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An implicit Euler finite-volume scheme for an n-species population cross-diffusion system of Shigesada-Kawasaki-Teramoto-type in a bounded domain with no-flux boundary conditions is proposed and analyzed. The scheme preserves the formal gradient-flow or entropy structure and preserves the nonnegativity of the population densities. The key idea is to consider a suitable mean of the mobilities in such a way that a discrete chain rule is fulfilled and a discrete analog of the entropy inequality holds. The existence of finite-volume solutions and the convergence of the scheme are proven. Furthermore, numerical experiments in one and two space dimensions for two and three species are presented. The results are valid for a more general class of cross-diffusion systems satisfying some structural conditions.

Introduction

The population model of Shigesada, Kawasaki, and Teramoto (SKT) describes the segregation of two competing species [START_REF] Shigesada | Spatial segregation of interacting species[END_REF]. It consists of quasilinear parabolic equations for the population densities with a generally nonsymmetric and not positive semidefinite diffusion matrix. To overcome the lack of positive definiteness, it was suggested in [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong crossdiffusion[END_REF][START_REF] Galiano | Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model[END_REF] to use so-called entropy variables that yield a transformed diffusion system with a positive semidefinite diffusion matrix. In particular, the SKT cross-diffusion system of [START_REF] Shigesada | Spatial segregation of interacting species[END_REF] has a formal gradient-flow or entropy structure. This approach can be generalized to an arbitrary number of species [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF]. It is important to design a general easy-to-implement numerical scheme that preserves this structure and that can be proven to be convergent. Previous works like [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF][START_REF] Barrett | Finite element approximation of a nonlinear cross-diffusion population model[END_REF][START_REF] Sun | An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems[END_REF] propose numerical approximations that satisfy some of these properties but not all of them. In this paper, we suggest a finite-volume scheme for n-species SKT-type population systems, preserving the entropy structure and the nonnegativity of densities and conserving the mass (in the absence of source terms). In fact, our results are even valid for a more general class of cross-diffusion systems satisfying some structural conditions.

More precisely, we consider the cross-diffusion system 1.eq 1.eq (1)

∂ t u i -div n j=1 A ij (u)∇u j = f i (u) in Ω, t > 0, i = 1, . . . , n,
where Ω ⊂ R d (d ≥ 1) is a bounded domain, u = (u 1 , . . . , u n ) is the vector of population densities, with the diffusion coefficients

1.A 1.A (2) A ij (u) = δ ij a i0 + n k=1
a ik u k + a ij u i , i, j = 1, . . . , n, and the Lotka-Volterra source terms,

1.f 1.f (3) f i (u) = u i b i0 - n j=1 b ij u j , i = 1, . . . , n,
where we assume that a ii > 0, b ii > 0 for i = 1, . . . , n and a ij ≥ 0 and b ij ≥ 0 for i = j. We prescribe no-flux boundary and initial conditions:

1.bic 1.bic (4)

n j=1 A ij (u)∇u j • ν = 0 on ∂Ω, t > 0, u i (0) = u 0 i in Ω, i = 1, . . . , n,
where ν denotes the exterior unit normal vector to ∂Ω. When n = 2, we recover the SKT system of [START_REF] Shigesada | Spatial segregation of interacting species[END_REF] without environmental potentials. Our analysis can be extended by including potential terms; see Remark 1.

Let h : [0, ∞) n → [0, ∞) be a convex function and set H[u] = Ω h(u)dx. The entropy inequality is derived, for suitable source terms, by choosing h (u) formally as a test function in the weak formulation of (1), leading to 1.ei 1.ei [START_REF] Bessemoulin-Chatard | On discrete functional inequalities for some finite volume schemes[END_REF] dH dt

+ Ω ∇u : h (u)A(u)∇udx ≤ C(T ), 0 < t < T,
where h (u) is the Hessian of h, ":" is the Frobenius matrix product, and C(T ) > 0 comes from the source terms. We call H an entropy and h an entropy density if h (u)A(u) is positive (semi-) definite. This typically provides gradient estimates and moreover, if C(T ) = 0, then H is a Lyapunov functional along the solutions to [START_REF] Oulhaj | Numerical analysis of a finite volume scheme for a seawater intrusion model with crossdiffusion in an unconfined aquifer[END_REF].

In the case of the n-species SKT model, the entropy density is given by

1.h 1.h (6) h(u) = n i=1 π i u i (log u i -1) + 1 , u ∈ [0, ∞) n ,
where the numbers π i > 0 are assumed to satisfy π i a ij = π j a ji for i = j. This can be recognized as the detailed-balance condition for the time-continuous Markov chain associated to (a ij ), and the vector (π i ) is the corresponding invariant measure [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF]. It turns out that ∇u : h (u)A(u)∇u is bounded from below by n i=1 a ii |∇u i | 2 , which yields H 1 (Ω) estimates. Moreover, it can be shown that the solutions u i are nonnegative and the mass Ω u i (t)dx is constant in time if f i = 0. Our aim is to preserve this structure on the discrete level.

In the literature, there are already various numerical schemes for the SKT model. Up to our knowledge, the first numerical simulations, based on a finite-difference scheme in one space dimension, were performed in [START_REF] Galiano | Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics[END_REF]. A convergence result for an implicit Euler approximation, which preserves the nonnegativity of the densities, was proved in [START_REF] Galiano | Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model[END_REF], but the space variable was not discretized. Based on the entropy structure found in [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong crossdiffusion[END_REF][START_REF] Galiano | Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model[END_REF], a convergent entropy-dissipative finite-element approximation was proposed in [START_REF] Barrett | Finite element approximation of a nonlinear cross-diffusion population model[END_REF]. The entropy structure is preserved by defining an approximation of a certain mean function. For this, the authors of [START_REF] Barrett | Finite element approximation of a nonlinear cross-diffusion population model[END_REF] need an approximated entropy and an approximated diffusion matrix, which complicates the numerical scheme. Moreover, their scheme does not preserve the nonnegativity of the densities. A convergent finite-volume scheme that preserves the nonnegativity was suggested in [START_REF] Andreianov | Analysis of a finite volume method for a cross-diffusion model in population dynamics[END_REF], but the analysis is valid only for positive definite diffusion matrices (A ij (u)), which requires strong conditions on a ij . Another idea was developed in [START_REF] Murakawa | A linear finite volume method for nonlinear cross-diffusion systems[END_REF], by considering a linear finite-volume scheme and proving unconditional stability and convergence, but without structure-preserving properties. A discontinuous Galerkin scheme was used in [START_REF] Sun | An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems[END_REF], which preserves the formal gradient-flow structure and nonnegativity of the densities, but no convergence analysis was performed. Finally, operator-splitting techniques were also applied to the SKT model [START_REF] Beauregard | A variable nonlinear splitting algorithm for reaction diffusion systems with self-and cross-diffusion[END_REF][START_REF] Gambino | A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion[END_REF].

Compared to the literature, our finite-volume scheme (i) preserves the entropy structure of the n-species model under the detailed-balance condition, (ii) preserves the nonnegativity of u i ≥ 0, and (iii) conserves the mass when the source terms vanish. We design and analyze in fact a finite-volume scheme for a general cross-diffusion model of the form (1) and ( 4), satisfying some structural conditions specified in Section 2. For this scheme, we prove the existence of discrete finite-volume solutions and show that a subsequence converges to the solutions to (1) and ( 4). In Section 3, we apply the results obtained in the general framework to the SKT model ( 1)-( 4).

The derivation of the entropy inequality ( 5) is based on the chain rule h (u)∇u = ∇h (u). The difficulty is to formulate this identity on the discrete level. Let Ω be the union of cells K and let σ = K|L be the edge between two neighboring cells K and L. The finitevolume density u i is constant on each cell, and we write u i,K for its value and set u K = (u 1,K , . . . , u n,K ). A discrete analog of the chain rule is the vector-valued identity

h ( u σ )(u L -u K ) = h (u L ) -h (u K ),
where u σ is a mean vector. This approach resembles the discrete-gradient method [24, Section V.5]. However, the mean-value theorem for vector-valued functions can be formulated only as

1 0 h (su L + (1 -s)u K )ds (u L -u K ) = h (u L ) -h (u K ),
and in general, a mean vector u σ cannot be found. Therefore, we assume that the entropy density is the sum of entropy densities for each species, h(u) = n i=1 h i (u i ). Then the Hessian of h is diagonal, and the standard mean-value theorem can be applied componentnwise. Fortunately, the entropy (6) of the SKT model satisfies this condition. In this case, the mean vector is computed by

u i,σ = u i,L -u i,K log u i,L -log u i,K for σ = K|L if u i,K = u i,L .
This corresponds to the logarithmic mean, used in, e.g., [28]. General mean functions are defined in, e.g., [START_REF] Cancès | Large time behavior of nonlinear finite volume schemes for convection-diffusion equations[END_REF][START_REF] Filbet | A finite volume scheme for boundary-driven convection-diffusion equations with relative entropy structure[END_REF][START_REF] Grün | Nonnegativity preserving convergent schemes for the thin film equation[END_REF]. In order to achieve a discrete analog of the entropy inequality (5), the diffusion matrix has to be evaluated at the mean vector u σ , i.e., the fluxes of the finite-volume scheme along the edge σ = K|L have to be discretized according to

F i,K,σ = - n j=1 τ σ A ij ( u σ )(u j,L -u j,K ), i = 1, . . . , n,
where τ σ is the transmissibility constant defined in [START_REF] Braukhoff | An entropy structure preserving space-time Galerkin method for cross-diffusion systems[END_REF] below. The paper is organized as follows. The numerical scheme and our main results (existence of discrete solutions, convergence of the scheme, and large-time behavior) are introduced in Section 2. Examples that satisfy our general assumptions, including the SKT model, are presented in Section 3. In Section 4, we prove the existence of discrete solutions. Uniform estimates are derived in Section 5, and Section 6 is devoted to the proof of the convergence of the scheme. Finally, we present in Section 7 some numerical examples for the two-and three-species SKT system.

Numerical scheme and main results

sec.main 2.1. Notation and definitions. We present the discretization of the domain Ω T = Ω × (0, T ). We consider only two-dimensional domains Ω, but the generalization to higher space dimensions is straightforward. Let Ω ⊂ R 2 be a bounded, polygonal domain. An admissible mesh of Ω is given by (i) a family T of open polygonal control volumes (or cells), (ii) a family E of edges, and (iii) a family P of points (x K ) K∈T associated to the control volumes and satisfying Definition 9.1 in [START_REF] Eymard | Finite volume methods[END_REF]. This definition implies that the straight line x K x L between two centers of neighboring cells is orthogonal to the edge σ = K|L between two cells. For instance, Voronoï meshes satisfy this condition [START_REF] Eymard | Finite volume methods[END_REF]Example 9.2]. The size of the mesh is denoted by ∆x = max K∈T diam(K). The family of edges E is assumed to consist of interior edges E int satisfying σ ∈ Ω and boundary edges σ ∈ E ext satisfying σ ⊂ ∂Ω. For given K ∈ T , E K is the set of edges of K, and it splits into E K = E int,K ∪ E ext,K . For any σ ∈ E, there exists at least one cell K ∈ T such that σ ∈ E K .

We need the following definitions. For σ ∈ E, we introduce the distance

d σ = d(x K , x L ) if σ = K|L ∈ E int,K , d(x K , σ) if σ ∈ E ext,K ,
where d is the Euclidean distance in R 2 , and the transmissibility coefficient 2.trans 2.trans [START_REF] Braukhoff | An entropy structure preserving space-time Galerkin method for cross-diffusion systems[END_REF] 

τ σ = m(σ) d σ ,
where m(σ) denotes the Lebesgue measure of σ. The mesh is assumed to satisfy the following regularity assumption: There exists ζ > 0 such that for all K ∈ T and σ ∈ E K , 2.dd 2.dd (8) d(x K , σ) ≥ ζd σ .

Let T > 0, let N T ∈ N be the number of time steps, and introduce the step size ∆t = T /N T as well as the time steps t k = k∆t for k = 0, . . . , N T . We denote by D the admissible spacetime discretization of Ω T composed of an admissible mesh T and the values (∆t, N T ).

We also introduce suitable function spaces for the numerical scheme. The space of piecewise constant functions is defined by

H T = v : Ω → R : ∃(v K ) K∈T ⊂ R, v(x) = K∈T v K 1 K (x) ,
where 1 K is the characteristic function on K. In order to define a norm on this space, we first introduce the notation

v K,σ = v L if σ = K|L ∈ E int,K , v K if σ ∈ E ext,K ,
for K ∈ T , σ ∈ E K and the discrete operators

D K,σ v := v K,σ -v K , D σ v := |D K,σ v|.
Let q ∈ [1, ∞) and v ∈ H T . The discrete W 1,q seminorm and discrete W 1,q norm on H T are given by

|v| q 1,q,T = σ∈E m(σ) d σ D σ v d σ q , v q 
1,q,T = |v| q 1,q,T + v q 0,q,T , respectively, and v 0,q,T denotes the L q norm i.e. v 0,q,T = ( K∈T m(K)|v K | q ) 1/q . For given q > 1, we associate to these norms a dual norm with respect to the L 2 inner product,

v -1,q ,T = sup Ω vwdx : w ∈ H T , w 1,q,T = 1 ,
where 1/q + 1/q = 1.

Then

Ω vwdx ≤ v -1,q ,T w 1,q,T for v, w ∈ H T .
Finally, we introduce the space H T ,∆t of piecewise constant in time functions with values in H T ,

H T ,∆t = v : Ω × [0, T ] → R : ∃(v k ) k=1,...,N T ⊂ H T , v(x, t) = N T k=1 v k (x)1 (t k-1 ,t k ] (t) ,
equipped, for 1 ≤ p, q < ∞, with the discrete L p (0, T ; W 1,q (Ω)) norm

N T k=1 ∆t v k p 1,q,T 1/p .
2.2. Numerical scheme. We define now the finite-volume scheme for the cross-diffusion model ( 1) and ( 4), where we consider a general diffusion matrix A(u) and an entropy density h given by h(u) = n i=1 h i (u i ). We first approximate the initial functions by 2.init 2.init (9)

u 0 i,K = 1 m(K) K u 0 i (x)dx for K ∈ T , i = 1, . . . , n.
Let u k-1 = (u k-1 1 , . . . , u k-1 n ) be given. Then the values u k i,K are determined by the implicit Euler finite-volume scheme 2.fvm 2.fvm [START_REF] Carrillo | Cross-diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[END_REF] m(K)

u k i,K -u k-1 i,K ∆t + σ∈E K F k i,K,σ = m(K)f i (u k K ),
where the fluxes F k i,K,σ are given by 2.flux 2.flux (11)

F k i,K,σ = - n j=1 τ σ A ij (u k σ )D K,σ u k j for K ∈ T , σ ∈ E K ,
and τ σ is defined by [START_REF] Braukhoff | An entropy structure preserving space-time Galerkin method for cross-diffusion systems[END_REF]. By the definition of the discrete gradient D K,σ , the discrete fluxes vanish on the boundary edges, guaranteeing the no-flux boundary conditions. In [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis[END_REF], we have introduced the mean value 2.usigma 2.usigma (12)

u k i,σ =      u k i,σ if u k i,K > 0, u k i,K,σ > 0, and u k i,K = u k i,K,σ , u k i,K if u k i,K = u k i,K,σ > 0, 0 else, where u k i,K ∈ (0, ∞) is the unique solution to 2.chain 2.chain (13) h i ( u k i,σ )D K,σ u k i = D K,σ h i (u k i ) for K ∈ T , σ ∈ E K .
Since h i is assumed to be strictly concave (see Hypothesis (H4) below), the definition u k i,σ = 0 if u k i,K = 0 or u k i,K,σ = 0 is consistent with [START_REF] Chen | Rigorous mean-field limit and cross-diffusion[END_REF], and the existence of a unique value u k i,σ

follows from the mean-value theorem. The strict concavity of h i (which implies that h i is strixtly decreasing) and

h i (min{u k i,K , u k i,K,σ }) ≤ h i (u k i,σ ) ≤ h i (max{u k i,K , u k i,K,σ }) lead to the bounds 2.est.usigma 2.est.usigma (14) min{u k i,K , u k i,K,σ } ≤ u k i,σ ≤ max{u k i,K , u k i,K,σ }.
ssec.main 2.3. Main results. Our hypotheses are as follows.

(H1) Domain: Ω ⊂ R 2 is a bounded polygonal domain.

(H2) Discretization: D is an admissible discretization of Ω T satisfying ( 8).

(H3) Initial data:

u 0 = (u 0 1 , . . . , u 0 n ) ∈ L 1 (Ω; [0, ∞) n ) with Ω h(u 0 )dx < ∞. (H4) Entropy density: h(u) = n i=1 h i (u i ), where h i ∈ C 2 ((0, ∞); (0, ∞)) ∩ C 0 ([0, ∞); [0; ∞)) is convex, h i : (0, ∞) → R
is invertible and strictly concave, and there ex-

ists c h > 0 such that h i (s) ≥ c h (s -1) for all s ≥ 0, i = 1, . . . , n. (H5) Diffusion matrix: A ∈ C 0,1 ([0, ∞) n ; R n×n ) and there exists c A > 0 such that for all z ∈ R n and u ∈ (0, ∞) n , z h (u)A(u)z ≥ c A |z| 2 .
(H6) Source terms:

f i ∈ C 0 ([0, ∞))
, and there exist two constants C f > 0 and

C f > 0 such that for all u ∈ [0, ∞) n , n i=1 f i (u)h i (u i ) ≤ C f (1 + h(u)), n i=1 |f i (u)| ≤ C f 1 + n i=1 |u i | 2 .
Let us discuss these hypotheses. The convexity of h i and the invertibility of h i in Hypothesis (H4) are natural conditions for the entropy method, see [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF][START_REF] Jüngel | Entropy Methods for Diffusive Partial Differential Equations[END_REF]. The strict convexity or concavity of h i is required to define properly the mean value u k i,σ in [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong crossdiffusion[END_REF]. The lower bound for h i allows us to conclude L 1 (Ω) estimates. We assume in Hypothesis (H5) that the matrix h (u)A(u) is positive definite. This condition can be relaxed, at least for the existence proof, to the "degenerate" positive definiteness assumption z h

(u)A(u)z ≥ c A n i=1 u 2m-2 i z 2
i for m ≥ 1/2, but this requires certain growth conditions on the nonlinearities, which we wish to avoid to simplify the presentation. The Lipschitz continuity of

A ij is needed to estimate the difference |A ij (u k σ ) -A ij (u k K )| in the convergence proof.
It is not needed to show the existence of discrete solutions. The first bound in Hypothesis (H6) is a natural growth condition needed in the entropy method, while the second bound is used to estimate the discrete time derivative; see the proof of Lemma 9.

rem.drift Remark 1. The finite-volume scheme can be extended to models including drift terms of the type d i u i ∇φ, where d i > 0 and φ is the environmental potential. Indeed, the discrete drift term can be chosen as

d i u k i,σ D K,σ φ for K ∈ T and σ ∈ E K .
Remark 2. Hypothesis (H4) is satisfied by the Shannon-type entropy density (6). Another example is h i (s) = s a log q(z)dz with a > 0, where q ∈ C 2 (0, ∞) ∩ C 0 ([0, ∞)) is increasing, invertible as a function from (0, ∞) to (0, ∞), and qq > (q ) 2 .

We introduce the discrete entropy

H[u k ] = K∈T m(K)h(u k K ) for k ≥ 0.
2.def.entro 2.def.entro [START_REF] Deimling | Nonlinear Functional Analysis[END_REF] thm.ex Theorem 3 (Existence of discrete solutions). Let Hypotheses (H1)-(H6) hold and let ∆t < 1/C f . Then there exists a solution

u k = (u k 1 , . . . , u k n ) ∈ H n T to scheme (9)-(12) satisfying u k i,K ≥ 0 for all K ∈ T , k ≥ 1
, and i = 1, . . . , n, and it holds that

2.ei 2.ei (16) (1 -C f ∆t)H[u k ] + c A ∆t n i=1 σ∈E τ σ (D σ u k i ) 2 ≤ H[u k-1 ] + C f ∆t m(Ω), k ≥ 1.
The proof of Theorem 3 is based on a topological degree argument. For this, we linearize and "regularize" scheme (9)-( 12). The regularization is needed since we are working in the entropy variables w i = h i (u i ) and the diffusion operator in these variables is only positive semidefinite. Then we establish an entropy inequality associated to the approximate scheme and perform the limit when the regularization parameter vanishes.

The regularization technique is needed to prove the existence of solutions in the entropy variable formulation and to conclude that

u k i = (h i ) -1 (w k i ) is positive. For instance, if h i (s) = s(log s -1) + 1, we have w k i = log u k i or u k i = exp(w k i ).
This case explains why we assume in Hypothesis (H4) that h i is invertible only on (0, ∞). Then we can define rigorously the notion of entropy variable and show an entropy inequality for the regularized problem that is close to [START_REF] Eymard | Finite volume methods[END_REF]; see Lemma 7.

For the convergence result, we need some notation. For K ∈ T and σ ∈ E K , we define the cell T K,σ of the dual mesh:

• If σ = K|L ∈ E int,K , then T K,σ is that cell ("diamond") whose vertices are given by x K , x L , and the end points of the edge σ. • If σ ∈ E ext,K , then T K,σ is that cell ("triangle") whose vertices are given by x K and the end points of the edge σ. The cells T K,σ define a partition of Ω. It follows from the property that the straight line x K x L between two neighboring centers of cells is orthogonal to the edge

σ = K|L that m(σ)d(x K , x L ) = 2 m(T K,σ ) for σ = K|L ∈ E int .
The approximate gradient of v ∈ H T ,∆t is then defined by

∇ D v(x, t) = m(σ) m(T K,σ ) (D K,σ v k )ν K,σ for x ∈ T K,σ , t ∈ (t k-1 , t k ],
where ν K,σ is the unit vector that is normal to σ and points outwards of K.

We introduce a family (D m ) m∈N of admissible space-time discretizations of Ω T indexed by the size η m = max{∆x m , ∆t m } of the mesh, satisfying η m → 0 as m → ∞. We denote by T m the corresponding meshes of Ω and by ∆t m the corresponding time step sizes. Finally, we set ∇ m := ∇ Dm .

thm.conv Theorem 4 (Convergence of the scheme). Let the assumptions of Theorem 3 hold, let (D m ) m∈N be a family of admissible meshes satisfying [START_REF] Cancès | Large time behavior of nonlinear finite volume schemes for convection-diffusion equations[END_REF] uniformly in m ∈ N, and assume that ∆t m < 1/C f for m ∈ N. Let (u m ) m∈N be a family of finite-volume solutions to (9)-( 12) constructed in Theorem 3. Then there exists a function u

= (u 1 , . . . , u n ) ∈ L 2 (0, T ; H 1 (Ω; R n )) satisfying u i ≥ 0 in Ω T , i = 1, . . . , n, u i,m → u i strongly in L 2 (Ω T ), ∇ m u i,m ∇u i weakly in L 2 (Ω T ), as m → ∞,
up to a subsequence, and u is a weak solution to (1) and (4), i.e., for all

ψ i ∈ C ∞ 0 (Ω × [0, T )), it holds that T 0 Ω u i ∂ t ψ i dxdt + Ω u 0 i (0)ψ i (0)dx = T 0 Ω n j=1 A ij (u)∇u j • ∇ψ i dxdt + T 0 Ω f i (u)ψ i dxdt, i = 1, . . . , n.
The proof is based on suitable estimates uniform with respect to ∆x and ∆t, derived from the entropy inequality ( 16) and the discrete Gagliardo-Nirenberg inequality, as well as a version of the Aubin-Lions lemma obtained in [START_REF] Gallouët | Compactness of discrete approximate solutions to parabolic PDEs -Application to a turbulence model[END_REF]. This yields the a.e. convergence of a sequence (u m ) of solutions to scheme (9)- [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong crossdiffusion[END_REF]. The final step is the identification of the limit function as a weak solution to (1) and (4). 

Examples

3.1.

The n-species SKT cross-diffusion system. Consider system (1)-( 4). The entropy density defined by [START_REF] Blanchet | Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions[END_REF] satisfies Hypothesis (H4). Hypothesis (H5) is satisfied if a ii > 0 for all i = 1, . . . , n and the detailed-balance condition skt1 skt1 [START_REF] Eymard | Finite Volume Methods. Schemes and Analysis[END_REF] π i a ij = π j a ji for all i = j, holds, or if self-diffusion dominates cross-diffusion in the sense skt2 skt2 (18)

η 0 := min i=1,...,n a ii - 1 4 n j=1 √ a ij - √ a ji 2 > 0,
and π i = 1 for i = 1, . . . , n; see Lemmas 4 and 6 in [START_REF] Chen | Global existence analysis of cross-diffusion population systems for multiple species[END_REF]. In the former case, c A = min i π i a ii > 0 and in the latter case, c A = 2η 0 > 0. The Lotka-Volterra source terms (3) satify Hypothesis (H6) with C f given by

skt.defCf skt.defCf (19) C f = 2 log 2 max i=1,...,n b i0 + 1 eπ i n j=1 π j b ji ,
which can be shown by standard computations. The existence of a constant

C f > 0 such that n i=1 |f i (u)| ≤ C f 1 + n i=1 |u i | 2
is clear since f i is growing at most as u 2 j . This shows that Hypotheses (H4)-(H6) are fulfilled, and we have the following result.

Corollary 5. Let a ii > 0, b ii > 0 for i = 1, . . . , n and let the diffusion matrix, source terms, and entropy density be defined by (2), (3), and (6), respectively. We assume that (17) or (18) holds and that ∆t < 1/C f . Then there exists a finite-volume solution to scheme (9)-( 12) satisfying [START_REF] Eymard | Finite volume methods[END_REF]. Under the assumptions of Theorem 4, the solutions associated to the meshes (D m ) converge to a solution to (1)-( 4), up to a subsequence. rem.longtime Remark 6 (Large-time behavior of the scheme). In view of assumption [START_REF] Eymard | Finite Volume Methods. Schemes and Analysis[END_REF], the diffusion matrix A(u) of the SKT system satisfies for all z ∈ R n and u ∈ (0, ∞) n ,

2.assum.A 2.assum.A (20) z h (u)A(u)z ≥ c A |z| 2 + c A n i=1 z 2 i u i ,
where c A > 0. This can be shown following the proofs of [14, Lemmas 4 and 6]. Now, assuming that the Lotka-Volterra source terms vanish and considering the discrete relative entropy

H[u k |ū] = n i=1 K∈T m(K)π i u k i,K log u k i,K ūi + ūi -u k i,K ,
ative.entrop ative.entrop [START_REF] Gallouët | Compactness of discrete approximate solutions to parabolic PDEs -Application to a turbulence model[END_REF] where ūi = m(Ω) -1 ||u 0 i || 0,1,T for i = 1, . . . , n, then we can prove, by adapting the proof of Theorem 3, that

H[u k |ū] + ∆t n i=1 σ∈E τ σ c A (D σ u k i ) 2 + 4c A (D σ (u k i ) 1/2 ) 2 ≤ H[u k-1 |ū].
Therefore, arguing as in [START_REF] Cancès | Large time behavior of nonlinear finite volume schemes for convection-diffusion equations[END_REF], there exist constants κ > 0 (depending on u 0 ) and λ > 0 (depending on c A , u 0 , and ζ) such that

n i=1 π i u k i -ūi 2 0,1,T ≤ κH[u 0 |ū]e -λt k for all k ≥ 1.
This result can be generalized to other cross-diffusion systems satisfying an inequality of the form (20).

3.2.

A cross-diffusion model for seawater intrusion. The seawater intrusion model analyzed in [START_REF] Oulhaj | Numerical analysis of a finite volume scheme for a seawater intrusion model with crossdiffusion in an unconfined aquifer[END_REF] describes the evolution of the height u 1 of freshwater and the height u 2 of saltwater in a porous medium. The asymptotic limit of vanishing aspect ratio between the thickness and the horizontal length of the porous medium in a Darcy transport model leads to the cross-diffusion system (1) with diffusion coefficients

A(u) = δu 1 δu 1 δu 2 u 2 ,
where δ ∈ (0, 1) is the ratio of the freshwater and saltwater density, and with no source terms. The original model contains a variable bottom b(x) of the porous medium; we assume for simplicity that the bottom is flat, b(x) = 0. Our arguments also hold for nonconstant functions b(x) if ∇b ∈ L ∞ (Ω). The entropy density is given by

h(u) = 1 δ u 1 (log u 1 -1) + 1 + u 2 (log u 2 -1) + 1 ,
and a computation shows that

z h (u)A(u)z = 1 2 (1 -δ)(z 2 1 + z 2 2 ) + 1 2 (1 + δ)(z 1 + z 2 ) 2 ≥ 1 2 (1 -δ)|z| 2 ,
for z ∈ R 2 . We infer that Hypotheses (H4)-(H5) are fulfilled. An entropy-dissipating finite-volume scheme, based on a two-point approximation with upwind mobilities, was already suggested and analyzed in [START_REF] Oulhaj | Numerical analysis of a finite volume scheme for a seawater intrusion model with crossdiffusion in an unconfined aquifer[END_REF] using similar techniques as in our paper. However, our analysis allows us to recast this model in a more general framework.

3.3.

A Keller-Segel system with additional cross-diffusion. It is well known that the parabolic-parabolic Keller-Segel model may lead to finite-time blow-up of weak solutions [START_REF] Blanchet | Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions[END_REF]. Adding cross-diffusion in the equation for the chemical signal allows for global weak solutions, which may help to approximate the Keller-Segel system close to the blow-up time. The evolution of the cell density u 1 and the chemical concentration u 2 is governed by equations (1) in two space dimensions with f 1 (u) = 0 and f 2 (u) = u 1u 2 and with the diffusion matrix (take m = 2 and n = 1 in [START_REF] Carrillo | Cross-diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[END_REF])

A(u) = 2u 1 -u 1 δ 1 ,
where δ > 0 describes the strength of cross-diffusion (and can be arbitrarily small). The associated entropy density given by

h(u) = h 1 (u 1 ) + h 2 (u 2 ) = u 1 (log u 1 -1) + 1 + 1 2δ u 2 2
does not satisfy Hypothesis (H4), since h 2 : (0, ∞) → R, h 2 (u 2 ) = u 2 /δ, is not invertible, but it satisfies Hypothesis (H5):

z h (u)A(u) = 2z 2 1 + δ -1 z 2 2 ≥ min{2, δ -1 }|z| 2 for z ∈ R 2 .
Hypothesis (H6) is satisfied since the elementary inequalities u 1 log u 2 ≤ u 1 log u 1 -u 1 +u 2 for u 1 , u 2 > 0 and -u 2 log u 2 ≤ e -1 imply that f 2 (u) log u 2 ≤ C(1 + h(u)). Although, formally, we cannot apply the results of the previous section, the technique still applies by defining h 2 as a function from R to R. We note that u 2 cannot be proven to be nonnegative, even not on the continuous level. However, the concentration u 2 becomes nonnegative in the limit δ → 0.

Proof of Theorem 3 sec.ex

We prove Theorem 3 by induction. If k = 0, we have u 0 i,K ≥ 0 for all K ∈ T , i = 1, . . . , n by assumption (H3). Assume that there exists a solution u k-1 to (10)-( 12) satisfying u k-1 i,K ≥ 0 for K ∈ T , i = 1, . . . , n. The construction of u k is split into several steps.

Step 1: Definition of a linearized problem. Let R > 0 and ε > 0. We define the set

Z R = w = (w 1 , . . . , w n ) ∈ H n T : w i 1,2,T < R for i = 1, . . . , n ,
and the mapping

F ε : Z R → R nθ , F ε (w) = w ε , with θ = #T and w ε = (w ε 1 , . . . , w ε n )
is the solution to the linear problem 3.lin 3.lin [START_REF] Gambino | A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion[END_REF] 

ε σ∈E K τ σ D K,σ w ε i -ε m(K)w ε i,K = m(K) ∆t (u i,K -u k-1 i,K ) + σ∈E K F i,K,σ -m(K)f i (u K ),
for K ∈ T and i = 1, . . . , n, where F i,K,σ is defined in in [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis[END_REF] and

u i,K = (h i ) -1 (w i,K ) > 0 is a function of w.
The existence of a unique solution w ε to this problem is a consequence of the proof of [16, Lemma 9.2].

Step 2: Continuity of F ε . We fix i ∈ {1, . . . , n}, multiply ( 22) by w ε i,K , sum over K ∈ T , and apply discrete integration by parts:

ε w ε i 2 1,2,T = - K∈T m(K) ∆t (u i,K -u k-1 i,K )w ε i,K + σ∈E int σ=K|L F i,K,σ D K,σ w ε i + K∈T m(K)f i (u K )w ε i,K =: J 1 + J 2 + J 3 .
3.aux1

3.aux1 [START_REF] Grün | Nonnegativity preserving convergent schemes for the thin film equation[END_REF] By the Cauchy-Schwarz inequality and definition [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis[END_REF] of F i,K,σ , we find that

J 1 ≤ 1 ∆t u i -u k-1 i 0,2,T w ε i 0,2,T , J 2 ≤ n j=1 σ∈E τ σ A ij (u σ )(D σ u j ) 2 1/2 σ∈E τ σ (D σ w ε i ) 2 1/2 , J 3 ≤ f i (u) 0,2,T w ε i 0,2,T . Since w ∈ Z R is bounded, so does u ∈ H n
T . Thus, there exists a constant C(R) > 0 independent of w ε such that J i ≤ C(R) w ε i 1,2,T . We deduce from (23) that ε w ε i 1,2,T ≤ C(R). We now turn to the proof of continuity of F ε . Let (w m ) m∈N ∈ Z R be such that w m → w as m → ∞. The previous bound shows that w ε,m = F ε (w m ) is uniformly bounded. By the theorem of Bolzano-Weierstraß, there exists a subsequence of (w ε,m ), which is not relabeled, such that w ε,m → w ε as m → ∞. Passing to the limit in scheme [START_REF] Gambino | A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion[END_REF] and taking into account the continuity of the nonlinear functions, we see that w ε i is a solution to [START_REF] Gambino | A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion[END_REF] for all i = 1, . . . , n, and it holds that w ε = F ε (w). Because of the uniqueness of the limit function, the whole sequence converges, which proves the continuity.

Step 3: Existence of a fixed point. We claim that F ε admits a fixed point. We use a topological degree argument [15, Chap. 1], i.e., we prove that deg(I -F ε , Z R , 0) = 1, where deg is the Brouwer topological degree. Since deg is invariant by homotopy, it is sufficient to prove that any solution (w ε , ρ) ∈ Z R ×[0, 1] to the fixed-point equation w ε = ρF ε (w ε ) satisfies (w ε , ρ) ∈ ∂Z R × [0, 1] for sufficiently large values of R > 0. Let (w ε , ρ) be a fixed point and ρ = 0 (the case ρ = 0 is clear). Then w ε solves 3.approx 3.approx [START_REF] Hairer | Geometric Numerical Integration[END_REF] 

ε σ∈E K τ σ D K,σ w ε i -ε m(K)w ε i,K = ρ m(K) ∆t (u ε i,K -u k-1 i,K )+ σ∈E K F ε i,K,σ -m(K)f i (u ε i,K ) ,
for all K ∈ T and i = 1, . . . , n, where u ε i,K = (h i ) -1 (w ε i,K ) > 0 and F ε i,K,σ is defined as in ( 11) with u replaced by u ε . The following discrete entropy inequality is the key argument. lem.ei Lemma 7 (Discrete entropy inequality). Let the assumptions of Theorem 3 hold, let 0 < ρ ≤ 1, ε > 0, and let u ε be a solution to [START_REF] Hairer | Geometric Numerical Integration[END_REF]. Then

ρ(1 -C f ∆t)H[u ε ] + ε∆t n i=1 w ε i 2 1,2,T + ρc A ∆t n i=1 σ∈E τ σ (D σ u ε i ) 2 ≤ ρH[u k-1 ] + ρC f ∆t m(Ω).
3.ei 3.ei [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] Proof. We multiply (24) by ∆tw ε i,K and sum over i = 1, . . . , n and K ∈ T . Then, after a discrete integration by parts, ε∆t n i=1 w ε i 2 1,2,T + J 4 + J 5 + J 6 = 0, where

J 4 = ρ n i=1 K∈T m(K)(u ε i,K -u k-1 i,K )w ε i,K , J 5 = ρ∆t n i,j=1 σ∈E int σ=K|L τ σ A ij (u ε σ )D K,σ u ε j D K,σ w ε i , J 6 = ρ∆t n i=1 K∈T m(K)f i (u ε K )w ε i,K .
Since w ε i,K = h i (u ε i,K ) for all K ∈ T and i = 1, . . . , n and h i is assumed to be convex, we have

J 4 ≥ ρ n i=1 K∈T m(K) h i (u ε i,K ) -h i (u k-1 i,K ) = ρ H[u ε ] -H[u k-1 ] .
We deduce from the discrete chain rule [START_REF] Chen | Rigorous mean-field limit and cross-diffusion[END_REF] and Hypothesis (H5) that

J 5 = ρ∆t n i,j=1 σ∈E int σ=K|L τ σ A ij (u ε σ )D K,σ (u ε j )D K,σ h i (u ε i ) = ρ∆t n i,j=1 σ∈E int σ=K|L τ σ h i (u ε i,σ )A ij (u ε σ )D K,σ u ε i D K,σ u ε j ≥ ρc A ∆t n i=1 σ∈E τ σ (D σ u ε i ) 2 .
Finally, by Hypothesis (H6),

J 6 ≥ -ρC f ∆t K∈T m(K)(1 + h(u ε K )) = -ρC f ∆tH[u ε ] -ρC f ∆t m(Ω).
This completes the proof.

We proceed with the topological degree argument. Set

R = 1 √ ε∆t H[u k-1 ] + C f ∆t m(Ω) 1/2 + 1.
The previous lemma implies that

ε∆t n i=1 w ε i 2 1,2,T ≤ ρ H[u k-1 ] + C f ∆t m(Ω) ≤ ε∆t(R -1) 2 , which gives n i=1 w ε i 2 1,2,T < R 2 .
We conclude that w ε ∈ ∂Z R and deg(I -F ε , Z R , 0) = 1. Thus, F ε admits at least one fixed point.

Step 4: Limit ε → 0. We deduce from Hypothesis (H4), Lemma 7, and ∆t < 1/C f that for any K ∈ T and i = 1, . . . , n,

c h m(K)(u ε i,K -1) ≤ m(K)h i (u ε i,K ) ≤ H[u ε ] ≤ H[u k-1 ] + C f ∆t m(Ω) 1 -C f ∆t .
This shows that (u ε i,K ) is bounded uniformly in ε. Therefore, there exists a subsequence (not relabeled) such that u ε i,K → u i,K as ε → 0. Lemma 7 implies the existence of a subsequence such that εw ε i,K → 0. Hence, performing the limit ε → 0 in [START_REF] Hairer | Geometric Numerical Integration[END_REF], we deduce the existence of a solution to (9)- [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong crossdiffusion[END_REF]. Passing to the limit ε → 0 in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] yields the entropy inequality [START_REF] Eymard | Finite volume methods[END_REF], which finishes the proof of Theorem 3.

A priori estimates

sec.est

We establish some a priori estimates uniform in ∆x and ∆t for the solutions to (9)-( 12).

lem.est1 Lemma 8 (Discrete space estimates). Let the assumptions of Theorem 3 hold and let ∆t < 1/C f . Then there exists a constant C > 0 independent of ∆x and ∆t such that for i = 1, . . . , n,

max k=1,...,N T u k i 0,1,T + N T k=1 ∆t u k i 2 1,2,T + N T k=1 ∆t u k i 3 0,3,T ≤ C.
Proof. Let i ∈ {1, . . . , n} be fixed. After summing ( 16) over K ∈ T and applying the discrete Gronwall inequality, Hypothesis (H4) shows that max k=1,...,N T

u k i 0,1,T + N T k=1 ∆t|u k i | 2 1,2,T ≤ C.
By the discrete Poincaré-Wirtinger inequality [5, Theorem 3.6], we infer the bound

N T k=1 ∆t u k i 2 0,2,T ≤ C. Consequently, N T k=1 ∆t u k i 2 1,2,T ≤ C.
In order to show the remaining bound, we apply the discrete Gagliardo-Nirenberg inequality with θ = 2/3 [5, Theorem 3.4]:

u k i 0,3,T ≤ Cζ -θ/2 u k i θ 1,2,T u k i 1-θ 0,1,T ≤ Cζ -1/3 max =1,...,N T u i 1/3 0,1,T u k i 2/3
1,2,T .

Summing over k = 1, . . . , N T gives

N T k=1 ∆t u k i 3 0,3,T ≤ Cζ -1 max =1,...,N T u i 0,1,T N T k=1 ∆t u k i 2 1,2,T ≤ C.
This ends the proof.

In the previous proof, we use the fact that the domain Ω is two-dimensional. We can derive a uniform estimate for u k i in L 8/3 (Ω T ) in three-dimensional domains. This bound is sufficient subject to an adaption of the space for the following estimate. Let the discrete time derivative of a function v ∈ H T ,∆t be given by

∂ ∆t t v k = v k -v k-1 ∆t , k = 1, . . . , N T .
lem.est2 Lemma 9 (Discrete time estimate). Let the assumptions of Theorem 3 hold and let ∆t < 1/C f . Then there exists a constant C > 0 independent of ∆x and ∆t such that for i = 1, . . . , n,

N T k=1 ∆t ∂ ∆t t u k i -1,6/5,T ≤ C.
Proof. Let k ∈ {1, . . . , N T } and i ∈ {1, . . . , n} be fixed and let φ ∈ H T be such that φ 1,6,T = 1. We multiply (10) by φ K , sum over K ∈ T , and apply discrete integration by parts:

K∈T m(K) u k i,K -u k-1 i,K ∆t φ K = - n j=1 σ∈E int σ=K|L τ σ A ij (u k σ )D K,σ u k j D K,σ φ + K∈T m(K)f i (u k K )φ K = J 7 + J 8 .
3.J78

3.J78 [START_REF] Jüngel | Entropy Methods for Diffusive Partial Differential Equations[END_REF] The Hölder inequality and definition of τ σ imply that [START_REF] Chen | Rigorous mean-field limit and cross-diffusion[END_REF]. Then Hypothesis (H4) implies ( 14) and in particular 0

3.J7 3.J7 (27) |J 7 | ≤ n j=1 σ∈E int σ=K|L m(σ)d σ |A ij (u k σ )| 3 1/3 |u k j | 1,2,T |φ| 1,6,T . If u k i,K = u k i,K,σ , we have u k i,σ = u k i,σ and u k i,σ solves
≤ u k i,σ ≤ u k i,K + u k i,L
. By Hypothesis (H5), the diffusion coefficients A ij grow at most linearly. Consequently, for σ = K|L,

|A ij (u k σ )| 3 ≤ C n =1 1 + |u k ,K | 3 + |u k ,L | 3 .
Hence, taking into account the mesh regularity [START_REF] Cancès | Large time behavior of nonlinear finite volume schemes for convection-diffusion equations[END_REF],

σ∈E int σ=K|L m(σ)d σ |A ij (u k σ )| 3 ≤ C K∈T (1 + |u k i,K | 3 ) σ∈E int,K m(σ)ζ -1 d(x K , σ).
Using the property

K∈T σ∈E int,K m(σ)d(x K , σ) ≤ 2 K∈T m(K) = 2 m(Ω),
(the constant on the right-hand side slightly changes in three space dimensions), we conclude from ( 27) that

|J 7 | ≤ Cζ -1 1 + n j=1 u k j 3 0,3,T 1/3 n j=1 |u k j | 1,2,T |φ| 1,6,T .
Next, in view of Hypothesis (H6),

|J 8 | ≤ K∈T m(K)|f i (u k K )| |φ K | ≤ C f φ 0,1,T + n i=1 (u k i ) 2 φ 0,1,T .
We apply Hölder's inequality to conclude that there exists a constant C > 0 independent of ∆x and ∆t such that

|J 8 | ≤ C φ 0,6,T + n i=1 u k i 2 0,3,T φ 0,3,T .
Moreover, thanks to the discrete Poincaré-Sobolev inequality obtained in [5, Theorem 3], we have φ 0,3,T ≤ Cζ -5/6 φ 1,6,T , which implies the existence of a constant, still denoted by C > 0, such that

|J 8 | ≤ C 1 + n i=1 u k i 2 0,3,T φ 1,6,T .
Inserting the estimates for J 7 and J 8 into (26) and using Lemma 8 gives

N T k=1 ∆t u k i -u k-1 i ∆t -1,6/5,T = sup φ 1,6,T =1 N T k=1 ∆t K∈T m(K) u k i -u k-1 i ∆t φ K ≤ C N T k=1 ∆t 1 + n j=1 u k j 3 0,3,T 1/3 N T k=1 ∆t n j=1 u k j 2 1,2,T 1/2 + CT + C n i=1 N T k=1 ∆t u k i 2 0,3,T ≤ C N T k=1 ∆t 1 + n j=1 u k j 3 0,3,T 1/3 N T k=1 ∆t n j=1 u k j 2 1,2,T 1/2 
+ CT + CT 1/3 n i=1 N T k=1 ∆t u k i 3 0,3,T 2/3 ≤ C.
This concludes the proof.

proof of Theorem 4

sec.conv

Before we prove the theorem, we show some compactness properties.

6.1. Compactness properties. Let (D m ) m∈N be a sequence of admissible meshes of Ω T satisfying the mesh regularity [START_REF] Cancès | Large time behavior of nonlinear finite volume schemes for convection-diffusion equations[END_REF] uniformly in m ∈ N and let ∆t m < 1/C f . We claim that the estimates from Lemmas 8 and 9 imply the strong convergence of a subsequence of (u i,m ).

prop.conv Proposition 10 (Strong convergence). Let the assumptions of Theorem 4 hold and let (u m ) m∈N be a sequence of discrete solutions to (9)-( 12) constructed in Theorem 3. Then there exists a subsequence of (u m ), which is not relabeled, and u = (u 1 , . . . , u n ) ∈ L 3 (Ω T ) such that for any p < 3 and i = 1, . . . , n,

u i,m → u i strongly in L p (Ω T ) as m → ∞.
Proof. The idea is to apply the discrete version of the Aubin-Lions lemma obtained in [START_REF] Gallouët | Compactness of discrete approximate solutions to parabolic PDEs -Application to a turbulence model[END_REF]Theorem 3.4]. Because of the estimates

N T k=1 ∆t u k i 2 1,2,T + N T k=1 ∆t ∂ ∆t t u k i -1,6/5,T ≤ C,
it remains to show that the discrete norms • 1,2,T and • -1,6/5,T verify the following assumptions:

(1) For any sequence (v m ) m∈N ⊂ H Tm such that there exists C > 0 with v m 1,2,Tm ≤ C for all m ∈ N, there exists v ∈ L 2 (Ω) satisfying, up to a subsequence,

v m → v strongly in L 2 (Ω). (2) If v m → v strongly in L 2 (Ω) and v m -1,6/5,Tm → 0 as m → ∞, then v = 0. Property (1) is a direct consequence of [17, Lemma 5.6]. For property (2), let φ ∈ C ∞ 0 (Ω) and set φ K = φ(x K ) for K ∈ T m and φ m (x) = K∈Tm φ K 1 K (x), x ∈ Ω.
Then φ m ∈ H Tm and, in view of the definition of • 1,6,Tm ,

φ 6 1,6,Tm ≤ m(Ω) φ 6 ∞ + ∇φ 6 L ∞ (Ω) K∈T σ∈E int,K m(σ)d σ .
Hence, using [17, (1.10)] this implies that φ m 1,6,Tm ≤ C(ζ, Ω) φ W 1,∞ (Ω) and consequently,

3.aux2 3.aux2 (28)

Ω v m (x)φ m (x)dx ≤ C(Ω, ζ) v m -1,6/5,Tm φ W 1,∞ (Ω) . Now, if we assume that v m → v strongly in L 2 (Ω) as m → ∞, we have Ω v m (x)φ m (x)dx → Ω v(v)φ(x)dx,
since also φ m → φ strongly in L 2 (Ω). Hence, if v m -1,6/5,Tm → 0, we deduce from (28) that Ω v(x)φ(x)dx = 0, which yields v = 0. This proves property (2). We conclude from [START_REF] Gallouët | Compactness of discrete approximate solutions to parabolic PDEs -Application to a turbulence model[END_REF]Theorem 3.4] that, up to a subsequence, u m → u strongly in L 1 (0, T ; L 2 (Ω)). Then the uniform L 3 (Ω T ) bound obtained in Lemma 8 and the dominated convergence theorem show that u m → u strongly in L p (Ω T ) for any p < 3.

lem.grad Lemma 11 (Convergence of the gradient). Under the assumptions of Proposition 10, there exists a subsequence of (u m ) m∈N such that, as m → ∞,

∇ m u i,m ∇u i weakly in L 2 (Ω T ), i = 1, . . . , n,
where ∇ m is defined in Section 2.3.

Proof. Lemma 8 implies that (∇ m u i,m ) is bounded in L 2 (Ω T ). Thus, for a subsequence, ∇ m u i,m v i weakly in Ω T as m → ∞. It is shown in [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis[END_REF]Lemma 4.4] that v i = ∇u i .

6.2. Convergence of the scheme. To finish the proof of Theorem 4, we need to show that the function u obtained in Proposition 10 is a weak solution to (1) and (4). To this end, we follow the strategy of [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis[END_REF]. Let i ∈ {1, . . . , n} be fixed, let ψ i ∈ C ∞ 0 (Ω × [0, T )) be given, and let η m = max{∆x m , ∆t m } be sufficiently small such that supp(ψ i ) ⊂ {x ∈ Ω : d(x, ∂Ω) > η m } × [0, T ). For the limit, we introduce the following notation:

F m 10 = - T 0 Ω u i,m ∂ t ψ i dxdt - Ω u i,m (x, 0)ψ i (x, 0)dx, F m 20 = n j=1 T 0 Ω A ij (u m )∇ m u j,m • ∇ψ i dxdt, F m 30 = - T 0 Ω f i (u m )ψ i dxdt.
The convergence results of Proposition 10 and Lemma 11, the continuity of A ij and f i , and the assumption on the initial data show that, as m → ∞,

F m 10 + F m 20 + F m 30 → - T 0 Ω u i ∂ t ψ i dxdt - Ω u 0 i (x)ψ i (x, 0)dx + n j=1 T 0 Ω A ij (u)∇u j • ∇ψ i dxdt - T 0 Ω f i (u)ψ i dxdt.
We proceed with the limit m → ∞ in scheme [START_REF] Carrillo | Cross-diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[END_REF]. For this, we set ψ k i,K := ψ i (x K , t k ), multiply [START_REF] Carrillo | Cross-diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[END_REF] by ∆t m ψ k-1 i,K , and sum over K ∈ T m and i = 1, . . . , n, leading to

F m 1 + F m 2 + F m 3 = 0, where 4.FFF 4.FFF (29) 
F m 1 = N T k=1 K∈T m(K) u k i,K -u k-1 i,K ψ k-1 i,K , F m 2 = - n j=1 N T k=1 ∆t m K∈T σ∈E int,K τ σ A ij (u k σ )D K,σ u k j ψ k-1 i,K , F m 3 = - N T k=1 ∆t m K∈T m(K)f i (u k K )ψ k-1 i,K .
The aim is to show that F m j0 -F m j → 0 as m → ∞ for j = 1, 2, 3. Then [START_REF] Murakawa | A linear finite volume method for nonlinear cross-diffusion systems[END_REF] shows that F m 10 + F m 20 + F m 30 → 0, which finishes the proof. It is proved in [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis[END_REF]Theorem 5.2], using the L 1 (Ω T ) bound for u m and the regularity of ψ, that F m 10 -F m 1 → 0. Furthermore, applying the growth condition for f i in Hypothesis (H6) and Lemma 8, we deduce that

|F m 30 -F m 3 | ≤ η m ψ i C 1 (Ω T ) N T k=1 ∆t m K∈T m(K)|f i (u k K )| ≤ Cη m ψ i C 1 (Ω T ) T m(Ω) + n j=1 N T k=1 ∆t m u k j 2 0,2,Tm ≤ Cη m → 0.
The proof of F m 20 -F m 2 → 0 is more involved. First, we apply discrete integration by parts and split F m 2 = F m 21 + F m 22 into two parts with

F m 21 = n j=1 N T k=1 ∆t m K∈T σ∈E int,K τ σ A ij (u k K )D K,σ u k j D K,σ ψ k-1 i , F m 22 = n j=1 N T k=1 ∆t m K∈T σ∈E int,K τ σ A ij (u k σ ) -A ij (u k K ) D K,σ u k j D K,σ ψ k-1 i .
The definition of the discrete gradient ∇ m in Section 2.3 gives

|F m 20 -F m 21 | ≤ n j=1 N T k=1 K∈T σ∈E int,K m(σ)|A ij (u k K )||D K,σ u k j | × t k t k-1 D K,σ ψ k-1 i d σ - 1 m(T K,σ ) T K,σ ∇ψ i • ν K,σ dx dt .
It is shown in the proof of [START_REF] Chainais-Hillairet | Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis[END_REF]Theorem 5.1] that there exists a constant C 0 > 0 such that

t k t k-1 D K,σ ψ k-1 i d σ - 1 m(T K,σ ) T K,σ ∇ψ i • ν K,σ dx dt ≤ C 0 ∆t m η m .
Hence, by the Cauchy-Schwarz inequality,

|F m 20 -F m 21 | ≤ C 0 η m n j=1 N T k=1 ∆t m K∈T σ∈E int,K m(σ)|A ij (u k K )| |D K,σ u k j | ≤ C 0 η m n j=1 N T k=1 ∆t m u k j 1,2,Tm K∈T |A ij (u k K )| 2 σ∈E int,K m(σ)d σ 1/2
.

It follows from the mesh regularity (8) that

σ∈E int,K m(σ)d σ ≤ ζ -1 σ∈E int,K m(σ)d(x K , σ) ≤ 2ζ -1 m(K).
Therefore, applying the Cauchy-Schwarz inequality again, we obtain 

|F m 20 -F m 21 | ≤ C(ζ)η m n j=1 N T k=1 ∆t m u k j 1,2,Tm K∈T m(K)|A ij (u k K )| 2 1/2 ≤ C(ζ)η m n j=1 N T k=1 ∆t m u k j 2 1,2,Tm 1/2 n j=1 N T k=1 ∆t m A ij (u k ) 2 0,2,Tm
G m = n j=1 N T k=1 ∆t m K∈T σ∈E int,K τ σ |A ij (u k σ ) -A ij (u k K )| |D K,σ u k j |.
Since A ij is assumed to be Lipschitz continuous in Hypothesis (H5) and

u k m,i,σ ≤ u k m,i,K +u k m,i,L
for σ ∈ E int (see ( 14)), we deduce from the Cauchy-Schwarz inequality that

G m ≤ C n j, =1 N T k=1 ∆t m K∈T σ∈E int,K τ σ |u k ,σ -u k ,K | |D K,σ u k j | ≤ C n =1 N T k=1 ∆t m σ∈E τ σ (D σ u k ) 2 1/2 n j=1 N T k=1 ∆t m σ∈E τ σ (D σ u k j ) 2 1/2
.

By Lemma 8, the right-hand side is bounded uniformly in m. Thus, we infer from [START_REF] Shigesada | Biological Invasions: Theory and Practise[END_REF] that

|F m 22 | ≤ Cη m → 0 and eventually, |F m 20 -F m 2 | ≤ |F m 20 -F m 21 | + |F m 22 | → 0.
This finishes the proof.

Numerical results

sec.numer

We present in this section some numerical experiments for the SKT model ( 1)-( 4) in one and two space dimensions and for two and three species. For the two-species SKT model, some of our test cases are inspired by [START_REF] Galiano | Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics[END_REF][START_REF] Gambino | A velocity-diffusion method for a Lotka-Volterra system with nonlinear cross and self-diffusion[END_REF]. 7.1. Implementation of the scheme. The finite-volume scheme (9)-( 12) is implemented in MATLAB. Since the numerical scheme is implicit in time, we have to solve a nonlinear system of equations at each time step. In the one-dimensional case, we use Newton's method.

Starting from u k-1 = (u k-1 1 , u k-1
2 ), we apply a Newton method with precision ε = 10 -10 to approximate the solution to the scheme at time step k. In the two-dimensional case, we use a Newton method complemented by an adaptive time-stepping strategy to approximate the solution of the scheme at time t k . More precisely, starting again from

u k-1 = (u k-1 1 , u k-1
2 ), we launch a Newton method. If the method does not converge with precision ε = 10 -8 after at most 50 steps, we multiply the time step by a factor 0.2 and restart the Newton method. At the beginning of each time step, we increase the value of the previous time step size by multiplying it by 1.1. Moreover, we impose the condition 10 -8 ≤ ∆t k ≤ min{10 -2 , C -1 f } with an initial time step size smaller than min{10 -2 , C -1 f }. We observe in Sections 7.3 and 7.4 that the adaptive time-step strategy improves the numerical performance of our scheme in terms of number of time steps, CPU time, etc. However, this strategy is not mandatory and, as in our one-dimensional test case, we can always implement our scheme with a constant time step with a reasonable size.

.convergence 7.2. Test case 1: Rate of convergence in space. In this section, we illustrate the order of convergence in space for the two-species SKT model in one space dimension with Ω = (-π, π). We choose the coefficients a i0 = 0.05 and a ii = 2.5 • 10 -5 for i = 1, 2, a 12 = 1.025 and a 21 = 0.075. We take rather stiff values of the Lotka-Volterra constants as in [ Since exact solutions to the SKT model are not explicitly known, we compute a reference solution on a uniform mesh composed of 5120 cells and with ∆t = (1/5120) 2 . We use this rather small value of ∆t because the Euler discretization in time exhibits a first-order convergence rate, while we expect, as observed for instance in [9], a second-order convergence rate in space for scheme (9)-( 12), due to the logarithmic mean used to approximate the mobility coefficients in the numerical fluxes. Besides, the values of the Lotka-Volterra constants yield C -1 f = 2.1 • 10 -3 such that the condition ∆t < C -1 f is satisfied. We compute approximate solutions on uniform meshes made of 40, 80, 160, 320, 640, and 1280 cells, respectively. In Table 1, we present the L 2 (Ω) norm of the difference between the approximate solutions and the average of the reference solution u ref at the final time T = 10 -3 . As expected, we observe a second-order convergence rate in space. ssec.pattern 7.3. Test case 2: Pattern formation. We illustrate the formation of spatial pattern exhibited by the two-species SKT model in the two-dimensional domain Ω = (0, 1) 2 with a mesh composed of 3584 triangles (see Figure 2 Lotka-Volterra coefficients are chosen as in test case 1. For these values, the stable equilibrium for the Lotka-Volterra ODE system is given by u * = (2, 0.5) (see, e.g., [START_REF] Tian | Instability induced by cross-diffusion in reaction-diffusion systems[END_REF]). The initial datum is a perturbation of the constant equilibrium: u 0 1 (x, y) = 2 + 0.31g(x -0.25, y -0.25) + 0.3g(x -0.75, y -0.75), u 0 2 (x, y) = 0.5, where g(x, y) = max{1 -8 2 x 2 -8 2 y 2 , 0}. 8.def.g 8.def.g [START_REF] Shigesada | Spatial segregation of interacting species[END_REF] In Figure 1, we show the evolution of the densities u 1 and u 2 at different times. At time t = 0.5, the solution (u 1 , u 2 ) seems to converge towards the constant equilibrium state u * . However, due to the cross-diffusion terms, we observe after this transient time the formation of spatial patterns, which indicate that the state (2, 0.5) is unstable for the PDE system. Indeed, because of our choice of (a ij ), u * is an unstable equilibrium for the SKT model [ In Table 2, we compare the numerical performance of our adaptive time-step strategy with the constant time-step approach. In the first approach, we set ∆t 0 = 10 -4 , while in the former one, we consider ∆t = 10 -4 . As expected, the adaptive time-step strategy requires less time steps, needs less computational time, and a rather small average number of Newton iterations per time step compared to the other approach. However, it is worth mentioning that with the rather stiff values of the Lotka-Volterra constants considered here, the overall computational time to solve our scheme remains satisfactory even without an adaptive time-step strategy. adaptive time step ∆t 0 = 10 1 (x, y) = 0.51 (0.2,0.4) 2 (x, y), u 0 2 (x, y) = 0.71 (0.6,0.8)×(0.2,0.4) (x, y), u 0 3 (x, y) = 1 (0.4,0.6)×(0.6,0.8) (x, y). In Figure 2 right, we present, in semilogarithmic scale, the behavior of the discrete relative Boltzmann entropy [START_REF] Gallouët | Compactness of discrete approximate solutions to parabolic PDEs -Application to a turbulence model[END_REF] and the squared weighted L 1 norm versus time (with final time T = 1) for a mesh of Ω = (0, 1) 2 composed of 3584 triangles. As expected (see Remark 6), we observe an exponential convergence rate of the solutions to the scheme towards the constant steady state. Finally, we compare the numerical performance of our scheme implemented with an adaptive time-step strategy (using ∆t 0 = 10 -4 ) and a fixed time-step approach (using ∆t = 10 -4 ). The conclusions of Section 7.3 also hold in this test case.

Concluding remarks

We have presented a structure-preserving finite-volume scheme for the n-species SKT crossdiffusion system. The structure preservation is based on a discrete chain rule, which exploits the fact that the entropy density is the sum of scalar functions, giving a diagonal Hessian of the entropy density. Our scheme can be generalized to a class of cross-diffusion systems with a Shannon-type entropy structure and to cross-diffusion systems with drift terms, thus 3. Numerical performance of two different computational strategies.

table.perf2

showing some flexibility of the scheme. We have proved the existence of a discrete finitevolume solution and the convergence of the scheme, based on discrete entropy estimates and the discrete Aubin-Lions lemma of [START_REF] Gallouët | Compactness of discrete approximate solutions to parabolic PDEs -Application to a turbulence model[END_REF]. Our numerical experiments illustrate the expected pattern-formation behavior of the two-species SKT model and the exponential decay property of a three-species SKT model. A simple adaptive time-step strategy allows us to reduce the computational time, but iterations with a constant time step of reasonable size would be possible too.

Our numerical results indicate a second-order convergence rate in the L 2 norm for the onedimensional equations, which is a consequence of the logarithmic mean used to approximate the mobility in the numerical flux. This rate is similar to that one obtained in [START_REF] Sun | An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems[END_REF]Example 4.1] for a lowest-order discontinuous Galerkin scheme (k = 1) applied to the SKT model. Future work will be concerned with the question to what extent the assumption that the entropy density is the sum of scalar functions can be relaxed, thus making a step forward to devise a matrix-valued discrete chain rule. Another research direction is the development of higher-order schemes in time and space, and a first result has been provided by [START_REF] Braukhoff | An entropy structure preserving space-time Galerkin method for cross-diffusion systems[END_REF].

  sec.exam We present several examples for which Hypotheses (H4)-(H6) are satisfied. The examples include the SKT model.

1 / 2 . 2 .(

 122 Since A ij (u k ) grows at most linearly, Here, we see that the L 8/3 (Ω T ) estimate of u k i for three-dimensional domains is sufficient.) The uniform estimates in Lemma 8 then imply that|F m 20 -F m 2 | ≤ C(ζ)η m → 0 as m → ∞. Finally, we estimate F m 22 according to |F m 22 | ≤ Cη m ψ i C 1 (Ω T ) G m, where 4.F22 4.F22[START_REF] Shigesada | Biological Invasions: Theory and Practise[END_REF] 

  22, Section 3.3], b 10 = 59.7, b 20 = 49.75, b 11 = 24.875, and b 12 = b 21 = b 22 = 19.9. Finally, we impose the initial datum u 0 1 (x, y) = 2 + 0.31f (x -0.25) + 0.31f (x -0.75), u 0 2 (x, y) = 0.5, where f (x) = max{1 -8 2 x 2 , 0}.

  33, Theorem 3.1]. Moreover, because of b 10 /b 11 < b 20 /b 21 and b 20 /b 22 < b 10 /b 12 , the two species coexist [30, Section 6.2]. These theoretical results confirm our numerical outcome.
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 4 Test case 3: Convergence to a constant steady state. We study the large-time behavior of the scheme by considering the SKT model with three species and without source terms. We choose a 10 = 1, a 20 = 5, a 30 = 7, a 11 = 2, a 21 = a 31 = 1, a 12 = 3, a 22 = 2, a 32 = 1,
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 1 Figure 1. Test case 2: Evolution of the densities u 1 (left column) and u 2 (right column) at times t = 0.5 (top) and t = 10 (bottom).
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a 13 = 4 ,

 134 a 23 = 4/3, a 33 = 2, with π 1 = 1, π 2 = 3 and π 3 = 4 and the initial datum u 0

2 2Figure 2 .

 22 Figure 2. Left: Admissible mesh of 3584 triangles. Right (test case 3): Evolution of the relative Boltzmann entropy and the squared weighted L 1 norm in semilogarithmic scale.
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Table 1 .

 1 left) and with final time T = 10. The diffusion and L 2 (Ω) norm of the difference u iu ref,i in space at final time T = 10 -3 .

	cells	u 1 L 2 error	order	u 2 L 2 error	order
	40	8.2518e-04		2.6979e-05	
	80	2.1542e-04	1.94	1.2174e-05	1.15
	160	5.5456e-05	1.96	4.2493e-06	1.52
	320	1.3889e-05	2.00	1.0963e-06	1.95
	640	3.4352e-06	2.02	2.7278e-07	2.01
	1280	8.1811e-07	2.07	6.5056e-08	2.07
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