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Abstract. We introduce a new problem that can be studied from 3
different angles: scheduling, matrix visualization and vertex ordering in
hypergraphs. We prove the equivalence of the different formulations of
the problem and use them to prove several of its NP-Hard and polyno-
mial subcases. This problem allows to find more elegant (and arguably
shorter) proofs for several combinatorial problems. Including “Can a ma-
trix can be made triangular by permuting rows and columns?” and weak
k-visit. It also provides an elegant generalization of Johnson’s argument
for the two-machine flowshop.

Keywords: Combinatorial Optimization · Scheduling · Graph theory ·
Binary matrix visualization

1 Introduction

In many agendas, one has to first make (costly) investments before being able
to carry (rewarding) projects. Each project requires a specific set of investments,
while each investment might be needed in several projects. Usually researchers
allow to select only a subset of projects to be completed (see [Lus82]). However,
we show in this paper that considering the constraint of selecting all projects
leads to an elegant problem with real world applications. The question we tackle
can be stated as follows: “In which order should we schedule our (predefined
sets of) investments and projects, so as to minimize the initial treasury (or
loan) required to achieve our agenda?” More conceptually, each project has some
required investments that should be paid. Possibly, projects have investments in
common. Depending on the investment/project schedule, the initial required
treasury varies. We note that it is not allowed to reach a negative amount of
treasury. Figure 1 shows an example of possible order of projects. All investments
(resp. projects) cost (resp. produce) 1 unit of money except investments 5 and
6 which cost 3 units, and project f produces 2 units.

For more details:

– project a requires investments 1,2
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– project b requires 2,3
– project c requires 3,4
– project d requires 4,5
– project e requires 5
– project f requires 2,4,6

In this example, we choose to carry out project a first. Since it requires invest-
ments 1 and 2 that both cost 1 units of money, globally, project a costs 2 units
of money and produces 1 unit of money. Then, we schedule other projects until
every project is completed. Using this specific schedule, we need at least 7 units
of treasury to complete this specific project schedule.

project a project b project cproject d project eproject f
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Fig. 1: Example of a treasury diagram where we trace the evolution of the trea-
sury upon projects completion

We now give some examples of applications in which the problem described
above arises.

In parallel database join optimization [MR93], one processor loads pages
of the secondary memory and executes joins when they are available. We can
represent this problem as a hypergraph where vertices are pages and edges are
joins to perform. We want to get a page and join load order that minimizes the
total execution time.

This problem also occurs for image processing in embedded vision systems
(for more details see [HSKM16] and [HSKM18]). These systems consist of calcu-
lating a series of image transformations (output tasks). All these transformations
require some parts of the original image (input tasks).

Finally, it is also interesting from a theoretical point of view. Although the
results can be applied in various fields (scheduling, graph theory and data visu-
alization), the problem is not well studied. It generalizes the following problem,
whose computational complexity was asked by Wilf [Wil93]: “Given a square
0/1 matrix, is it possible to make it triangular by permuting both rows and
columns?”. Wilf’s problem was proved NP-Hard [FRV15], but the proof is very



Triangle Width: between graph theory, scheduling and matrix visualization III

far from straightforward. We show that the triangular matrix problem is a sub-
case of triangle width and give a simple NP-Hardness proof.

The structure of the paper is the following. In Section 2, we present three
different formulations of triangle width (vertex ordering, scheduling and matrix
visualization). We show the equivalence between these formulations. In Section 3,
we prove the NP-Hardness of the problem and of some of its sub-cases. In
Section 4, we study polynomial time cases of triangle width, in particular, we
give an optimal greedy algorithm that solves a generalization of F2||Cmax with
negative time-lags which is inspired by Johnson’s algorithm [GJS76].

2 Definition and Representation

Let V be the set of investments, and E be the set of projects. We express the
dependence of a project e ∈ E on an investment v ∈ V by an hypergraph
H = (V,E) in which the vertex v is incident to the hyper-edge e.

The cost of each investment v is given by the function pv : V → R+. Similarly,
the revenue of each project e is given by the function pe : E → R+.

Consider the sequences σV (order of investments) and σE (order of projects).
For a finite set S, we denote by perm(S), the set of permutations on S.

Input:

– hypergraph H = (V,E)
– pv : V → R+ cost of vertex v (investment)
– pe : E → R+ production of hyper-edge e (project)
– b ∈ R+ amount of initial treasury

Question:
Is there a permutation σ ∈ perm(V ∪ E) such that:

– for all e ∈ E and for all v ∈ e, σ(v) < σ(e)
– for all prefix R of σ, b+

∑
x∈R p(x) ≥ 0 where p(x) = −pv(x) if x ∈ V and

p(x) = pe(x) if x ∈ E.

As a first result, we observe that given a permutation σV of vertices (invest-
ments), it is possible to find an optimal permutation σE of projects by scheduling
them as soon as possible.

Theorem 1 For any hypergraph H = (V,E), any cost function p : V → R+,
any profit function p : E → R+ and any permutation σV ∈ perm(V ), an optimal
permutation σE (depending on σV ) can be found greedily by scheduling elements
of E as soon as possible.

Proof. We use an exchange argument.
Assume there is a solution given by permutations σV , σE in which a project

e which is not scheduled as soon as possible. Scheduling it just after its last
required investment will maintain feasibility and will not increase the amount of
initial treasury required.
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Considering Theorem 1 results and the solution given in the introduction, we
can obtain a new optimal permutation of projects (σE) with respect of a given
permutation of investments (σV ). We obtain the schedule described in Figure
2. We obtain the permutation σE =< a, b, c, d, e, f > and it leads to a required
treasury of 5 which is better than the solution given in the introduction which
was 7.
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Fig. 2: Another example of a treasury diagram where investments cost money
and project produce money

We now present in this section 3 new formulations of this problem using The-
orem 1 (i.e. vertex ordering, scheduling and binary matrix visualization).

2.1 Formalization and formulation as a vertex ordering problem

Using Theorem 1, we can deduce the following decision model for our problem
and express a solution using only a permutation on vertices σV (if there is no
ambiguity, we call it σ)

Input:

– hypergraph H = (V,E)
– pv : V → R+ cost of vertex v (investment)
– pe : E → R+ production of hyper-edge e (project)
– b ∈ R+ amount of initial treasury

Question:
Is there a permutation σ on vertices (investments) such that after each invest-

ment, just before starting a project (if one is available), the treasury is positive.
More formally, at each step i ∈ {1, 2, . . . , |V |} (gathering the funds to start the
ith investment), the amount of initial treasury (b) together with the amount of
money produced by already carried projects (which is

∑
e∈Eσ(i−1) pe(e) where
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Eσ(i− 1) denotes the set of hyper-edges induced by the first i− 1 vertices of the

permutation) must be at least the cost of the first i investments (
∑i
j=1 pv(σ(j)))

In other words, the permutation σ must satisfy Inequalities (1).

∃ σ ∈ perm(V ),∀i ∈ {1, 2, . . . , |V |} , b+
∑

e∈Eσ(i−1)

pe(e) ≥
i∑

j=1

pv(σ(j)) (1)

Figure 3 presents an example of a vertex ordering. All vertices cost 1 unit of
treasury except the two rightmost ones that cost 3 units of treasury. Each hyper-
edge (project) produces 1 unit of treasury except the hyper-edge of degree 3 that
produces 2 units of treasury. We start with an initial treasury b of 5.

(a) i = 1, funds: 5− 1 = 4 (b) i = 2, funds: 4− 1 = 3 (c) i = 3, funds: 3−1+1 = 3

(d) i = 4, funds: 3−1+1 = 3(e) i = 5, funds: 3−3+1 = 1(f) i = 6, funds: 1−3+2 = 0

Fig. 3: Vertex ordering solution where the treasury initial capacity b = 5.

As will be presented in the next section, the vertex ordering formulation
is very helpful to obtain complexity results. Indeed, NP-Hardness proofs are
tedious to make with other formulations.

2.2 Formulation as a scheduling problem

Let us consider the following two-machine scheduling problem:

Input:

– hypergraph H = (V,E)

– pv : V → R+ durations of tasks on the input processor.

– pe : E → R+ durations of tasks on the output processor.

– b ∈ R+ amount of allowed idle time on the output processor.
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The hypergraph H defines the requirements between input and output tasks.
An edge e (output task) has all its endpoints in H as requirements.

Each task of V (resp. E) has duration pv (resp pe). The goal is to find
a schedule defined by permutations σV , σE such that tasks V (resp. E) are
scheduled in these orders on the input processor (resp. output processor) with
idle time of b on the output processor. In our context, there is no sense of having
an input task which does not have any related output (in this case, we can just
remove it). Also, if we have output tasks without any prerequisites, it is dominant
to place them at the beginning of the scheduling on the output processor and
we do not need to consider them in our problem. Thus, up to preprocessing, we
assume that there are neither isolated vertices nor empty edges in the input.

As for the vertex ordering problem, one can note that the order of output tasks
(hyper-edges) is strongly related to the order of input tasks (vertices). Indeed,
when scheduling an input task v, it is dominant to schedule all output tasks
e that have all their precedences scheduled (i.e. if there is a feasible solution
that do not respect this property, one can exchange output tasks to make this
property true without removing feasibility). This argument allows us to have a
more compact formulation and only consider the set of permutations σV instead
of σV × σE .

More formally, for each step i of a feasible schedule (scheduling the ith input
task), one has to guarantee that the sum of the (i− 1)th output task processing
times (

∑
e∈Eσ(i−1) pe(e), where Eσ(i−1) is the set of output tasks induced by the

first i− 1 input tasks of the permutation) and the allowed idle time b is at least

the sum of the precedences of the ith output tasks (
∑i
j=1 pv(σ(j)). Otherwise,

it implies idle time larger than b.
In other words, one has to satisfy the Inequalities (2).

∃ σ ∈ perm(V ),∀i ∈ {1, 2, . . . , |V |} , b+
∑

e∈Eσ(i−1)

pe(e) ≥
i∑

j=1

pv(σ(j)) (2)

Figure 4 presents an example of feasible schedule. There are 6 tasks on the input
processor and 6 tasks on the output processor. Tasks on the output processor
have one or more dependencies represented with arrows.

We now show that satisfying (2) is equivalent to have a feasible schedule.

Theorem 2 Let σ be a permutation of tasks. σ satisfies (2) if and only if the
schedule defined by σ is feasible.

Proof. .

– If inequalities (2) are verified by a permutation σ, it is possible to
compute a feasible schedule with idle time b on the output processor. Indeed,
as we have shown before, one can compute the permutation σE . Then we can
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1 2 3 4 5 6

a b c d e f

input

output

Fig. 4: Example of a feasible schedule

schedule each input task v ∈ V as soon as possible and schedule each output
task e ∈ E as late as possible. Using this schedule, we have idle time b on
the output processor and then all the edges without idle time. It is trivial to
see, with those inequalities verified, that such a schedule is feasible.

– If inequalities (2) are not verified, we prove by contradiction that
it is not possible to compute a feasible schedule with idle time b on the
output processor. Consider a feasible schedule such that the output per-
mutation σV does not respect inequalities (2) for a position i. We have

b +
∑
e∈Eσ(i−1) pe(e) <

∑i
j=1 pv(σ(j)). When scheduling the vertex at po-

sition i, there is an idle time b′ ≤ b. Since the schedule is feasible, we have b′+∑
e∈Eσ(i−1) pe(e) ≥

∑i
j=1 pv(σ(j)). Thus, it implies that b+

∑
e∈Eσ(i−1) pe(e) ≥∑i

j=1 pv(σ(j)). Contradiction.

2.3 Formulation as a binary matrix visualization problem

Let us consider the following problem:
Consider a binary matrix with rows (resp. columns) of a given height (resp.

width). Consider a line parallel to the diagonal by an offset b called the limit
(see Figure 5). Is it possible to find a permutation of rows (resp. columns) of the
matrix such that each black tile of the matrix is below the limit?

More formally, we can describe the problem as follows:

Input:

– hypergraph H = (V,E)
– pv : V → R+ width of column v
– pe : E → R+ height of row e
– b ∈ R+ offset of the limit

Question:
Is there a permutation of columns (resp. rows) σV (resp. σE) such that every

black tile is below the limit (i.e. line parallel to the diagonal).
As in the scheduling version of triangle width, we can notice that the per-

mutation σE can be determined once σV is given.
We then want to find a permutation of columns σV such for every column,

all its black tiles lie below the limit. The limit can be defined by the set of points
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given in equations (3).

limit = {(b+ i, i) | i ∈ [0;
∑
e∈E

pe(e)]} (3)

Since all black tiles in the matrix are composed of rectangles, one can simply
check if the upper-right corners are above the limit. Each row at position i must
have the sum of the offset (b) and its height (

∑
e∈Eσ(i−1) pe(e) where Eσ(i− 1)

is the set of columns with at least one black tile in common with at least one of
the first i−1 input tasks of the permutation) at least its width (

∑i
j=1 pv(σ(j))).

Doing so, our binary visualization problem can be formulated as in equations
(4).

∃ σ ∈ perm(V ),∀i ∈ {1, 2, . . . , |V |} , b+
∑

e∈Eσ(i−1)

pe(e) ≥
i∑

j=1

pv(σ(j)) (4)

Figure 5 presents an example of matrix visualization. The objective is to find
a permutation on rows/columns such that all black tiles lie below the limit
represented by the dashed red line.

1 2 3 4 5 6

a

b

c

d

e

f

offset b

Fig. 5: Example of binary matrix visualization problem. Each row (resp. column)
has its own height (resp. width).

2.4 Wrapping up formulations

Theorem 3 (formulation equivalence) The three triangle width formulations:
vertex ordering, scheduling and matrix visualization, are equivalent problems.
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Proof. Since all formulations given by (1), (2) and (4) are strictly equivalent, an
optimal solution for one is optimal for the others.

We now discuss the strengths and weaknesses of the 3 proposed formulations:

The vertex ordering formulation is very convenient to obtain complexity results.
As we show in the next section, we use this formulation to obtain NP-Hardness
proofs.

The scheduling formulation is usually found in applied and industrial problems.
However, this formulation makes complexity results difficult to obtain.

During experiments on triangle width, we noticed that instances and solutions
were easier to visualize using the matrix form. Indeed, the scheduling version
represents hypergraphs as a bipartite graph where the vertices are on one side,
the hyper-edges on the other and there is a link between a vertex and hyper-edge
if one contains the other. The vertex ordering uses Venn diagrams to represent
hypergraphs. Both fail to visualize hypergraphs of reasonable size (i.e. more than
10 vertices and edges). We believe that the matrix visualization form allows to
provide valuable information. Along with the results presented in this paper,
we provide an interactive web visualization of triangle width instances where
one can try to solve instances of triangle width at the following url: http:

//librallu.gitlab.io/hypergraph-viz/.

This paper advocates that each formulation has its strengths and weaknesses.
While working on a specific formulation, some results may appear difficult to ob-
tain. Switching to another representation often helps to get elegant and concise
arguments. At the beginning of our work on triangle width, we only considered
the scheduling version. The NP-Hardness proof was very difficult to obtain. As
soon as we changed to the vertex ordering representation, results were much
easier to obtain. In order to fully understand the benefit of switching formula-
tions, we invite the reader to think of a NP-Hardness proof for the scheduling
formulation without using the vertex ordering formulation.

In the next sections, we consider several sub-problems or related problems, and
obtain more elegant results by switching representations.

3 NP-Hard cases

3.1 pv = a, pe = 1, H is a graph, 1 ≤ a ≤ |V | is NP-Hard

Consider the vertex ordering formulation. We want to find an order σ on the
vertices such that:

b+ |Eσ(i− 1)| ≥ a · i ∀i ∈ {1, . . . , |V |}
Where b ∈ {1, . . . , |V |}. This problem remains NP-Hard even with pv =

a, pe = 1 and if H is a graph.

http://librallu.gitlab.io/hypergraph-viz/
http://librallu.gitlab.io/hypergraph-viz/
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Theorem 4 triangle width is NP-Hard even with pv = a, pe = 1 and H is a
graph.

Proof. Reduction from Clique, which is defined as follows: Given a graph G =
(V,E) and an integer k, is there a set of k vertices pairwise adjacent? Clique
is a well known NP-Hard problem [GJ02].

Consider a graph G = (V,E) and an integer 0 ≤ k ≤ |V |.
We construct the graph G′ = (V ′, E′) as follows :

– V ′ = V ∪ {j1, j2, . . . jk}
– E′ = E ∪ {(g, j) | g ∈ G, j ∈ J}
– a = k
– b = k(k+3)

2

An example of such a graph G′ is described in Figure 6.

G J

Fig. 6: We consider a new set J of k vertices which are linked to all vertices in
G. In this example, we search for a clique of size 3

First, we observe that finding a clique of size k in G is equivalent to find a
clique of size k+1 in G′. Next, we show that it is also equivalent to the existence
of a feasible solution for the vertex ordering in G′.

– there exists a feasible solution for triangle width =⇒ there exists a clique
of size k + 1 in G′: For i = k + 2, we obtain for all i ∈ {1, 2, . . . , |V |},
b+ |Eσ(i− 1)| ≥ a · i. It implies that k(k+3)

2 + |Eσ(i− 1)| ≥ k · (k + 2) =⇒
|Eσ(i − 1)| ≥ k(k+1)

2 . The only possibility for this inequality to be satisfied
is that G′ contains a clique of size k + 1.

– clique of size k + 1 in G′ =⇒ a feasible solution for triangle width: As
the previous case, consider the step i = k + 2. Since there exists a clique of
size k + 1 in G′, we can satisfy steps i = 1, 2, . . . , k + 1. Then, we can add
the remaining vertices in J which contributes each by k. And finally, the
remaining vertices of G which will also contribute k. Thus, a clique of size
k + 1 in G′ implies a feasible solution for triangle width.
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3.2 pv = 1, pe = 1, H hypergraph is NP-Hard

Theorem 5 triangle width is NP-Hard, even when pv = 1, pe = 1 and H is a
hypergraph.

Proof. We perform a reduction from the version with pv = a, pe = 1, H a
graph, 1 ≤ a ≤ |V |.

We construct the following instance with pe = 1, pv = 1 as follows:

– V ′ = {vu,i | ∀u ∈ V, ∀i ∈ {1, 2, . . . , k}}
– E′ = {{vu,i | ∀u ∈ e, ∀i ∈ {1, 2, . . . , k}} | ∀e ∈ E}

The idea is to divide each input task to a separate tasks which belong to
the same hyper-edges. It is dominant to schedule the new input tasks by block.
Since a < |V | the reduction is polynomial. Thus, solving the sub-case pv = 1 is
NP-Hard.

Figure 7 shows an example of column duplication. If we are able to solve the
case where columns and rows have the same size, we are also able to solve the
case where a column is two times bigger than a row.

1 1' 3 3' 2 2' 5 5' 4 4'

a

b

c

e

d

Fig. 7: Matrix where columns are duplicated to simulate a duration of 2 for each
column

3.3 Link with weak-k visit

We now study a related vertex ordering problem described in the literature
and show that it is a sub-case of triangle width. Weak-k visit was originally
described in [AFN00] and is known to be NP-Hard. It consists of visiting a
graph, starting with k “free” vertices (in the process getting some initial treasury.
Again, consecutive vertices are not required to be adjacent). Then, each of the
n − k other vertices costs k. The goal is to find a permutation of vertices such
that the treasury is always positive. More formally, the problem can be described
as follows:

Input: A graph G = (V,E), an integer 0 ≤ k ≤ n.
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Output: A permutation of vertices σ : V → {1, . . . , n} such that:

|Eσ(i)| ≥ k(i− k) k + 1 ≤ i ≤ n (5)

Where Eσ(i) is the set of edges induced by the first i vertices of the permu-
tation.

We now show that weak k-visit is a sub-problem of triangle width. First, we can
notice that, if |E| < k(n−k), the graph is not weak-k visitable since the equation
(5) for i = n would not be respected. We can safely assume that |E| ≥ k(n− k).
Thus, one can only consider the equations for k + 1 ≤ i ≤ n− 1.

We can reformulate the triangle width as follows and specialize it with edge
weights equal to 1 and vertex weights equal to some constant a. We obtain:

|Ei−1(σ)| = a · i− b 1 ≤ i ≤ n

By using the variable j = i− 1, we obtain:

|Ej(σ)| = a(j + 1)− b 0 ≤ j ≤ n− 1

Since |Ei(σ)| ≥ 0 and k ≥ 0, we can deduce the definition of weak-k visit.

|Eσ(i)| ≥ k(i− k) 0 ≤ i ≤ n− 1

Finally, by fixing j = i, a = k, b = k2 + k one can see that triangle width
generalizes weak-k visit problem.

We note that this result also constitutes a newNP-Hardness proof for weak-k
visit.

3.4 Can a matrix can be made triangular by permuting rows and
columns?

[FRV15] proves that finding if a matrix is triangular if we permute its rows and
columns is NP-Hard. We give a new (arguably much simpler) proof by reducing
the problem to triangle width, pv = 1, pe = 1, H hypergraph (see section 3.2).

Consider a matrix M and an offset b. We construct a matrix M ′ where we
add b rows made of zeros to M . Then one filled column (C0) with all ones (See
Figure 8. In our matrix representations, zeros are white tiles and ones black
tiles). The existence of a permutation making M ′ triangular is equivalent with
finding a permutation making M triangular below b. Indeed, it is dominant to
start with column C0 in our scheduling and the rows with only one 1 in C0 first.
Putting C0 first, will allow exactly an advance of b for the matrix M . Thus,
answering if a matrix can be made triangular by permutations can solve the
decision problem of triangle width.
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b

k = b
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1

k lines

C0

1
1

1
1
1

0
0
0 0 0

0
00

0

0 ...
...
...

Fig. 8: Example of the matrix used to prove that solving the matrix triangular
problem also solves triangle width with a = 1

4 Polynomial cases

4.1 Connected orderings

We define a connected ordering as follows. Consider a hypergraph H = (V,E).
A connected ordering orders connected components by block (i.e. if two vertices
i, j belong to the same connected component, there is no vertex k belonging to
another component between i and j in the connected ordering) of decreasing
densities (|E| − |V |). Within each connected component, for all prefixes S ⊆ V ,
the following vertex belongs to an edge with the maximum number of vertices
in S.

One can obtain a connected ordering by executing the steps described by the
Algorithm 1.

We now use connected orderings to present some polynomial cases when the
processing times of vertices is small. Indeed, with relatively small a, an order
exploring the first neighbours of already explored vertices is guaranteed to be
optimal (we call this kind of ordering, Prim-like orderings). We present results
when H is a hypergraph of fixed edge size (and in particular when H is a graph).

Theorem 6 If H = (V,E) is a k-uniform hypergraph ( i.e. |e| = k ∀e ∈ E) and
a ≤ 1

k−1 , then there exists a polynomial time algorithm to solve triangle width.

Proof. The polynomial time algorithm starts by finding a connected ordering as
explained above. We claim that the resulting solution is optimal. Indeed, using
a connected ordering, except for the first hyper-edge we select, each hyper-edge
has a vertex already selected and will cost at most a · (k − 1) ≤ k−1

k−1 = 1. This
property guarantees that we can add it without decreasing the objective value.
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Algorithm 1: Construction of a connected ordering

Input : Hypergraph H = (V,E)
Output: permutation of V

1 P ← partition into connected components of H;
2 sort P by decreasing density (|E| − |V |);
3 forall c ∈ P do
4 start by an arbitrary vertex and add it to the solution;
5 while c is not completely visited do
6 add an unvisited vertex that is a neighbour of a visited vertex;
7 end

8 end

Corollary 1. If G is a graph and a ≤ 1, then there exists a polynomial time
algorithm to solve triangle width.

When a > 1
k−1 , the status of the complexity of the problem is open.

4.2 F2||Cmax and Johnson’s algorithm

We quickly recall F2||Cmax. Consider two machines (m1,m2), n tasks (T ) with
pi1 (resp pi2) the duration of task i on m1 (resp. on m2). Each task needs
to be scheduled first on m1, then on m2. The goal is to find an order σ on the
tasks which minimizes the total completion time (makespan or Cmax). Johnson’s
rule (see [Pin16]) consists in sorting tasks with the criterion min(Pj1, Pi2) ≥
min(Pi1, Pj2) =⇒ i is scheduled before j. This leads to an optimal greedy
algorithm for F2||Cmax.

We show that triangle width is a generalization of F2||Cmax. We use the ma-
trix representation to illustrate and give a visual proof of Johnson’s algorithm.
Moreover, using this representation, we are able to generalize Johnson’s argu-
ment and obtain a new rule for F2||Cmax with negative time-lags (i.e. task i on
machine 2 can start before the end of task i on machine 1).

F2||Cmax We construct the triangle width as follows:

– V = T
– E = {{v}|v ∈ T}
– pe = p2e
– pv = p1v

We see the triangle width instance as a series of consecutive black blocks. The
length of a block is its computation time on machine 1 (and the height of a
block its computation time on machine 2). The diagonal line crossing the origin
(start of the first task (a)) indicates times where machines 1 and 2 have the same
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Fig. 9: Visual Argument of equivalence between the formalization using triangle
width and F2||Cmax.

amount of work. Tasks to the right of this line produce more work on machine
1 than on machine 2 (tasks a and d in Figure 9). This implies some idle time
on machine 1. The computation time and the idle time on machine 1 give us a
lower bound for the minimal Cmax and the solution of triangle width gives us a
feasible solution. Thus, maximizing triangle width on this instance is equivalent
to minimizing F2||Cmax. Figure 9 illustrates this argument.

We provide now Johnson’s exchange argument using triangle width visualiza-
tion (presented on Figure 10). Given two tasks i and j, we can compute the
corresponding objective modification by:

– min(Pj1, Pi2) if i is scheduled before j;
– min(Pi1, Pj2) if j is scheduled before i

Task i is before task j in the optimal schedule implies that min(Pj1, Pi2) ≥
min(Pi1, Pj2) which gives us Johnson’s rule ([Pin16]).

4.3 F2|tj ∈ [−min(p1j, p2j), 0]|Cmax

Using a variant of triangle width, we prove that a F2||Cmax generalization is
polynomial. To the best of authors knowledge, this variant have not been studied
before.

We consider a generalization of F2||Cmax where we allow some overlap be-
tween task i on machine 1 and task i on machine 2, denoted by ti. This problem
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Fig. 10: Exchange argument for Johnson’s rule using triangle width visualization

can be easily seen using a variation of triangle width. We now consider rect-
angles with an empty triangle where the size of this triangle is ti. Using this
representation, we can use the same argument used to prove Johnson’s rule.

Theorem 7 There exists a dominant permutation that schedules tasks i before
j if min(Pj1 + ti, Pi2 + tj) ≥ min(Pi1 + tj , Pj2 + ti).

Proof. First, we prove by contradiction that there exists a dominant permutation
schedule, using the same argument for F2||Cmax (see [Pin16]). Suppose that no
optimal permutation schedule exists. An optimal (non-permutation) schedule
has two tasks i, j such that i is scheduled before j on the input machine and j
is scheduled before i on the output machine. We can construct another solution
by scheduling i just before j on the output machine. The new solution is feasible
since every task but i is postponed on the output machine. Also, no task before
the end of j on the output machine is postponed, thus, the new solution is also
optimal. Hence the contradiction.

Now, let us prove that if i is scheduled before j and min(Pj1 + ti, Pi2 + tj) >
min(Pi1 + tj , Pj2 + ti), the schedule is not optimal. As illustrated in Figure 11,
permuting i and j strictly increase the objective function. Thus a schedule where
i is before j and min(Pj1 + ti, Pi2 + tj) > min(Pi1 + tj , Pj2 + ti) is not dominant.

Corollary 2. There exists a polynomial time greedy algorithm that solves
F2|tj ∈ [−min(p1j , p2j), 0]|Cmax.

Finally, we note that [Mit59] proposes a related (but different) generaliza-
tion of Johnson’s argument for F2||Cmax. It considers positive time lags and
permutation flowshops.

5 Conclusion

In this paper, we introduced a new problem called triangle width. This problem
arises in several real life applications (parallel database optimization, embedded
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Fig. 11: exchange argument for generalized Johnson’s rule using triangle width
visualization.

vision system optimization etc.). It is also related to some interesting theoretical
questions such as the binary matrix permutation and weak k-visit. We presented
it under 3 formulations: a 2 parallel machine scheduling problem which objective
is to minimize the makespan, a matrix visualization problem which the objective
is to maximize an empty “upper-right triangle” and a vertex ordering problem
in a hypergraph where vertices are investments, hyper-edges projects and the
objective is to minimize the initial required treasury. The problem turns out to
be NP-Hard even if the hypergraph is a graph and vertices cost more than the
edges (if the vertices cost less than the edges, the problem is polynomial). If all
vertices and edges cost the same, the problem is NP-Hard. Finally, we gave a
short proof that the triangular matrix permutation problem is NP-Hard and
a visual argument of Johnson’s algorithm for F2||Cmax. This visual argument
also helped to find and prove a new generalization of Johnson’s rule for the 2
machine flowshop problem with negative time lags.
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