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A finite difference method for space fractional differential

equations with variable diffusivity coefficient ∗

K. Mustapha†, K. Furati‡, O. M. Knio §, O. P. Le Mâıtre¶

March 24, 2020

Abstract

Anomalous diffusion is a phenomenon that cannot be modeled accurately by second-order
diffusion equations, but is better described by fractional diffusion models. The nonlocal nature
of the fractional diffusion operators makes substantially more difficult the mathematical analysis
of these models and the establishment of suitable numerical schemes. This paper proposes and
analyzes the first finite difference method for solving variable-coefficient one-dimensional (steady
state) fractional DEs, with two-sided fractional derivatives (FDs). The proposed scheme combines
first-order forward and backward Euler methods for approximating the left-sided FD when the
right-sided FD is approximated by two consecutive applications of the first-order backward Euler
method. Our scheme reduces to the standard second-order central difference in the absence
of FDs. The existence and uniqueness of the numerical solution are proved, and truncation
errors of order h are demonstrated (h denotes the maximum space step size). The numerical
tests illustrate the global O(h) accuracy, except for nonsmooth cases which, as expected, have
deteriorated convergence rates.

Keywords: Two sided fractional derivatives, Variable coefficients, Finite differences

1 Introduction

This work aims at constructing and analyzing a finite difference scheme for solving one-dimensional
two-sided conservative fractional order differential equations with variable coefficient, κ, of the form:

Aα,θu(x) := −∂x
(
κ(x)∂α,θx u(x)

)
= f(x), for x ∈ Ω := (a, b), (1)

subject to absorbing boundary conditions u = 0 on R\Ω and so u(a) = u(b) = 0. Here, α ∈ (0, 1)
is the fractional order exponent, κ is the generalized diffusivity coefficient satisfying the positivity
assumption c0 ≤ κ(x) ≤ c1 on Ω for some positive constants c0 and c1. For the truncation error
analysis, we assume that f ∈ C1(Ω) and κ ∈ C2(Ω). In (1), ∂x denotes the first-order derivative,
and the two-sided fractional order differential operator ∂α,θx := θaDα

x + (1 − θ)xDα
b . Here, 0 ≤ θ ≤ 1

is a parameter describing the relative probabilities of particles to travel ahead or behind the mean
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displacement, aDα
x and xDα

b are left-sided (LS) and right-sided (RS) Riemann-Liouville fractional
derivatives, defined respectively as

aDα
xv(x) :=

∂

∂x
aI

1−α
x v(x) =

∂

∂x

∫ x

a

ω1−α(x− z)v(z) dz,

xDα
b v(x) :=

∂

∂x
xI

1−α
b v(x) =

∂

∂x

∫ b

x

ω1−α(z − x)v(z)dz .

In the previous expressions, we denoted aI
1−α
x and xI

1−α
b the LS and RS Riemann-Liouville fractional

integrals, respectively, with kernel ω1−α(x) := x−α

Γ(1−α) .

In the limiting case α = 1, the fractional derivative ∂αx reduces to ∂x and the problem (1) reduces
to the classical two-point elliptic boundary value problem, where −κ∂xu is the ordinary diffusion flux
from the Fick’s law, Fourier’s law, or Newtonian constitutive equation. An implied assumption is
that the rate of diffusion at a certain location is independent of the global structure of the diffusing
field. In the last few decades, an increasing number diffusion processes were found to be non-Fickian,
and anomalous diffusion has been experimentally documented in many applications of interest [2, 31]
(e.g., viscoelastic materials, subsurface flows and plasma physics). In these situations, the mean
square displacement grows in time faster (superdiffusion) or slower (subdiffusion) than that in a
normal (Gaussian) diffusion process. This deviation from normal diffusion can be explained by non-
Newtonian mechanics and Lévy processes. In such phenomena, the anomalous diffusion rate is affected
not only by the local conditions (gradient) but also by the global state of the field. For instance, the
time fractional derivative acting on the diffusion term (subdiffusion) [31] accommodates the existence
of long-range correlations in the particle dynamics. Similarly, space fractional derivatives, which are
suitable for the modeling of superdiffusion processes, account for anomalously large particle jumps at
a rate inconsistent with the classical Brownian motion model. At the macroscopic level, these jumps
give rise to a spatial fractional diffusion equation [2, 4]:

∂tu− ∂x(κ∂α,θx u) = g, (2)

where the numerical solution of this model was recently considered by several authors, see for example
[1, 15, 24, 39] and related references therein.

For a constant diffusion coefficient κ and for θ = 1/2 (i.e., the process to be symmetric [2]), (1)
reduces to the Riesz fractional derivative of order 1 + α, and many numerical methods have been
proposed for its solution, see [3, 7, 9, 19, 22, 23, 25, 27, 33, 35, 37, 38, 43]. For constant κ, see also
[29]. However, many practical problems require a model with variable diffusion coefficients κ [5], and
the asymmetric diffusion process seems inherent in some physical systems [6, 34]. To the best of our
knowledge, for a variable κ and with θ = 1/2, the numerical solution of (2) was only considered recently
in [12] assuming that κ is monotonically decreasing (a very restrictive condition) and 0.5546 < α < 1.
These assumptions were used to show the unique solvability of the proposed numerical scheme. In
relation, a different numerical scheme was considered in [13] but with the LS fractional derivative in
place of the two-sided one.

Problem (1) is the steady state form of (2). For a constant κ, the operator ∂x(κ∂α,θx ) is a linear
combination of the LS and RS fractional derivatives of order α+ 1. In this case, Ervin and Roop [10]
investigated the well-posedness of the Galerkin weak formulation of (1). They proved that the bilinear

form associated with Aα,θ is coercive and continuous on H1−β
0 (Ω)×H1−β

0 (Ω)→ R, and hence, that (1)

has a unique weak solution in H1−β
0 (Ω). For a rigorous study of the variational formulation of (1)

when θ = 1, see [20].
Unfortunately, it was shown in [40] that the Galerkin formulation loses coercivity in the variable

κ case and the authors even propose a counterexample when θ = 1, see [40, Lemma 3.2]. However,
under restrictive assumptions on κ [16, Equation (3.16)], it is proved recently that this property can
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be maintained [16]. As a result, the weak formulation is not an appropriate framework for variable
coefficient κ, as the Galerkin finite element methods might fail to converge [41]. As an alternative, a
Petrov-Galerkin method was investigated in [42] for the case of LS fractional derivatives. For the same
setting, a finite difference method was proposed and analyzed in [36]. In [44], an intermediate unknown
was introduced to rewrite problem (1) as a system of lower-order fractional differential equation with
constant coefficients. Then, a spectral approximation scheme was developed to solve it.

It is worth to mention that extending existing numerical methods from constant to variable dif-
fusivity is not straightforward, if feasible at all, because of the presence fractional order derivatives.
Similarly, the analyses of the generic problem (1) remain scarce due to the mathematical difficulties in-
duced by LS and RL nonlocal operators, that prevent reusing the results of classical elliptic equations.
Therefore, the main motivation of the present work is to approximate the solution of (1) via finite
difference methods, for variable diffusivity κ and allowing skewness parameter 0 ≤ θ ≤ 1. Specifically,
we consider numerical schemes based on appropriate combinations of first-order backward and for-
ward differences. For convenience, we first develop and analyze in Section 2 a finite difference scheme
for (1) with θ = 1, that is, we have to deal with the LS fractional derivative only. Then, in Section 3,
the other limiting case θ = 0 with RS fractional derivative only is considered. The contributions of
both LS and RL fractional derivatives are subsequently combined in Section 4, to derive the generic
finite difference scheme for (1) that reduces to the classical second-order central difference scheme in
the limiting case α = 1. For each case, we prove the existence and uniqueness of the finite difference
solution and show O(h) truncation errors for the resulting schemes, (h is the maximum space step
size). We present several numerical experiments in Section 5 to support our theoretical convergence
results in the case of smooth and nonsmooth solutions. Section 6 provides concluding remarks and
recommendations for future works.

2 LS fractional derivative

We consider a partition of Ω with P subintervals I1≤n≤P constructed using a sequence of (P + 1)
points such that a = x0 < x1 < x2 < · · · < xP = b. Unless stated otherwise, we shall restrict
ourselves to the case of uniform partitions with spatial step size h = xn−xn−1 = (b− a)/P . We shall
denote xn+1/2 = xn+xn+1

2 the center of interval In+1. Denoting vn := v(xn), we use the symbol δvn

to denote the backward difference defined as δv(x) = δvn := vn − vn−1 for x ∈ In, and the symbol
δvn := vn+1/2 − vn−1/2, to denote the central difference.

For the case of LS fractional derivative, that is, θ = 1, Equation (1) reduces to

Aα,1u(x) = −∂x (κ(x) aDα
xu) (x) = f(x). (3)

Using first a forward type difference treatment of the operator ∂x, we propose the following approxi-
mation:

∂x (κ aDα
xu(xn)) ≈ h−1

[
κn+1/2

aDα
xu(xn+1)− κn−1/2

aDα
xu(xn)

]
, with κn+1/2 := κ(xn+1/2). (4)

Observe that the proposed scheme involves a half-cell shift in the localization of the values of κ,
resembling the case of the classical second-order elliptic equation.

Remarking that aDα
xu = aI

1−α
x u′, because u(a) = 0, equation (4) can be recast as

∂x(κ aDα
xu)(xn) ≈ h−1[κn+1/2

aI
1−α
x u′(xn+1)− κn−1/2

aI
1−α
x u′(xn)].

Applying now the backward difference approximation to the derivatives inside the integrals, results in

−∂x(κaDα
xu)(xn) ≈ Aα,1h u(xn), for n = 1, . . . , P − 1,
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where the discrete fractional LS operator

Aα,1h u(xn) = − 1

h2

(
κn+1/2(aI

1−α
x δu)(xn+1)− κn−1/2(aI

1−α
x δu)(xn)

)
.

Noting that

aI
1−α
x δu(xn) =

n∑
j=1

∫
Ij

ω1−α(xn − s)δuj ds = ω2−α(h)

n∑
j=1

wn,jδu
j , (5)

with the weights defined as

wn,j := (n+ 1− j)1−α − (n− j)1−α for n ≥ j ≥ 1. (6)

We denote by Un ≈ un the finite difference solution, which for the model problem in (3) is required
to satisfy

Aα,1h U(xn) = fn, n = 1, · · · , P − 1, with U0 = UP = 0. (7)

Using (5), the finite difference scheme can be recast as

κn−1/2
n∑
j=1

wn,jδU
j − κn+1/2

n+1∑
j=1

wn+1,jδU
j = f̃nh , (8)

with the modified right-hand-side
f̃nh := h2fn/ω2−α(h). (9)

For computational convenience, (7) can be expressed in a compact form as

n∑
j=1

(an,j − an+1,j)U
j − κn+1/2Un+1 = f̃nh , for n = 1, · · · , P − 1, with U0 = UP = 0,

where an,n = κn−1/2 and an,j = κn−1/2[wn,j − wn−1,j ] for j < n.
The finite difference solution is then obtained solving the (P−1)-by-(P−1) linear system BLU = F,

where U = [U1, U2, · · · , UP−1]T , F = [f̃1
h , f̃

2
h , · · · , f̃

P−1
h ]T , and the matrix BL = [cn,j ] having lower-

triagonal entries

cn,j =

{
κn−1/2 + κn+1/2[2− 21−α] j = n,

an,j − an+1,j j < n,

while cn,n+1 = −κn+1/2 and all other entries are zeros. Note that for the case of a constant diffusivity,
the matrix BL reduces to the Toeplitz form.

As mentioned earlier, in the limiting case α = 1, equation (1) reduces to −∂x(κ∂xu) = f. Fur-
thermore, the numerical scheme (7) reduces to the classical second order difference scheme for elliptic
problems .

Lemma 1. For 1 ≤ n ≤ P, the finite difference solution Un of (7) exists and is unique.

Proof. Since the finite difference solution Un satisfies a square linear system of equations, the
existence of Un follows from its uniqueness. To prove uniqueness, we need to show that the finite
difference solution is identically zero when f = 0, that is when the system right-hand-side is zero,
that is f j = 0 for j = 1, · · · , P − 1 in the finite difference scheme (7). To do so, sum (8) over index
n, leading to

m∑
n=1

κn−1/2
n∑
j=1

wn,jδU
j −

m∑
n=1

κn+1/2
n+1∑
j=1

wn+1,jδU
j = 0,
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and consequently,

m−1∑
n=0

κn+1/2
n+1∑
j=1

wn+1,jδU
j −

m∑
n=1

κn+1/2
n+1∑
j=1

wn+1,jδU
j = 0.

After simplifying, we conclude that

κm+1/2
m+1∑
j=1

wm+1,jδU
j = κ1/2δU1, for 1 ≤ m ≤ P − 1, (10)

which can alternatively be expressed as

WαΦ = δU1K, (11)

where Φ = [δU1, δU2, · · · , δUP ]T , K = [k1, k2, · · · , kP ]T with kj = κ1/2/κj−1/2, and

Wα =



b0 0 0 0 0 · · · 0
b1 b0 0 0 0 · · · 0
b2 b1 b0 0 0 · · · 0
b3 b2 b1 b0 0 · · · 0
...

...
...

...
... · · ·

...
bP−1 bP−2 wP−3 bP−4 · · · b1 b0


, (12)

with b0 = 1 and bj = (j + 1)1−α − j1−α > 0 for j ≥ 1. Since Wα is a nonsingular lower triangular
Toeplitz matrix, its inverse, denoted by Wα

inv, is also a lower triangular Toeplitz matrix with elements

e0 =
1

b0
= 1, and ej = −

j−1∑
i=0

bj−i ei, for j ≥ 1.

Now, from (11), Φ = Wα
invKδU

1 and thus δU j = δU1
∑j
i=1 ej−i ki . Since

∑P
j=1 δU

j = 0 (because

U0 = UP = 0),

δU1
P∑
j=1

j∑
i=1

ej−i ki = δU1
P∑
i=1

ki

P∑
j=i

ej−i = δU1
P∑
i=1

ki

P−i∑
j=0

ej = 0. (13)

On the other hand, the sequence {bj}j≥0 is positive, slowly decaying (limj→∞ bj = 0 and
∑∞
j=1 bk =

∞) and is strictly log-convex (b2j < bj−1bj+1 for j ≥ 1). Then, we deduce that en < 0 and
∑n
j=0 ej > 0

for n ≥ 1, see [17, Theorem 22] or [14, Theorem 2.2 and Lemma 2.4]. Using this in (13) and also
using the fact that ki > 0 for i ≥ 1, yield δU1 = 0. Therefore, by (11), Φ ≡ 0 (Wα is nonsingular).
Consequently, the finite difference solution Un is identically zero, for 1 ≤ n ≤ P − 1, because U0 =
UP = 0. This completes the proof of the uniqueness of the numerical solution U . �

We now turn to establishing the truncation error Tnh of the proposed scheme. From (3) and (7),

Tnh = Aα,1h u(xn)−Aα,1u(xn), for 1 ≤ n ≤ P − 1 .

Since ∂x(κaDα
xu)(xn) = [f(xn)− f(x)] + ∂x(κaDα

xu)(x),∫
In+1

∂x(κaDα
xu)(xn) dx = −h

2

2
f ′(ζn) + κn+1

aI
1−α
x u′(xn+1)− κnaI1−α

x u′(xn),
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for some ζn ∈ In+1, and thus,

Tnh = Aα,1h u(xn)− h

2
f ′(ζn) +

1

h

[
κn+1

aI
1−α
x u′(xn+1)− κnaI1−α

x u′(xn)
]
.

For the truncation error in the next theorem, we assume that the solution u satisfies certain regularity
properties. To guarantee this, certain compatibility assumptions on the diffusion coefficient κ and on
the source term f are required. Similar assumptions (or even heavier) were assumed in almost all
papers in the literature that dealt with the computational solutions of problems with space fractional
derivatives. Noting that, for the case of a nonsmooth u, we illustrate numerically that O(h) can still
be observed by grading the mesh near the singularity, see Table 3.

Theorem 2. The truncation error is of order h for xn not too close to the left boundary. More
precisely,

Tnh = O(h)(1 + (xn − a)
−α

), for 1 ≤ n ≤ P − 1.

Proof. Using the change of variable s = q + h, we observe that

aI
1−α
x u′(xn+1) =

n+1∑
j=1

∫
Ij

ω1−α(xn+1 − s)u′(s) ds

=

∫
I1

ω1−α(xn+1 − s)u′(s) ds+

n∑
j=1

∫
Ij

ω1−α(xn − q)u′(q + h) dq.

Similarly, for the backward difference we have

aI
1−α
x δu(xn+1) =

n+1∑
j=1

∫
Ij

ω1−α(xn+1 − s)δuj ds

= δu1

∫
I1

ω1−α(xn+1 − s) ds+

n∑
j=1

δuj+1

∫
Ij

ω1−α(xn − q) dq.

Therefore, the truncation error can be rewritten as

Tnh = −h
2
f ′(ζn) + En1 +

n∑
j=1

∫
Ij

ω1−α(xn − q)En,j2 (q) dq, for n ≥ 1,

where

En1 := h−1

∫
I1

ω1−α(xn+1 − s)[κn+1u′(s)− h−1κn+1/2u1]ds, (14)

En,j2 (q) :=
κn+1u′(q + h)− κnu′(q)

h
− κn+1/2δuj+1 − κn−1/2δuj

h2
. (15)

Focusing on the second error contribution, En1 , we observe that for κ ∈ C1(In+1) and u ∈ C2(a, x1],
we have

κn+1u′(s)− h−1κn+1/2u1 = κn+1u′(s)− h−1[κn+1 +O(h)][hu′(x1) +O(h2)]

= κn+1[u′(s)− u′(x1)] +O(h) = O(h).
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Consequently, an application of the mean value theorem for integral yields

En1 = O(1)

∫
I1

ω1−α(xn+1 − s)ds = O(h)(xn+1 − ξ)−α, for some ξ ∈ I1. (16)

Regarding the last error contribution in Tnh above, we first remark that for any q ∈ (xj−1, xj), one has

κn+1u′(q + h)− κnu′(q) = κn[u′(q + h)−u′(q)] + δκn+1u′(q + h),

and that, for κ ∈ C2[xn−1, xn+1] and u ∈ C3[xj−1, xj+1], Taylor series expansions give

κn+1/2δuj+1 − κn−1/2δuj = [(κn+1/2 − κn) + κn][δuj+1 − δuj ] + δκnδuj

= h2[
h

2
κ′(xn) + κn]u′′(xj) + h2κ′(xn)u′(xj) +O(h3) .

Gathering the previous results, we obtain for En,j2

En,j2 (q) = h−1κn[u′(q + h)− u′(q)− hu′′(xj)] + h−1[δκn+1 − hκ′(xn)]u′(q + h) + κ′(xn)[u′(q + h)− u′(xj)]

= −h−1κn
∫ q+h

q

∫ xj

t

u′′′(x) dx dt+
h

2
κ′′(ξn)u′(q + h) + κ′(xn)

∫ q+h

xj

u′′(x) dx,

for some ξn ∈ In+1. The double integral term is O(h2), whereas the second and third terms are O(h).
This leads to the conclusion that the last error contribution to Tnh is O(h). Putting all these estimates
together, we get the desired result. �

3 RS fractional derivative

Here, we focus on the finite difference approximation of problem (1) when θ = 0, i.e., the problem:

Aα,0u(x) = −∂x(κ xDα
b u)(x) = f(x). (17)

We shall rely on the same notations as in the previous section. Contrary to the case of the LS fractional
derivative, we propose a backward difference type treatment for the operator ∂x, and consider the
approximation

∂x(κ xDα
b u)(xn) ≈ h−1[κn+1/2

xDα
b u(xn)− κn−1/2

xDα
b u(xn−1)].

Again, observe the shift in the evaluation points for κ (at the cell centers) compared to fractional
differential operator (at the mesh point), which is crucial to ensure the recovery of the classical second
order scheme when α→ 1. Noting that xDα

b u = xI
1−α
b u′, because u(b) = 0, we have

∂x(κ xDα
b u)(xn) ≈ h−1

[
κn+1/2

xI
1−α
b u′(xn)− κn−1/2

xI
1−α
b u′(xn−1)

]
.

Applying the backward difference to the derivatives inside the integrals, one gets

Aα,0u(xn) ≈ Aα,0h u(xn), for n = 1, · · · , P − 1,

where discrete fractional RS operator

Aα,0h u(xn) = − 1

h2

(
κn+1/2(xI

1−α
b δu)(xn)− κn−1/2(xI

1−α
b δu)(xn−1)

)
.

7



The finite difference solution Un ≈ un of the (RS) fractional model problem (17) satisfies the system:

Aα,0h U(xn) = fn, n = 1, · · · , P − 1, with U0 = UP = 0. (18)

Further, application of the integral form of the RS Riemann-Liouville fractional derivative to the finite
difference, δv, yields:

xI
1−α
b δv(xn−1) =

P∑
j=n

∫
Ij

ω1−α(s− xn−1)δvj ds = ω2−α(h)

P∑
j=n

wj,nδv
j ,

such that the numerical scheme (18) can be expressed as

κn−1/2
P∑
j=n

wj,nδU
j − κn+1/2

P∑
j=n+1

wj,n+1δU
j = f̃nh . (19)

In (18), the weights wn,j and modified right-hand side f̃nh follow the definitions of the previous section,
see equations (6) and (9) respectively. Making use of the equality

P∑
j=n

wj,nδv
j =

P−1∑
j=n

[wj,n − wj+1,n]vj − wn,nvn−1,

the finite difference scheme (18) can be rewritten as

P−1∑
j=n

(
bjn − bj,n+1

)
U j − κn−1/2Un−1 = f̃nh , n = 1, · · · , P − 1,

where bn,n+1 = −κn+1/2 and bj,n = κn−1/2[wj,n − wj,n−1] for j ≥ n.
The finite difference solution of the RS fractional diffusion problem is thus obtained by solving the

(P−1)-by-(P−1) linear system BRU = F, with the system matrix BR = [dn,j ] having upper-triagonal
entries

dn,j =

{
−κn−1/2wj,n−1 + (κn−1/2 + κn+1/2)wj,n − κn+1/2wj,n+1, j > n,

κn+1/2 + κn−1/2[2− 21−α], j = n,

while dn+1,n = −κn+1/2 and all other entries are zeros.

Lemma 3. The finite difference solution Un to the RS scheme (18) exists and is unique.

Proof. As in the case of the LS fractional derivative, the existence of the solution Un of (18)
follows from its uniqueness, and it is sufficient to show that the finite difference solution is identically
zero when fn = 0 for n = 1, · · · , P − 1. To do so, we follow the same path as in Lemma 1. Summing
(19) over the index n, we get

P−1∑
n=m

κn−1/2
P∑
j=n

wj,nδU
j −

P−1∑
n=m

κn+1/2
P∑

j=n+1

wj,n+1δU
j = 0.

The second sum equals
∑P
n=m+1 κ

n−1/2
∑P
j=n wj,nδU

j , and so,

κm−1/2
P∑

j=m

wj,mδU
j − κP−1/2δUP = 0.
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and it ensues that

κn−1/2
P∑
j=n

wj,nδU
j = κP−1/2δUP , for 1 ≤ n ≤ P.

This equation can be cast in the matrix form,

WαTΦ = δUP K̂⇐⇒WαΦ = δUP K̃, (20)

with the same matrix Wα as in equation (11), whereas K̂ = [κ
P−1/2

κ1/2 , κ
P−1/2

κ3/2 , · · · , 1]T and K̃ =

[1, κ
P−1/2

κP−3/2 , · · · , κ
P−1/2

κ1/2 ]T . Since (11) and (20) have the same form, by following the derivation in

Lemma 1, we deduce that δUP = 0. It is again immediate to conclude from (20) that Φ ≡ 0 because
Wα is nonsingular. Consequently, the finite difference solution Un = 0 for 1 ≤ n ≤ P − 1 because
U0 = UP = 0. Therefore, the solution to the RS scheme (18) exists and is unique. �

Next, we study the truncation error Tnh of the proposed finite difference discretization of prob-
lem (17). The truncation error in this case is

Tnh = Aα,0h u(xn)−Aα,0u(xn), for 1 ≤ n ≤ P − 1.

Regarding the continuous part, we proceed with a procedure similar to the LS case, to get

h ∂x(κ xDα
b u)(xn) =

∫
In

∂x(κ xDα
b u)(xn) dx =

h2

2
f ′(ζn) + hGnh, for some ζn ∈ In,

where

Gnh =
1

h

[
κnxI

1−α
b u′(xn)− κn−1

xI
1−α
b u′(xn−1)

]
.

Consequently,
Tnh = Aα,0h u(xn) +Gnh +O(h) . (21)

Theorem 4. The truncation error is of order h for xn not too close to the right boundary. Explicitly,

Tnh = O(h)(1 + (b− xn−1)
−α

), for 1 ≤ n ≤ P − 1.

Proof. Noting first that

xI
1−α
b u′(xn−1) =

P∑
j=n

∫
Ij

ω1−α(s− xn−1)u′(s) ds

=

∫
IP

ω1−α(s− xn−1)u′(s) ds+

P∑
j=n+1

∫
Ij

ω1−α(q − xn)u′(q − h) dq,

(22)

and

xI
1−α
b δu(xn−1) =

P∑
j=n

∫
Ij

ω1−α(s− xn−1)δuj ds

= δuP
∫
IP

ω1−α(s− xn−1) ds+

P∑
j=n+1

δuj−1

∫
Ij

ω1−α(q − xn) dq.

(23)

On the one hand, the equality in (23) is used to obtain

h2Aα,0h u(xn) = −κn−1/2uP−1

∫
IP

ω1−α(s−xn−1) ds−
P∑

j=n+1

[κn+1/2δuj−κn−1/2δuj−1]

∫
Ij

ω1−α(s−xn) ds,

9



where for the second sum, one shows that

κn+1/2δuj − κn−1/2δuj−1 = [(κn+1/2 − κn) + κn][δuj − δuj−1] + δκnδuj−1

= h2[
h

2
κ′(xn) + κn]u′′(xj−1) + h2κ′(xn)u′(xj−1) +O(h3)

=
h3

2
κ′(xn)u′′(xj−1) + h2κn[u′′(q − h) + (u′′(xj−1)− u′′(q − h))]

+ h2κ′(xn)[u′(q − h) + (u′(xj−1)− u′(q − h))] +O(h3)

= h2κnu′′(q − h) + h2κ′(xn)u′(q) +O(h3),

for any q ∈ (xj−1, xj). One the other hand, using equation (22) we have

hGnh =

P∑
j=n+1

∫
Ij

ω1−α(q − xn)[κnu′(q)− κn−1u′(q − h)] dq − κn−1

∫
IP

ω1−α(s− xn−1)u′(s) ds,

where, by Taylor series expansion,

κnu′(q)− κn−1u′(q − h) = κn[u′(q)− u′(q − h)] + δκn u′(q − h)

= hκnu′′(q − h) + hκ′(xn)u′(q − h) +O(h2).

Inserting the above estimates in (21), we obtain for 1 ≤ n ≤ P − 1

Tnh = En +O(h), En := −h−2

∫
IP

ω1−α(s− xn−1)[hκn−1u′(s) + κn−1/2uP−1]ds.

Since κn−1/2uP−1 = [κn−1 +O(h)][−hu′(xP−1) +O(h2)] = −hκn−1u′(xP−1) +O(h2),

En = O(1)

∫
IP

ω1−α(s− xn−1)ds = O(h)ω1−α(ξ − xn−1), for some ξ ∈ IP .

This completes the proof of the RS truncation error. �

4 Two-sided fractional derivative

In this section, we return to the two-sided fractional differential equation (1). To construct our
finite difference approximation we simply combine the finite difference schemes introduced in the two
previous sections for the LS and RS fractional derivatives. Specifically, using (7) and (18), the finite
difference solution Un ≈ un of the fractional model problem (1) is given by the equations

θAα,1h U(xn) + (1− θ)Aα,0h U(xn) = fn, for n = 1, · · · , P − 1 with U0 = UP = 0.

The finite difference solution is obtained by solving the linear system BU = F, where B =
θBL + (1− θ)BR, with the definitions of the matrices BL and BR given in the previous sections.

This shows that the numerical scheme amounts to inverting a system of (P − 1) linear equations
in the P − 1 unknowns, so the existence of the finite difference solution follows from its uniqueness.
Following a similar path as for the proof of uniqueness for the cases of the LS and RS fractional
derivative schemes, we get

[θWα + (1− θ)WαT ]Φ = ψK, with ψ = θδU1 + (1− θ)
P∑
j=1

wj,1δU
j . (24)
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By [21, Lemma A.2], the matrix Wα in (12) is positive definite and so is WαT . Thus, the Toeplitz
matrix θWα + (1− θ)WαT is also positive definite and hence, has an inverse, denoted by Eα,θ, with

entries ei,j . From (24), Φ = Eα,θKψ and thus,
∑P
i=1 δU

i = ψ
∑P
i=1

∑P
j=1 ei,j kj . Since

∑P
j=1 δU

j = 0,

ψ

P∑
j=1

kj

P∑
i=1

ei,j = 0, where kj > 0. (25)

Recall that, the sequence {bj}j≥0 is positive, slowly decaying and is also strictly log-convex, then by
following the arguments for the case of LS fractional derivative, we conclude that the matrix Eα,θ and
its transpose ETα,θ are strictly diagonally dominant [18], with ei,i > 0 and ei,j ≤ 0 for i 6= j. Hence,∑P
i=1 ei,j > 0 and thus, ψ = 0 from (25). Substitute this in (24) yields Φ = 0 and it follows that

Un = 0 for 1 ≤ n ≤ P − 1 because U0 = UP = 0. This completes the proof of the existence and
uniqueness of U .

Furthermore, by combining the results of Theorems 2 and 4, it is trivial to show that the truncation
error is of order O(h) (not near the boundaries at x = a, b).

5 Numerical results

In this section we present several numerical experiments to support the theoretical analyses of the
previous sections. Specifically, we consider the model problem in (1) over Ω = (0, 1), subject to
homogeneous Dirichlet (absorbing) boundary conditions, and we set κ = 1 + exp(x). The finite
difference discretization uses uniform spatial meshes with P = 2l subintervals, for l > 1, such that
h = 1/P . The solution error Eh is measured using the discrete L∞-norm ‖v‖h = max0≤i≤P |v(xi)|.
Based on this error definition, the numerical estimate of convergence rates σh of the finite difference
solutions is obtained from the relation σh = log2(E2h/Eh).

Example 1. We first consider the source term f leading to the exact solution

uex(x) = x4−θ(1−α)(1− x)4−(1−θ)(1−α). (26)

We first fix θ = 1/2, P = 1024 and report in Fig. 1 the estimates σh as a function of α. The
plot shows that σh ∼ 1, denoting an error in O(h), for almost all values of α except in the immediate
neighborhood of α = 1. When α → 1, σh exhibits a rapidly varying behavior to reach the expected
O(h2) rate at α = 1.
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Figure 1: Graphical plot of σh against the diffusion exponent α. Computations use θ = 1/2 and
P = 1024.

11



α = 0.25 α = 0.50 α = 0.75

θ − log2 h Eh σh Eh σh Eh σh

7 1.040e-04 0.9929 8.028e-05 0.9659 5.164e-05 0.9030

0.0 8 5.214e-05 0.9960 4.080e-05 0.9765 2.723e-05 0.9234

9 2.611e-05 0.9976 2.064e-05 0.9834 1.421e-05 0.9382

10 1.307e-05 0.9986 1.040e-05 0.9882 7.357e-06 0.9496

7 1.784e-04 0.9838 9.622e-05 0.9636 4.275e-05 0.9255

0.25 8 8.875e-05 1.0071 4.843e-05 0.9905 2.200e-05 0.9588

9 4.325e-05 1.0369 2.393e-05 1.0173 1.108e-05 0.9887

10 2.033e-05 1.0894 1.150e-05 1.0569 5.432e-06 1.0290

7 2.865e-04 0.9280 1.045e-04 0.9530 3.705e-05 9.4381

0.5 8 1.461e-04 0.9713 5.269e-05 0.9883 1.868e-05 9.8776

9 7.289e-05 1.0036 2.599e-05 1.0198 9.157e-06 1.0287

10 3.545e-05 1.0398 1.243e-05 1.0643 4.304e-06 1.0893

7 1.714e-04 0.9672 9.392e-05 0.9527 4.190e-05 0.9147

0.75 8 8.632e-05 0.9898 4.757e-05 0.9812 2.167e-05 0.9513

9 4.289e-05 1.0092 2.370e-05 1.0054 1.097e-05 0.9820

10 2.094e-05 1.0341 1.156e-05 1.0359 5.408e-06 1.0205

7 1.034e-04 0.9855 7.929e-05 0.9546 5.048e-05 0.8893

1.0 8 5.197e-05 0.9922 4.048e-05 0.9700 2.677e-05 0.9149

9 2.607e-05 0.9956 2.053e-05 0.9794 1.403e-05 0.9326

10 1.306e-05 0.9975 1.037e-05 0.9857 7.283e-06 0.9457

Table 1: Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for different
values of α and θ.

Next, we fix P = 512 and plot Eh against α for different values of θ. Results are reported in Fig. 2.
We observe that the errors are almost the same for θ = 0.25 and θ = 0.75, and for θ = 0 and θ = 1.
This is due to the similar singularity behavior near the boundaries of the exact solution in (26) for
any choice of θ = c and θ = 1− c. Note that the errors are decreasing as α→ 1 for all θ. Interestingly
enough, Fig. 2 also shows that for α < 0.6, the error is lower for extreme values of θ, that is close to
0 or 1, and on the contrary Eh is lower for intermediate values (≈ 1/2) when α > 0.6.

Table 1 reports the L∞-norm of Eh and the corresponding estimates of convergence rate for
different values of α, θ and the discretization step size h. The table confirms the O(h) errors.

Example 2. (nonsmooth solutions) In practice, due to the presence of the two-sided fractional
derivative, the solution u of (1) admits end-point singularities even if the source term f is smooth.

It was proved in [28] that, for θ = 1/2, the leading singularity term takes the form x
1+α
2 (1 − x)

1+α
2

when the diffusivity coefficient κ is constant. Similarly, one can show that leading singularity term
takes the form (x − a)α, with a = 0 presently, in the case of LS fractional derivative (θ = 1), and
the form (b− x)α, with b = 1 presently, in the case of RS fractional derivatives (θ = 0). For smooth
κ, we conjecture the same singular behavior. Furthermore, we suggest that for θ ∈ [0, 1], the leading
singularity term has the generic form (x− a)1−θ(1−α)(b− x)1−(1−θ)(1−α) (a = 0 and b = 1). However,
demonstrating this point remains an open problem and it will be a subject of future work. Noting
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Figure 2: The error Eh against the diffusion exponent α, for P = 512 and different values of θ as
indicated.

that, for κ = 1 and for 0 ≤ θ ≤ 1, the authors in [11] studied the regularity properties of u where
the fractional derivative operator is not of the Riemann-Liouville type, see [11, Equations (1.3) and
(3.11)].

To support our claim, we choose now the source term f such that uex(x) = x1−θ(1−α)(1 −
x)1−(1−θ)(1−α) is the exact solution of the problem with other settings as before. One can easily
check that the truncation errors analyses provided above are not valid in this situation. We then
apply to this problem our finite difference scheme for the LS (θ = 1) and RS (θ = 0) fractional deriva-
tives cases for different values of α and h. Table 2 reports the discrete L∞-norm of Eh and estimates
of the convergence rates σh. The results clearly indicate a convergence rate of the error in O(hα).

α = 0.25 α = 0.50 α = 0.75

θ − log2 h Eh σh Eh σh Eh σh

0.0 9 3.527e-02 0.2567 9.510e-03 0.5037 1.618e-03 0.7556

10 2.959e-02 0.2534 6.716e-03 0.5019 9.601e-04 0.7533

11 2.485e-02 0.2517 4.745e-03 0.5010 5.702e-04 0.7518

12 2.088e-02 0.2509 3.354e-03 0.5005 3.388e-04 0.7510

1.0 9 3.498e-02 0.2449 9.465e-03 0.4970 1.606e-03 0.7454

10 2.946e-02 0.2475 6.700e-03 0.4985 9.562e-04 0.7478

11 2.480e-02 0.2487 4.740e-03 0.4993 5.690e-04 0.7490

12 2.086e-02 0.2494 3.352e-03 0.4996 3.384e-04 0.7495

Table 2: Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for different
values of α and θ.

This degradation of the convergence rate was expected because the low regularity of the solution:
uex ∈ Cα[0, 1]. In the context of time-stepping schemes for fractional diffusion of fractional wave
equations, adapted meshes with refinement (clustering of elements) around the singularity successfully
improve the errors and consequently, the convergence rates, see [30, 32]. To check if such refinement

13



approach could be useful in our problem of (steady) spatial fractional diffusion problem, we set θ = 1
(LS singularity) and consider a family of graded spatial meshes of Ω = (0, 1) based on a sequence
of points given by xi = (i/P )γ , i = 0, . . . , P and γ ≥ 1 is a refinement parameter. The objective
is to refine the mesh at the boundary x = 0 where the solution has a singularity. Table 5 reports
the evolution with log2(P ) of the L∞-norm of the error and estimated convergence rate σh and using
γ = 2, 3 and 4. The results show that one can obtain an O(hαγ) convergence rate. Finally, Fig. 3
compares the pointwise errors obtained for uniform and nonuniform meshes with γ = 3 when using
the same number of discretization points P = 256, 512, 1024 and 2048. The reduction of the error
due to the mesh refinement is clearly visible. Note that similar results can be obtained for θ = 0 using
discretization points defined by xi = 1− ((P − i)/P )γ to refine the mesh at the endpoint x = 1.

γ = 2 γ = 3 γ = 4

log2 P Eh σh Eh σh Eh σh

9 8.140e-03 0.4998 1.711e-03 0.7498 3.597e-04 0.9997

10 5.756e-03 0.4999 1.018e-03 0.7499 1.800e-04 0.9999

11 4.070e-03 0.4999 6.051e-04 0.7499 8.994e-05 0.9999

12 2.878e-03 0.5002 3.600e-04 0.7500 4.497e-05 0.9998

Table 3: Discrete L∞-norm errors Eh and estimated numerical convergence rates σh for α = 0.25, θ = 1
(LS fractional derivatives), different number of discretization points (P ) and refinement parameters
γ.
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Figure 3: Pointwise errors using uniform (dashed lines) and nonuniform meshes with γ = 3 (solid
lines), for α = 0.25 with P = 256, 512, 1024, 2048 (in order from top to bottom).

6 Concluding remarks

The objective of this work was to develop and analyze a finite-difference scheme for the solution of
fractional elliptic problems with a variable diffusion coefficient. We proved the existence and unique-
ness of the proposed numerical solution and established the order of convergence for the truncation
error. Some numerical results were also presented for problems admitting both smooth and nonsmooth
solutions.

This paper will form a stepping stone for the researchers who are interested in computational solu-
tions of variable coefficient two-sided fractional derivative problems. The results obtained in this work
lead to several questions that will have to be addressed in the future. First, it will crucial to address
the reason(s) for the dramatic deterioration in the order of convergence of the finite difference scheme
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when the fractional order α immediately departs from 1 (classical case)? Second, it will be interesting
to explore the possibility of incorporating the fractional exponent α directly in the finite difference
discretization, that is, fractionalizing the numerical scheme. A possible route along this direction could
be inspired by the recent research papers on the fractionalization of the Crank-Nicolson time-scheme
for solving time-fractional diffusion equation, see [8]. Another extension that would be worthwhile
to explore concerns generalization of the present methodology to multiple space dimensions. An at-
tractive avenue consists in combining the presently considered staggered grid machinery with suitable
representations of the fractional diffusion flux [26] evaluated at cell faces. Finally, mechanisms for
determining the order of singularity near the boundaries in the case of variable diffusivity remains to
be developed. These and other related open questions will be the subject of future research.
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