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Abstract

We study theoretically and numerically the bending-driven leveling
of thin viscous films within the lubrication approximation. We derive
the Green’s function of the linearized thin-film equation and further
show that it represents a universal self-similar attractor at intermediate
times. As such, the rescaled perturbation of the film profile converges
in time towards the rescaled Green’s function, for any summable initial
perturbation profile. In addition, we characterize the convergence time
in terms of the relevant physical and geometrical parameters. Finally,
we numerically extend our analysis to the nonlinear thin-film equation,
and we still observe the convergence to the universal attractor.

Introduction

Intermediate asymptotics and self-similar solutions [1] have proven to be
essential tools for revealing a degree of generality in nonlinear problems
within applied mathematics and physics. Even though analytical solutions
are usually lacking for nonlinear problems, many phenomena seem to behave
at intermediate times in ways that enable one to describe their dynamics
using scaling methods. Examples are numerous, and include for instance
the propagation of an explosive blast [2, 3], ground-water flows in porous
rocks [4], formation of laccoliths [5], shaping of hard metals by means of
electrolysis [6], and jet breakup [7].

A particular class of problems where scaling, intermediate asymptotics
and self-similar solutions have been successfully employed is thin-film flow
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within the lubrication theory [8]. In the latter framework, a spatial scale
separation and a low Reynolds number lead to a notable simplification of
the Navier-Stokes equations [9]. For instance, one is often interested in
describing the temporal evolution of an interface between two phases, e.g.
a thin viscous liquid film and a gaseous atmosphere, which can be described
by lubrication theory through the so-called thin-film equation:

∂th(x, y, t) = M∇ ·
[
h3(x, y, t)∇p(x, y, t)

]
, (1)

where t is the time, x and y are the planar spatial coordinates, h(x, y, t) is the
thickness of the liquid film in the normal direction z to the supporting wall,
p(x, y, t) is the pressure field in the liquid, ∇ is the partial spatial differential
operator, and ∂t is the partial temporal derivative. The coefficient M is
inversely proportional to the dynamic shear viscosity µ of the liquid, with
a numerical prefactor that depends on the specific boundary conditions for
the flow. For example, a film with a no-shear-stress boundary condition
at the free liquid-gas interface, flowing on a solid substrate with a no-slip
boundary condition yields M = 1/(3µ).

Interestingly, in a variety of relevant physical phenomena, the pressure
field often takes the form of an even-order spatial derivative of h(x, y, t).
An important particular case is the one of gravity-driven thin-film flows,
where the pressure scales linearly with the film thickness, i.e. p(x, y, t) =
ρgh(x, y, t), with ρ the liquid density and g the gravitational acceleration.
In this case, Eq. (1) is a nonlinear diffusion-like equation that has been
scrutinized by the physics [10, 11, 12, 13, 14] and applied mathematics [15,
16, 17] communities.

Another important particular case of Eq. (1) is the one of capillary-driven
thin-film flows in the small-slope approximation (∇h)2 � 1 [18, 19, 20, 21,
22], where the linearized capillary pressure reads p(x, y, t) = −γ∇2h(x, y, t),
with γ the liquid-gas surface tension. Inserting the capillary pressure into
Eq. (1), the latter becomes a fourth-order partial differential equation. The
capillary spreading of droplets in total wetting conditions was studied in the
seminal work by Tanner [23], who found a power-law solution of the spread-
ing dynamics, thus unveiling the central self-similar symmetry at interme-
diate times. Other similarity solutions to capillary-driven thin-film flows
have been derived analytically [24, 25, 26, 27, 28, 29], and by performing
numerical simulations [30, 31], allowing one to also address problems where
finite-time singularities appear, such as e.g. thin-film rupture [32, 33, 34]
and droplet coalescence [35, 36]. A recent study on the intermediate asymp-
totics of the capillary-driven thin-film equation has established that any
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vanishingly small and summable initial perturbation profile must converge
in time towards a universal self-similar attractor given by the Green’s func-
tion of the linearized problem [37]. Furthermore, this convergence was con-
jectured to hold for any finite-size perturbation, using numerical solutions
with compact-support initial profiles. This latter prediction was corrobo-
rated experimentally using polymer films [38, 39, 40], and generalized to
higher-order symmetries of the initial profiles [41].

Beyond the above second- and fourth-order partial differential thin-film
equations associated with gravity and capillarity, respectively, a sixth-order
realization is provided by elastic bending in the situation where an elas-
tic plate is freely placed atop a thin viscous film – a widespread config-
uration in geophysical, physiological, biological and engineering settings.
For small plate deformations, when elastic stretching effects can be ne-
glected [42, 43, 44, 45, 46], the pressure is dominated by bending and is
thus proportional to the bi-Laplacian of the film thickness [47], leading to
the sixth-order version of Eq. (1). Intermediate asymptotics has been em-
ployed in such elastohydrodynamic flows [13, 48, 49], with in particular
the use of asymptotic matching to obtain power-law solutions in non-linear
geometries [50, 51]. In the latter geometries, as the profiles eventually ap-
proach their final flat equilibrium configuration, a crossover towards a dif-
ferent power law was predicted and tested numerically [52].

In the present article, we further investigate theoretically and numeri-
cally the intermediate asymptotics of the bending-driven thin-film equation.
In particular, for any summable initial perturbation with respect to the flat
equilibrium state, we show that the solutions converge towards a universal
self-similar attractor provided by the Green’s function of the linearized prob-
lem. In addition, besides the obvious elastic and viscous physical parame-
ters, we show that the convergence time is essentially set by the sixth power
of the typical width of the initial perturbation. Finally, using a numerical
method, we discuss the extension of these results towards the practically-
relevant case of finite perturbations.

Mathematical model

We consider a free unconstrained elastic plate, with zero spontaneous cur-
vature, resting on a thin liquid film. By “thin” we mean that the lateral
extent of any variation of the film profile is much larger than the film thick-
ness itself, as required for the lubrication approximation to be valid [9]. The
liquid is described as an incompressible and Newtonian viscous fluid, that
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is supported by a solid substrate at z = 0. The liquid-plate interface is lo-
cated at z = h(x, y, t). By continuity of the normal stress at the latter, the
excess pressure field in the liquid (with respect to the atmospheric pressure)
is set by the elastic stress, and thus reads p(x, y, t) = B∇4h(x, y, t) [47] in
the lubrication approximation, where B is the plate bending stiffness. The
velocity field in the liquid is found by solving the Stokes equations within
the lubrication approximation [8], under no-slip boundary conditions at the
two solid-liquid interfaces. By integrating the continuity equation across the
film thickness, we obtain the bending-driven thin-film equation [50, 52]:

∂th(x, y, t) =
B

12µ
∇ ·
[
h3(x, y, t)∇5h(x, y, t)

]
. (2)

We nondimensionalize Eq. (2) with h = h̄h0, x = x̄h0, y = ȳh0 and
t = 12t̄µh30/B, where the bar notation indicates dimensionless variables,
and where h0 is the liquid film thickness in the flat unperturbed state. By
further omitting the bar notation for simplicity, we obtain the dimensionless
version of Eq. (2):

∂th(x, y, t) = ∇ ·
[
h3(x, y, t)∇5h(x, y, t)

]
. (3)

Linearized problem

We consider small perturbations, i.e. h(x, y, t) = 1 + ε(x, y, t) with ε � 1,
so that Eq. (3) can be linearized into:

∂tε(x, y, t) = ∇6ε(x, y, t) . (4)

Green’s function and symmetries

The Green’s function G(x, y, t) is defined as the solution of the following
partial differential equation:

LG(x, y, t) = δ(x, y, t) , (5)

where L = ∂t − (∂2x + ∂2y)3 is the linear differential operator of Eq. (4), and
δ(x, y, t) is the Dirac delta function in two-dimensional space and time. The
solution ε(x, y, t), at any position (x, y) and time t, is then obtained from
a convolution between the Green’s function and the initial profile ε0(x, y) =
ε(x, y, 0), as:

ε(x, y, t) =

∫
dx′ dy′G(x− x′, y − y′, t)ε0(x′, y′) . (6)
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We invoke the Fourier transform:

Ĝ(kx, ky, ω) =

∫
dx dy dtG(x, y, t)e−i(kxx+kyy+ωt) , (7)

with kx and ky the angular spatial frequencies in the x and y directions,
respectively, and ω the angular temporal frequency. By taking the Fourier
transform of Eq. (5), we find:

Ĝ(kx, ky, ω) =
1

iω +
(
k2x + k2y

)3 . (8)

Expressing the inverse Fourier transform, and invoking the residue theorem
for the integral over the angular temporal frequency, we obtain the Green’s
function in a general integral form:

G(x, y, t) =
H(t)

(2π)2

∫
dkx dky e

−t(k2x+k2y)
3

ei(kxx+kyy) , (9)

where H(t) is the Heaviside step function.
Let us now perform a change of variables towards polar coordinates,

through x = r cos(θ), y = r sin(θ), kx = ρ cos(ψ) and ky = ρ sin(ψ). When
inserted into Eq. (9), this change of variables leads to:

G(r, t) =
H(t)

(2π)2

∫
dρ ρe−ρ

6t

∫
dψ eiρr cos(ψ−θ) ,

=
H(t)

2π

∫
dρ ρe−ρ

6tJ0(ρr) ,

(10)

with J0 the zeroth-order Bessel function. As a consequence, the Green’s
function is axisymmetric. Furthermore, the last integral has an exact ex-
pression, leading to:

G(r, t) =
H(t)Γ

(
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3

)
12πt1/3
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(11)

where Γ is the gamma function and 0F4 is the (0,4)-hypergeometric function.
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Finally, introducing the similarity variable ξ = rt−1/6, Eq. (11) can be
recast into:

G(ξ, t) =
H(t)

t1/3
f(ξ) , (12)

where:

f(ξ) =
Γ
(
1
3

)
12π

0F4
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}
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(
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6

)6
)
.

(13)

As a consequence, one has:

G(ξ, t)

G(0, t)
=
f(ξ)

f(0)
, (14)

which means that, when properly normalized, the Green’s function is essen-
tially a function of the self-similar variable ξ only.

General solution and long-term behaviour

In general, the double integral of Eq. (9) can be evaluated numerically, as
well as the solution of Eq. (4) for any initial profile, using Eq. (6). Moreover,
in the particular case where the initial profile is axisymmetric, i.e. ε0(x, y) =
ε0(r), the spatial convolution defined in Eq. (6) reads in polar coordinates:

ε(r, t) =

∫
dr′ r′ε0(r

′)

∫
dθ G

(√
r2 + r′2 − 2rr′ cos(θ), t

)
. (15)

Therefore, the solution is axisymmetric at any time, as expected.
In Fig. 1a, we compare the solution of a finite-element numerical integra-

tion (FENI) [52] of Eq. (4) and the numerical evaluation of the convolution
in Eq. (15), for a stepped axisymmetric initial profile ε0(r) = H(1 − r), at
three different times t. We observe an excellent agreement, which confirms
the validity of both the Green’s function and the convolution.

As the magnitude of the axisymmetric solution ε(r, t) above decays over
time (see Fig. 1a), to study the long-term behaviour of the solution we rescale
ε(r, t) by its amplitude ε(0, t) at r = 0. Furthermore, guided by the self-
similarity of the Green’s function (see Eq. (12)), we introduce the similarity
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ε(
r,
t)
/ε

0
(0
)

r

t = 0.00001

t = 0.001

t = 1.0

FENI of Eq.(4)
Eq.(15)

(a)

ε(
ξ,
t)
/ε
(0
,t
)

ξ

t

Eq.(15)

f(ξ)/f(0)
(Eq.(13))

(b)

Figure 1: (a) Normalized solutions ε(r, t)/ε0(0) as a function of the radial co-
ordinate r, at three different times t as indicated, for a stepped axisymmetric
initial profile ε0(r) = H(1−r). These solutions were obtained from: i) finite-
element numerical integration (FENI) [52] of Eq. (4) (dashed lines); ii) nu-
merical evaluation of the convolution in Eq. (15) (solid lines). (b) Rescaled
solutions ε(r, t)/ε(0, t) as a function of the similarity variable ξ = rt−1/6

(solid lines), for various times t (color bar), as numerically computed from
Eq. (15), for two different axisymmetric initial profiles: i) an homogeneous

polynomial ε0(r) =
(
1− r2

)2H(1 − r) (left) ; ii) a stepped axisymmetric
function ε0(r) = H(1− r) (right). For comparison, f(ξ)/f(0) (see Eq. (13))
is shown (dashed line).

variable ξ = rt−1/6 and study ε(ξ, t)/ε(0, t). The latter rescaled solution is
numerically computed from Eq. (15) for two different axisymmetric initial
profiles, and plotted in Fig. 1b as a function of ξ for various times t. In
the left panel, we have used an homogeneous polynomial, ε0(r) = (1 −
r2)2H(1− r), as the initial profile; and in the right panel, we have used the
stepped axisymmetric initial profile ε0(r) = H(1 − r) previously employed
in Fig. 1a. In both cases, the rescaled solutions appear not to depend on
time t anymore at long times, which suggests their late-time self-similarity.
Moreover, they both seem to converge towards f(ξ)/f(0), suggesting the
existence of a universal self-similar attractor.
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Universal attractor and convergence time

Invoking the self-similarity of the Green’s function (see Eq. (12)), the solu-
tion (see Eq. (15)) of Eq. (4) for an axisymmetric initial profile becomes:

ε(ξ, t) =
H(t)

t1/3

∫
dr′ r′ε0(r

′)

∫
dθ f

(√
ξ2 + (r′t−1/6)2 − 2ξr′t−1/6 cos(θ)

)
.

(16)
At long positive times, this expression is equivalent to:

ε(ξ, t) ' V0

t1/3
f(ξ) , (17)

where V0 = 2π
∫

dr r ε0(r) is the dimensionless volume of the initial per-
turbation profile. Therefore, the rescaled solution ε(ξ, t)/ε(0, t) converges
towards the self-similar attractor f(ξ)/f(0), no matter the axisymmetric
initial perturbation profile (provided it is summable), as previously sug-
gested by Fig. 1b. For the sixth-order bending-driven thin-film equation, we
thus find the intermediate asymptotic solution [1] of the linearized problem
to be the rescaled Green’s function, which is reminiscent of the fourth-order
capillary case [37].

As seen in Fig. 1b, the time it takes for an arbitrary axisymmetric ini-
tial profile to converge to the self-similar attractor seems not to be unique.
To investigate in particular the role of the dimensionless initial volume V0
on the convergence dynamics, we numerically evaluate from Eq. (15) the
solution ε(r, 0.01) at a given time t = 0.01, for axisymmetric initial profiles

ε0(r) =
[
1− (r/r0)

2
]2H(r0−r), with r0 = 1, 2, 4 giving V0 = 0.26, 1.05, 4.19,

respectively. The rescaled results are plotted in the left panel of Fig. 2,
where we see that the three profiles do not collapse with one another. This
indicates that the dynamics is influenced by V0. In contrast, when we numer-
ically evaluate from Eq. (15) the solutions ε

(
r, 0.1V 3

0

)
at times t = 0.1V 3

0 ,
for the three same initial profiles as above, the rescaled profiles now seem to
collapse with one another. This suggests that the dimensionless convergence
time tc is proportional to V 3

0 .
To quantitatively define tc, we need a relevant criterion. Defining a

relative mathematical distance between the solution and the attractor, and
fixing some arbitrary but small upper bound to it is a natural approach.
However, for regular axisymmetric initial profiles, convergence is typically
occuring when the central height ε0(0) of the initial perturbation profile
matches the central height ε(0, t) ' V0f(0)/t1/3 of the asymptotic solution
(see Eq. (17)). Using this criterion, combined with Eq. (13), allows us to
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ε(
ξ,
t)
/ε
(0
,t
)

ξ

t = 0.01 t/V 3
0 = 0.1

f(ξ)/f(0)
(Eq.(13))

Eq.(15)

V0 = 0.26
V0 = 1.05
V0 = 4.19

Figure 2: (left) Rescaled solutions ε(ξ, 0.01)/ε(0, 0.01) at a given time
t = 0.01 (dashed and dotted lines), for stepped axisymmetric initial profiles

ε0(r) =
[
1− (r/r0)

2
]2H(r0−r), with r0 = 1, 2, 4 giving the indicated values

of V0, as numerically evaluated from Eq. (15). (right) Rescaled solutions
ε
(
ξ, 0.1V 3

0

)
/ε
(
0, 0.1V 3

0

)
at times t = 0.1V 3

0 (dashed and dotted lines), for
the three same initial profiles as in left panel, as numerically evaluated from
Eq. (15). For comparison, on both the left and right panels, the self-similar
attractor f(ξ)/f(0) (see Eq. (13)) is shown.

define the convergence time as:

tc =

[
V0Γ(1/3)

12πε0(0)

]3
. (18)

Apart from numerical prefactors, the dimensionless convergence time is thus
proportional to [V0/ε0(0)]3 only, confirming in particular the observation
made in the right panel of Fig. 2 for the ε0(0) = 1 case.

In dimensional units, and avoiding numerical prefactors, the convergence
time scales as tc ∼ µV 3

0 /
[
ε0(0)3Bh30

]
, with V0 and ε0(0) being now the di-
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mensional volume and the central height of the initial perturbation. In-
troducing the typical lateral size λ of the initial perturbation, one gets
V0 ∼ λ2ε0(0) and tc ∼ µλ6/(Bh30), as expected from the scaling analysis
of Eq. (2). The convergence is slower for a larger liquid film viscosity µ
and a larger lateral size λ of the perturbation, while it is faster for a larger
bending rigidity B of the elastic plate and a larger liquid film thickness h0.

Extension to nonlinear dynamics

Being able to evaluate the typical time for convergence towards the self-
similar attractor can be crucial when modelling natural, biological or en-
gineering processes associated with the bending-driven thin-film equation.
However, so far, we have limited the analysis to the linearized problem. In
the following, we re-examine the convergence to the self-similar attractor in
the nonlinear case described by Eq. (3).

We solve Eq. (3), using a finite-element numerical integration (FENI) [52].
The rescaled solution ε(ξ, t)/ε(0, t) = [h(ξ, t)− 1]/[h(0, t)− 1], for a stepped
initial axisymmetric profile ε0(r) = h(r, 0)− 1 = H(1− r) is shown in Fig. 3
for various times t.

We observe that the rescaled nonlinear solution converges in time to-
wards the self-similar attractor f(ξ)/f(0) (see Eq. (13)) of the linear case.
We have checked (not shown) that this statement holds for all the various
compact-support axisymmetric initial profiles tested, and are thus led to con-
jecture its validity for any summable initial profile of arbitrary magnitude.
The physical reason behind this phenomenon is rooted in the dissipative
character of Eq. (3), that ensures the condition ε(r, t) � 1 to be always
reached eventually, at sufficiently long times.

Conclusion

We studied the sixth-order bending-driven thin-film equation, both theoret-
ically and numerically. We derived the Green’s function of the linearized
problem, and showed that it represents a universal self-similar attractor. As
such, the linear solution from any summable axisymmetric initial perturba-
tion profile converges towards the rescaled Green’s function at intermediate
times. In addition, we characterized the convergence time in terms of the
relevant physical and geometrical parameters. Finally, we extended numer-
ically our analysis to the nonlinear case, and verified that the convergence
towards the self-similar attractor is maintained.
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ε(
ξ,
t)
/ε
(0
,t
)

ξ

t

FENI of
Eq.(3)

f(ξ)/f(0)

Eq.(13)

Figure 3: Rescaled solution ε(ξ, t)/ε(0, t) as a function of similarity variable
ξ = rt−1/6 (solid lines), for a stepped axisymmetric initial profile ε0(r) =
H(1 − r), at various times t (color bar), as obtained from finite-element
numerical integration (FENI) of Eq. (3) [52]. For comparison, the self-
similar attractor f(ξ)/f(0) (see Eq. (13)) is shown (dashed line).
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Appendix: 1D linearized problem

We derive the Green’s function, the associated self-similar attractor, and
the convergence time for the 1D version of Eq. (4). The linear differential
operator is now L1D = ∂t − ∂6x, with x the single spatial coordinate. We
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start by taking the Fourier transform of Eq. (5) in 1D, which yields:

Ĝ1D(k, ω) =
1

iω + k6
. (19)

From the inverse Fourier transform and the residue theorem, we get:

G1D(x, t) =
H(t)

2π

∫
dk e−k

6teikx . (20)

Using the similarity variable ζ = xt−1/6, it follows:

G1D(ζ, t) =
H(t)

t1/6
f(ζ) , (21)

with:

f1D(ζ) =− 2

Γ
(
−1

6

) 0F4

({
1

3
,
1

2
,
2

3
,
5

6

}
,−
(
ζ

6

)6
)

+
ζ2

12
√
π

0F4

({
2

3
,
5

6
,
7

6
,
4

3

}
,−
(
ζ

6

)6
)

+
ζ4

432 Γ
(
7
6

) 0F4

({
7

6
,
4

3
,
3

2
,
5

3

}
,−
(
ζ

6

)6
)
,

(22)

where Γ is the gamma function and 0F4 is the (0,4)-hypergeometric function.
The solution is then obtained from the 1D convolution with the initial

profile:

ε(x, t) =

∫
dx′G1D(x− x′, t)ε0(x′) . (23)

Using the similarity variable ζ = xt−1/6 and Eq. (21), Eq. (23) becomes:

ε(x, t) =
H(t)

t1/6

∫
dx′ ε0(x

′)f1D(ζ − x′t−1/6) . (24)

At long positive times, Eq. (24) is equivalent to:

ε(ζ, t) ' A0

t1/6
f1D(ζ) , (25)

where A0 =
∫

dx′ ε0(x
′) is the dimensionless area of the initial perturbation

profile. Therefore, the rescaled solution ε(ζ, t)/ε(0, t) converges towards the
universal self-similar attractor f1D(ζ)/f1D(0), no matter the initial pertur-
bation profile (provided it is summable).
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Assuming as a criterion that the convergence to the universal attractor
is typically occuring when the central height ε0(0) of the initial perturbation
profile matches the central height ε(0, t) ' A0 f1D(0)/t1/6 of the asymptotic
solution (see Eq. (25)), we find the 1D convergence time:

tc,1D =

[
2A0

ε0(0)Γ(−1/6)

]6
. (26)
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