
NSD/DRPT 100 0.045 +0.045s
NSDsim/DRPT 100 0.032 +0.047s
NCD/gzip 36.11 0.000 1.083s
NCD/lzma 97.22 0.000 1m34.347s
NCD/bzip2 100 0.001 9.496s
NCD/ppmd 100 0.001 1m7.051s

gaussian

NSD1 98.81 0.039 25.652s
NSD 98.81 0.039 25.946s
NSDsim

1
97.02 0.018 26.221s

NSDsim 92.26 0.018 26.447s
NSD/DRPT 91.67 0.017 +7.032s
NSDsim/DRPT 69.05 0.005 +8.942s
NCD/gzip 76.79 0.002 5m21.363s
NCD/lzma 42.86 0.001 43m28.433s
NCD/bzip2 94.64 0.023 2m23.850s
NCD/ppmd 61.90 0.001 10m40.040s

wine

NSD1 91.01 0.255 1.575s
NSD 91.01 0.251 1.486s
NSDsim

1
93.82 0.046 1.658s

NSDsim 93.26 0.045 1.556s
NSD/DRPT 58.43 0.071 +11.616s
NSDsim/DRPT 46.63 0.015 +11.091s
NCD/gzip 44.38 0.011 0.977s
NCD/lzma 67.98 0.025 4m48.918s
NCD/bzip2 77.53 0.021 3.013s
NCD/ppmd 60.11 0.019 3m25.158s

iris

NSD1 86.67 0.430 1.075s
NSD 87.33 0.435 1.101s
NSDsim

1
88 0.132 1.073s

NSDsim 88 0.125 1.064s
NSD/DRPT 70.67 0.296 +5.680s
NSDsim/DRPT 67.33 0.231 +6.066s
NCD/gzip 64 0.097 1.312s
NCD/lzma 82 0.123 2m30.652s
NCD/bzip2 82.67 0.100 0.886s
NCD/ppmd 34.00 0.113 2m16.631s

TABLE III: Classification performance of universal semi-/distances. The best results are in bold
face and the worst are in italic face. The wall-clock time for DRPT variants is reported as the
time the naive DRPT routine took in addition to that of the corresponding NSD semi-distance
matrix computation. The NSD used 19 CPU cores.

Also for the silhouette coefficient, the NSD’s gives more consistent and better results than the

NCD, meaning that the NSD clusters are more compact and distant from one another. Again,

results vary greatly for the different compressors, with lzma producing better clusters more often
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than other compressors.

Up to the reservation explained above, the running time is better for the NCD on small datasets

(with the notable exceptions of lzma and ppmd being consistently the slowest performers because

of their entropy coding stage based on arithmetic coding). When the size of the dataset increases

(markov and gaussian), the built-in parallelism of the NSD starts to outperform the various

NCD’s, often by orders of magnitude. Using NSD instead of NSD1 is hardly noticeable from

the running time point of view.

For the record, we include in Fig. 3 the phylogenetic trees obtained from computing both

NSDsim and NSD on the language dataset. This figure reflects the general conclusion of

Table III that measuring dissimilarity will often produce more compact and distant clusters

than measuring similarity.

V. CAUSAL INFERENCE

Named after the initials of its inventors, the PC algorithm [31] is the standard method to

perform causal inference. It was first devised for the probabilistic setting using Markovian

independence on nodes of the Directed Acyclic Graph (DAG) underlying the observations.

Later, it was shown that algorithmic information is also a faithful measure to assess Markovian

independence on a graph [12], [32].

Starting from a complete, undirected graph, the greedy PC algorithm will collapse edges based

on a local, Markovian measure of independence to produce a skeleton. By far, this is the most

computational-intensive part since, for each node y, one has to compute independence with each

connected nodes x, conditioned on an increasing number of other connected nodes. This process

is repeated until either no more edges can be collapsed, or a hard limit is reached (see [33] for

more details on computing the skeleton).

The historical, population, version of the PC algorithm is noted for its sensitivity to the order

in which Markovian independence is tested for edge collapse. Recently, a stable version has been

proposed [33], that requires (i) the edges to be repeatedly tested in the same order and (ii) edges

to be collapsed only after all candidates have been tested. This makes the stable version more

robust but slower compared to the population version. We have implemented both versions.

In the first step of computing the skeleton, further information is saved for the second, final

step, that will produce a Completed Partially DAG from the skeleton — i.e., a graph with as
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Fig. 3: Phylogenetic trees computed on the languages datasets [9], [10] using the Ward distance
(top: NSDsim, bottom: NSD).

much oriented edges as possible [34] that is the representative of the class of DAGs the true

DAG underlying the data belongs to.

A. SALZA normalized independence criterion

Hence, all that is needed to use the PC algorithm with strings is an efficient routine to

compute string independence in order to build the skeleton. The routine should be efficient

because, although it is greedy, the PC algorithm has a worst-case complexity of O(n3) (where n
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is the number of strings) — the true complexity depending on the DAG underlying the observed

strings. Repeatedly testing for string independence using a compressor would inevitably lead

to severe inaccuracies and would require a cumbersome management of the concatenation of

strings (not to mention that the search structures would have to be built from scratch all too

often). This is where the flexible conditioning of SALZA really shines.

In the probabilistic setting, Markovian independence is typically assessed within 95% confi-

dence intervals. Such a notion of confidence is tedious to translate in the algorithmic setting and

we therefore choose to assess independence up to some normalized value η (see Def. 5.1). The

default value for η is set to 10−2.

Definition 5.1 (Normalized independence criterion): For strings x,y,z1, . . . ,zn ∈ A?, |y|> 1, x

and y are said to be independent of z1, . . . ,zn up to η, 0≤ η≤ 1, iff:

I f (x : y|z1, . . . ,zn)

S f (y)
≤ η. (12)

Proposition 14 (The left-hand side of Eq. 12 is normalized):

0≤
I f (x : y|z1, . . . ,zn)

S f (y)
≤ 1.

Proof: By Proposition 5, S f (y|x,z1, . . . ,zn)≤ S f (y|z1, . . . ,zn)≤ S f (y). Propositions 4 and 8

conclude.

Remark 9 (I+f ): As a by-product of our implementation, our code also natively implements

I+f similarly to Remark 6. Proposition 14 obviously also holds for I+f . However, the meaning of

I+f is less clear.

B. Causal relationships on languages

From the point of view of causality, representing languages with phylogenetic trees like in

Fig. 3 implicitly assumes a tree-like causal structure. Such an assumption may well be regarded

as too restrictive, hiding the influences several languages may have had on another.

We include on Fig. 4 the resulting DAG after applying the PC algorithm on the languages

dataset. Here, it is worth mentioning that the texts that are included in this dataset are translations

of the Universal Declaration of Humain Rights. This may explain that some languages are

unexpectedly connected: the lexical field of this text is mostly legal, so that some languages

may have borrowed terms from another. For example, the English legal lexicon contains a few

words from the French.
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Lowering η will produce less connected components but will generate more information to

orient the edges. We have observed that a few causal structures are preserved while varying η.

However, the very idea of using a global value for η may be seen as a limitation of the PC

algorithm: further investigation should concentrate on selecting an adequate threshold locally.

afrikaans
dutch

frisan

danish

norwegianBokmal

swedish

german

luxembourgish

norwegianNynorsk

albanian

maltese

turkish

estonian

finnish

uzbek

hungarian

asturian

galician

spanish
catalan

french

occitan
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english
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portuguese

occitanAuvergnat
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Fig. 4: Stable skeleton computed from the languages dataset. η = 1% (time: 9m44s.) We did
not represent the CPDAG here because only three edges were actually oriented.
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C. An experiment in literature

Jean-Philippe Toussaint is a Belgian author who works by typesetting each paragraph, which

then gets printed, manually annotated for improvements, typeset again and so on until the final

version is reached. We had access to the transcripts of eight successive drafts of one single

paragraph in Toussaint’s book La Réticence. The transcripts each contain approximately 1600

characters, with great changes between the first and only tiny improvements in the last ones.

We depict in Fig 5 the CPDAGs produced by the PC algorithm for its two variants of the

computation of the skeleton (population and stable), as well as for various values of η9. The

PC algorithm occasionally gets the edges wrong (e.g., transcript 3 is sometimes seen as causing

transcript 1, which is impossible), yet it generally finds the correct causal dependencies when the

changes are smaller. Following these results, one may formulate the hypothesis that the second

transcript is an abandoned trail in the early steps of the writing process followed by Toussaint.

SOFTWARE

The SALZA reference implementation (C code for GNU/Linux and Debian amd64 binaries

repository) and the datasets used in this work are available from:

https://forge.uvolante.org/code/salza/wikis
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APPENDIX A

IMPLEMENTATION NOTES

A. Adjusting the precision p

It is clear from Eq. 3 that the maximum useful value for p is a function of the machine epsilon

ε and |y|. Hence, p is selected such that:

p =

⌊
− logε

log(|y|+1)

⌋
.

With standard IEEE-754 binary64 floating point double’s, ε = 2.22× 10−16. Therefore,

SALZA will take into account at least the first three lk’s for strings of size |y| ≤ 1.3×105, and

it will use only l1 starting from strings of size |y| ≥ 6.7× 107. Of course, |L| is the dominant

part in Sp(L). Yet, SALZA will automatically allocate as much precision as possible for shorter

strings, where it is needed more.

B. Basic algorithms and search structures

Because SALZA looks for the next longest substring in a set of strings, it requires to be able

to efficiently do so from an arbitrary position in the string y being factorized.

In the vast literature pertaining to computing the Lempel-Ziv factorization, much of the works

take advantage of incrementally factorizing a string (meaning that the next Lempel-Ziv factors

are known only for positions at which they start in the string being factorized). However, one

such algorithm exists [35] that computes the next Lempel-Ziv factor from an arbitrary position:

CPS110 (in linear time if the entire string were to be factorized).

This algorithm relies on the suffix array of the string being factorized, which can be constructed

in linear time and uses 8 bytes of memory per string character [36]. It also makes use of the

longest common prefix array, the construction and storage of which share roughly the same time

and space performances [37] as that of the suffix array.

The suffix array is the only data structure required to efficiently perform cross-factorization

of y given x, also from an arbitrary position in y [18]. Hence, upon start-up, SALZA builds the

suffix array of all strings, saving the construction of the longest common prefix array in cases

it is not needed.

10This mandatory feature we need is even called an "undesirable aspect" of CPS1 (see [35], Sec. 2.2).
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C. Parallel computations

Various methods have been developed to compute the Lempel-Ziv factorization in parallel

(e.g. [38]), but they often lack the flexibility we need and their granularity sometimes is too

fine-grained for CPU threads.

Instead, we have devised the following strategy. Each string to be factorized is divided in

blocks. Each block factorization parameters (block start, strings involved, factorization kind for

each string, etc.) are prepared and stored into a work queue. Once the work queue is ready, threads

keep picking up factorization parameters for the next block and the work queue eventually gets

empty. In order not to freeze the machine, we leave one core free for the other processes.

At this point, most of the work has been done in parallel. But it may happen that the Lempel-

Ziv factors overlap block boundaries (the last factor of a block spans over the beginning of the

next block). Hence, we perform a few additional calls to the main factorization routine (starting

from the end of the last factor in a block), until the factorizations of the two consecutive blocks

are synchronized. In practice, such a "stitching" overhead typically means computing less than

3 additional factors per block. This way, it is guaranteed that the resulting factorization is the

same as if it were performed sequentially. Note that it is crucial for this strategy to be able to

compute Lempel-Ziv factors from an arbitrary position.

Among the applications listed, computing the NSD f matrix is done even more efficiently in

parallel since all computations can be scheduled right from the start (which is less easier with

the PC algorithm for example). In this case, the work queue is constructed only once. Whereas

for all other applications, parallelism takes place mostly at the whole string factorization level

(as described above). For example, computing one conditional mutual information measure leads

to the creation of a work queue containing the parameters for all blocks of each of the two parts

of Eq. 7 and we can still benefit from parallel computations in performing causal inference.
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(h) Stable skeleton, η = 0.008.

Fig. 5: Causal inference on the Toussaint drafts: population (resp. stable) skeleton and CPDAG
mean computation time: 0.339s (resp. 0.405s).
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