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Abstract The design of embedded vision systems, in confronting the “Mem-
ory Wall”, exhibits many challenges, regarding for example design cost, energy
consumption and performance. This paper considers a variant of the Job Shop
Scheduling Problem with tooling constraints, arising in this context, in which
the completion time (makespan) is to be minimized. This objective corresponds
to the performance of the produced circuit.

Given a set of tasks and a set of prerequisites, this class of problem aims
to schedule all the tasks. Each task can be processed if all its prerequisites
(a specific subset of prerequisites) are loaded in the buffers and stay available
during its whole operation.

We discuss different formulations using integer linear programming and
point out its characteristics, namely the size and the quality of the linear
programming relaxation bound. To solve this scheduling problem with large
size, we compare three sets of approaches including a Constraint Programming,
two constructive greedy heuristics (published in previous work), two models
of LocalSolver, a Simulated Annealing algorithm and Beam Search algorithm.
Numerical experiments are conducted on 16 benchmark instances from the
literature as well as on 12 real-life non-linear image processing kernels for
validating their efficiency.
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1 Introduction

Electronic devices are now widespread and more than ever their design requires
efficient optimization algorithms in order to drastically reduce their cost, in-
crease performance and improve energy consumption. Among these devices,
embedded vision systems are one of the most demanding because they process
huge amount of data acquired by high resolution imaging sensors.

As an example, it is now common to have electronic devices incorporat-
ing neural networks for video processing. These devices heavily make use of
stencil-like processing and an algorithm, called “kernel”, is iterated over a nest
of loops to produce an array of data from one or several input arrays. Due to
the very high amount of data, such kernels make things difficult for processors
because of the penalty of memory accesses. Standard data caches are ineffi-
cients without optimization of both the scheduling of processing and of the
sequence of data accesses.

The optimization of array processing has a long history, from the seminal
work of Feautrier [14], to more recent one [12]. Preserving the code functional-
ity, these optimizations are related to compilation techniques and their goal is
to re-organize both the sequence of computations and the cache updates in a
way to improve both the time locality and the spatial locality of memory ref-
erences. These methods are called “linear” because they make the assumption
that array references are linearly related to loop indices through an integer al-
gebraic relationship, and the scheduling is such that the time point to produce
an output is also linearly related to loop indices. Related scheduling techniques
are efficient but these assumptions exclude many applications such as image
scaling and rotation, homographies, and so on.

Indeed, many real-time video processing make use of ”non-linear kernels”,
whose access patterns are not linearly related to loop indices. These non-linear
kernels are used to correct non-linear optical systems such as fish-eye lenses,
ego-motion estimation, cylindrical or spherical projection of 3D video, and
many others (see [31] and [8]). To optimize the memory management of non-
linear kernels, the proposed technique relies on the idea to pave the space of
both loop indices and input data by regular tiles and manage their movement
from a huge external memory and a buffer close to the computing unit. The
goal is to benefit of the already loaded data and reduce the amount of data
loaded from external memory. However, due to the non-linear access pattern,
the amount of required input data, also called the “footprint” is not constant
over the tiles. In this setting, the optimization process is to find a sequence of
computations such that computing an output tile may benefit from the data
already loaded for the previous output tiles. Unlike with linear methods, the
challenge here is that there is no matrix or linear relationship to benefit from,
and and Combinatorial Optimization (CO) methods are required.

The remainder of this paper is structured as follows. In section 2, we give a
brief description of the context of embedded vision systems, and a clear expla-
nation about the related optimization problems. In section 3, the optimization
problem under consideration is formally described and some of its complexity
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analysis results as well as its main lower bounds are given. An example is then
given to illustrate the construction of an associated hyper-graph representation
as well as a bi-graph. In section 4, three different mixed integer programming
models, as well as some dominance properties to speed up the search for an
optimal solution are presented. Sections 5 — 10, are devoted to solution proce-
dures including a Constraint Programming, two greedy heuristics, two models
of LocalSolver, a Simulated Annealing and a Beam Search. Section 11 gives
a detailed description and analysis of the computational results obtained by
running the proposed approaches on a number of benchmark instances and
discuss the performance of each approach. Finally, the paper concludes with
a discussion on future research directions in Section 10.

2 Background and motivation

To address the challenge, previously introduced, one co-designed architectural
solution was proposed by Mancini and Rousseau [25]. Their solution, called
Memory Management Optimization (MMOpt), creates an ad-hoc memory hier-
archy suited for non-linear kernels. MMOpt takes as input a non-linear kernel,
such as the one shown in Fig. 1, analyzes its access patterns, and computes
a scheduling of both the computations and the data movement between the
external memory and internal buffers. It finally outputs a configuration of the
so-called TPU (Tile Processing Unit), together with the information needed
to orchestrate its operational behavior. The basis of this optimization is to tile
both the iteration space of the kernel and the input and output data structures.

Fig. 1: The disparity of non-linear kernels, namely a polar transform in this
picture, makes standard optimizations inefficient.

As shown in Fig. 2, the TPU is made of a Prefetching Unit that loads
data from external memory to local buffers, and a Processing Engine (PE),
that computes the output data from the input data contained in the buffers.
This architecture allows continuous computations: prefetches being carried out
in parallel with the computations. In order for this scheme to work, prefetches
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have to be determined in advance. In fact, in MMOpt, both prefetches and
computations are orchestrated according to a fixed schedule that is generated
and integrated into the TPU.

Fig. 2: Architecture template of the TPU

TPUs produced by MMOpt embed schedules for the prefetches of input
tiles and the computations of output tiles (see Fig. 3). In this figure, output
tile computing and input tile prefetching are scheduled simultaneously. It is
also possible to have pauses in between computations, so as to limit the num-
ber of necessary buffers. A buffer can store any tile, but only one at a time.The
optimized schedule will impact the three design characteristics of the gener-
ated computing unit in the following way: the number of buffers of the TPU
will account for most of its area; the number of prefetches reflects the main
part of the energy consumption1; and the performance is related to the total
completion time to compute all the tiles of an image.

Following this optimization challenge, we state it as a concrete multi-
objective optimization problem, called 3-objective Process Scheduling

and Data Prefetching Problem (3-PSDPP) (see [19]) with two objectives
being parameters of the schedules themselves — the number of prefetches and
the total makespan — and one parameter being the number of buffers of the
TPU. They correspond to the energy consumption, respectively performance,
and size/cost of the circuit. Since the use of combinatorial methods for op-
timizing the running of the TPU produced by the MMOpt tool is still an
emerging field, we found only one systematic study of the published literature
of MMOpt from 2012, done by Mancini and Rousseau [25]. This study is the
only generic proposition that allows a significant performance improvement,
and that is applicable to any non-linear kernel.

To the best of our knowledge, the 3-PSDPP scheduling problem has not
been studied before in the OR literature. In contrast, since 2014 this prob-

1 In the field of computer design, memory transferts are known to be a major part of
energy consumption, up to 80% of the total energy
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Fig. 3: Prefetches and computations schedules

lem presents the basic topic of [19]. In this study, this electronic problem is
formalized as a 3-objective scheduling problem with clearly delineated inputs
and outputs and developed a set of several constructive greedy heuristics aim-
ing at solving benchmarks from real-life non-linear image processing kernels
already used by Mancini and Rousseau. [25]. A more detailed description of
the proposed model together with a list of all these algorithms can be found
in [18] and [19].

In this paper, we address one of the three natural single-objective sub-
problems of 3-PSDDP, called Minimum Completion Time of 3-PSDDP (MCT-
PSDPP), in which the makespan is to be minimized.

3 Minimum Completion Time of 3-PSDPP: MCT-PSDPP

3.1 Assumptions

Before giving a formal presentation of MCT-PSDPP, we list some assumptions
to clarify some constraints that all TPUs, produced by MMOpt being set up
by Mancini and Rousseau [25], have to satisfy. These assumptions can be
summarized as follows:

1. Input tile sizes are identical and each input tile fits exactly into one buffer.
2. There is no distinction between buffers, i.e. any input tile may be prefetched

into any buffer.
3. All input (respectively output) tiles and the subset of input tiles required

to compute each output tile are known in advance.
4. Only one input (output) tile can be prefetched (computed) at a time.
5. The prefetch operations and the computation steps may be carried out si-

multaneously.
6. Input (output) tile prefetch (respectively computation) times are constant

and identical.
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3.2 Problem Description and Notation Definition

Formally, the scheduling problem MCT-PSDPP under consideration can be
described as follows. Let Y = {1, . . . , Y } be a set of Y independent non-
preemptive output tiles (also called tasks) to be computed, and let X =
{1, . . . , X} be the set of X input tiles to be prefetched from the external mem-
ory to the internal buffers. For each output tile y ∈ Y, we denote by Ry the
X-dimensional column vector, whereRy ⊆ X , which defines the set of required
input tiles (called prerequisites). These Ry tiles have to be prefetched from the
external memory and must be present in the buffers during the whole corre-
sponding computation step. In the same context, let Rx be the Y -dimensional
row vector, where Rx ⊆ Y, which defines the set of used output tiles for each
input tile x. We assume here that the number of used buffers is unlimited,
which means that each prefetch is performed in its own buffer. Also, the pro-
cessing time of a prefetch step and that of a computation step, respectively α
and β, are given as parameters.

The underlying problem is to determine:

(i) the schedule of computations (cj)j∈M,
M = {1, . . . , Y }, where cj = (sj , uj) encodes for each computation step j
which output tile sj is to be computed at which time uj ;

(ii) a corresponding schedule of prefetches (pi)i∈N ,
N = {1, . . . , X}, where pi = (di, bi, ti) encodes for each prefetch step i
which input tile di is prefetched in which buffer bi and at which time ti.

The objective is to minimize the makespan, denoted by Cmax, which means
the total time it takes for the whole operation of the TPU from the beginning
of the first prefetch to the end of the last computation of one full image.

To analyze the complexity of the MCT-PSDPP, several trivial variants,
which can be solved in polynomial time, can be studied. For example, we first
consider the case when the α > β ∗Y , in which the optimal makespan C∗max is
given by the formula α ∗X + β ∗ min

x∈X
|Rx|. In the same way, we consider the

case when β > α∗ max
y∈Y
|Ry|, in which the optimal makespan C∗max is given by

the formula α ∗ min
y∈Y
|Ry|+ β ∗ Y . In addition, in the case when α equals to β

and the cardinal of the set Ry,∀y ∈ Y does not exceed two required input tiles
per each output one, the MCT-PSDPP is a trivial problem that belongs to
the class P. However, we have proved that a particular case of MCT-PSDPP,
when β = α = 1, is NP-Hard, by giving a polynomial reduction from the
”k-weak visit problem described in [6]. A detailed description of the proof can
be found in [24].

In the literature (see Hadj Salem et al. [19]), there exist some lower bounds
on the makespan Cmax for the MCT-PSDPP which are:

lb1 = α ∗ |X ′|+ β (1)

lb2 = α ∗ min
y∈Y
|Ry|+ β ∗ Y (2)
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lb3 = α ∗ min
y∈Y
|Ry|+ β ∗ Y ′ (3)

Note that the X ′ denotes the set of input tiles which are required at least once
for the computation of an output tile. In the same way, note that the Y ′ is the
number of output tiles that are computed immediately after the last prefetch
step in the prefetches/computations schedule. Thus, the makespane Cmax is
lower bounded by the maximum between the three lower bounds lb1, lb2 and
lb3: lbCmax

= max{lb1, lb2, lb3}.

3.3 Formulation as a non-classical scheduling problem

Extending the well-known three fields α|β|γ classification scheme for the schedul-
ing problems, suggested by Graham et al. [17] (see also Lawler et al. [22]), —
where α defines the machine environment, β defines the jobs characteristics
and γ defines the objective function that is to be minimized (max or min) —
the MCT-PSDPP can be considered as an extension of some of the classical
scheduling problems.

Firstly, if there is no shared prerequisites, this particular case of MCT-
PSDPP can be seen as a Flow-shop Scheduling Problem (FSP), denoted as F2|p1j =
α|(Ry)y∈Y |; p2j = β|Cmax (see Garey et al. [15] and Pinedo [27]). In this case,
the problem is solvable in polynomial time by the well known Johnson’s algo-
rithm (see Garey et al. [15]). A more detailed description of this variant of the
MCT-PSDPP as well as the adaptation of the Johnson’s algorithm to solve it
can be found in [24].

Secondly, the MCT-PSDPP can be also seen as a single machine scheduling
problem with tool changes “Tool Switching Problem” (ToSP), in which the
objective function is to minimize the makespan. The ToSP, where the objective
function minimizes the total number of tool switches, arises from computer
and manufacturing systems, and it has been proved by Crama et al. [13])
as a NP-complete combinatorial optimization problem. Different exact and
heuristic methods have been defined to deal with this problem (see Tang et
Denardo [30]; Bard [7]; Privault et Finke [28]; Laporte et al. [21]; Amaya et
al. [5] and Catanzaro et al. [11]). A comprehensive review of the literature that
summaries the current research results on the ToSP is provided by Calmels
in [10].

In summary, this analysis can be considered as an interesting theoretical
study to relate our MCT-PSDPP to similar scheduling problems known in the
OR literature. This study led us to easily adapt some methods to solve our
problem and some of its variants.

3.4 Illustrative Example

To illustrate the problem and a method solution, we present the following
example. Consider the input data given in (Tang et Denardo [30]) for the
case where:
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– Y = 10 output tiles (Y = {a, b, c, d, e, f, g, h, i, j});
– X = 9 input tiles (Y = {0, . . . , X − 1});
– RY =

[
{0, 3, 7, 8}, {0, 2, 4}, {1, 5, 6, 7}, {6}, {5}, {2}

, {0, 4, 6, 8}, {2, 4, 7}, {4, 6}, {0, 1, 3}
]

(see Fig.4);
– α = β = 1 unit of time (for the simplicity of the problem).

RXY =



a b c d e f g h i j

0 1 1 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 0 1
2 0 1 0 0 0 1 0 1 0 0
3 1 0 0 0 0 0 0 0 0 1
4 0 1 0 0 0 0 1 1 1 0
5 0 0 1 0 1 0 0 0 0 0
6 0 0 1 1 0 0 1 0 1 0
7 1 0 1 0 0 0 0 1 0 0
8 1 0 0 0 0 0 1 0 0 0


(a) Incidence matrix RXY
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(b) Hypergraph HXY

Fig. 4: An example of an instance of the MCT-PSDPP (Tang et Denardo,
1988) [30]: an incidence matrix RXY and its corresponding Hypergraph HXY

Note that each instance of MCT-PSDPP can be also represented as a
bipartite graph2, denoted BXY , where U = X (set of input tiles) and V = Y
(set of output tiles).

A feasible solution φ for MCT-PSDPP is given in Fig. 5, where Cmax = 14
units of time.

Fig. 5: A feasible solution with Cmax = 14 units of time

In this schedule, the tile b is computed after prefetching all its required
tiles (0, 2, 4). Then, the tile f is immediately computed because it does not
need a new input tile (tile 2 is already prefetched). For computing the tile h
in the third step, we prefetch only the tile 7 while reusing tiles 2 and 4 which
were previously prefetched for computing tile b, and so on.

2 Bipartite graph B = (U ,V): consists of a set of vertices U a disjoint set of vertices V
and a set of edges E ⊂ U × V.
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4 Mathematical Programming Models

Mathematical programming formulation is a natural way to tackle scheduling
problems. In this section, three Integer or Mixed Integer Linear Programming
(ILP or MILP) models are provided for solving the proposed problem MCT-
PSDPP.

4.1 Position based MILP model

DenoteM = {1, . . . , Y } as the set of Y positions in the computation sequence
to be determined and let N = {1, . . . , X} be the set of X positions in the
prefetch sequence to be defined.
We then define two sets of variables {cyj |y ∈ Y, j ∈M} and {pxi|x ∈ X , i ∈
N} to model the problem under consideration. cyj is a binary variable, which
is equal to 1 if output tile y is computed at position j and 0 otherwise. pxi is
also a binary variable, which is equal to 1 if input tile x is loaded at prefetch
position i and 0 otherwise. Moreover, let uj , j ∈ M and ti, i ∈ N (where
uj , ti ∈ N∗) be the start time of the jth computation step and the ith prefetch
step, respectively.
We also use variable Cmax to define the makespan, where Cmax ∈ R. Finally,
denote Λ, where Λ = α ∗X +β ∗Y as an upper bound on the makespan Cmax
for the MCT-PSDPP (used as a Big-M constraints).

We now present our position based MILP model, here-after denoted as
MCT-1, as follows:

min Cmax

Subject to ∑
j∈M

cyj = 1 ∀ y ∈ Y (4)

∑
y∈Y

cyj = 1 ∀ j ∈M (5)

∑
i∈N

pxi = 1 ∀ x ∈ X (6)∑
x∈X

pxi = 1 ∀ i ∈ N (7)

uj − ti ≥ α− Λ ∗ (2− cyj − pxi)∀ y ∈ Y, j ∈M, x ∈ Ry, i ∈ N (8)

uj−1 + β ≤ uj ∀ j ∈M\{1} (9)

ti−1 + α ≤ ti ∀ i ∈ N\{1} (10)

Cmax ≥ uY + β (11)

cyj ∈ {0, 1} ∀ y ∈ Y, j ∈M (12)

pxi ∈ {0, 1} ∀ x ∈ X , i ∈ N (13)

uj , ti ≥ 1 ∀ j ∈M, i ∈ N (14)
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The objective function represents the makespan Cmax, i.e., the end time
of the last computation step defined by uY +β: constraint (11), which is to be
minimized. Constraint sets (4) — (7) are a set of assignment constraints, in
which constraint set (4) satisfies the requirement that there is a unique output
tile be assigned to each computation step (position j), while constraint set (5)
ensures that each output tile must be computed in a unique position. In the
same way, constraint set (6) satisfies the requirement that there is a unique
input tile be assigned to each prefetch step (position i), while constraint set (7)
ensures that each input tile must be loaded in a unique position. Constraint
(8) ensures that each output tile is computed according to the requirement,
which means that if tile x is prefetched at step i (pxi = 1) and required by
the output tile y which is computed at step j (cyj = 1), then this x must be
present in the internal buffer during this computation. This means also that
the start date of this computation uj must be greater than or equal to the
date of presence of the tile x (ti + α). Constraint set (9) guarantees that the
computation step j only begins when the computation step j − 1 is finished.
Similarly, constraint set (10) ensure that the prefetch step i only begins when
the prefetch step i− 1 is finished. Finally, constraint sets (12) — (14) set the
ranges of the variables.

4.2 Time based ILP models

Although the idea of using time-indexed variables was originally proposed
here, we propose two ILP models for tackling the problem. Consider a set
T = {1, . . . , T}, where T ∈ N∗, as the time interval needed for performing all

prefetch and computation steps. In this paper, we fix T = α∗
∑
y∈Y
|Ry|+β ∗Y ,

which can be considered as an upper bound on the makespan Cmax. Denote
K = {1, . . . , α − 1} as the time interval at which an input tile can be loaded
and let S = {1, . . . , α} be the time interval at which a prefetch step of an
input tile was performed (the prefetch is complete and the input tile is present
in the buffer). Similarly, let L = {1, . . . , β − 1} be the time interval at which
an output tile can be computed.

4.2.1 Process Date-Indexed MILP Model:

We define three sets of new variables {cyt|y ∈ Y, t ∈ T }, {pxt|x ∈ X , t ∈ T }
and {ext|x ∈ X , t ∈ T }, where:

– cyt :

{
1 if output tile y is in computation process at time t, ∀y ∈ Y,∀t ∈ T
0 otherwise

– pxt :

{
1 if input tile x is in prefetch process at time t, ∀x ∈ X ,∀t ∈ T
0 otherwise

– ext :

{
1 if input tile x exists in buffer at time t, ∀x ∈ X ,∀t ∈ T
0 otherwise
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Let Cmax be the makespan, where Cmax ∈ R, the Process Date-Indexed
MILP model, here-after denoted as MCT-2, can be written as follows:

min Cmax

Subject to ∑
t∈T

cyt = β ∀ y ∈ Y (15)∑
y∈Y

cyt ≤ 1 ∀ t ∈ T (16)

cyt − cyt−1 ≤ cyt+l ∀ y ∈ Y, t ∈ {2, . . . , T − β}, l ∈ L (17)∑
t∈T

pxt = α ∀ x ∈ X (18)∑
x∈X

pxt ≤ 1 ∀ t ∈ T (19)

pxt − pxt−1 ≤ pxt+k ∀ x ∈ X , t ∈ {α, . . . , T − β}, k ∈ K (20)

ext − ext−1 ≤ pxt−s ∀ x ∈ X , t ∈ {α+ 1, . . . , T}, s ∈ S (21)

cyt ≤ ext ∀ y ∈ Y, t ∈ T , x ∈ Ry (22)

ext = 0 ∀ x ∈ X , t ∈ S (23)

Cmax ≥ t ∗ cyt ∀ y ∈ Y, t ∈ T (24)

cyt ∈ {0, 1} ∀ y ∈ Y, t ∈ T (25)

pxt, ext ∈ {0, 1} ∀ x ∈ X , t ∈ T (26)

The objective function minimizes the makespan Cmax, where Cmax ≥
t∗cyt,∀t ∈ T : constraint (24). Constraint sets (15) — (17) are assignment con-
straints for computation steps. In the same way, constraint sets (18) — (20)
are a set of assignment constraints for prefetch steps. Constraint (21) imposes
that a prefetch of tile x must be counted whenever x is present at instant t
but is not present at instant t− 1. In other words, ∀x ∈ X , t ∈ {α+ 1, . . . , T},
ext = 1 and ext−1 = 0 imply pxt−s = 1 (the prefetch of the input tile x ends at
instant t− 1). Constraint (22) ensures that the computation of the output tile
y starts at instant t, when all its required tiles x,∀x ∈ Ry are present in the
internal buffer before instant t. Constraint (23) is an initialization constraint.
Finally, constraint sets (25) — (26) set the ranges of the variables.

Remark 1 The makespan Cmax can be expressed by introducing the following
decision variable:

– δt :

1 if the whole treatment (all computation and prefetch steps) is not
yet complete at instant t, ∀t ∈ T

0 otherwise (finished)

In this case, we slightly modify the formulation MCT-2, where the objective

function will be defined by min
∑
t∈T

δt and constraints (24) can be rewritten
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using the following two inequalities (27) and (28).∑
y∈Y

cyt ≤ δt ∀ t ∈ T (27)

δt−1 ≥ δt ∀ t ∈ {2, . . . , T} (28)

4.2.2 End Date-Indexed ILP Model: MCT-3

We now describe a new formulation using two sets of new variables {fyt|y ∈
Y, t ∈ T }, {qxt|x ∈ X , t ∈ T } and both {ext|x ∈ X , t ∈ T } and {δt|t ∈ T }
from the previous formulation MCT-2, in which:

– fyt :

{
1 if output tile y finishes to be computed at instant t, ∀y ∈ Y,∀t ∈ T
0 otherwise

– qxt :

{
1 if input tile x finishes to be prefetched at instant t, ∀x ∈ X ,∀t ∈ T
0 otherwise

The End Date-Indexed ILP model, here-after denoted as MCT-3, can be
stated as follows:

min
∑
t∈T

δt

Subject to∑
t∈T

fyt = 1 ∀ y ∈ Y (29)

∑
y∈Y

t∑
s=t−β+1

fys ≤ 1 ∀ t ∈ {β, . . . , T} (30)

∑
t∈T

qxt = 1 ∀ x ∈ X (31)

∑
x∈X

t∑
s=t−α+1

qxs ≤ 1 ∀ t ∈ {β, . . . , T} (32)

ext − ext−1 ≤ qxt−1 ∀ x ∈ X , t ∈ {α+ 1, . . . , T} (33)

fyt ≤ exs ∀ y ∈ Y, t ∈ {β, . . . , T}, x ∈ Ry, s ∈ {t− β + 1, . . . , t}
(34)

ext = 0 ∀ x ∈ X , t ∈ S (35)

fyt = 0 ∀ y ∈ Y, t ∈ {1, . . . , β + α ∗ |Ry| − 1} (36)∑
y∈Y

fyt ≤ δt ∀ t ∈ T (37)

δt−1 ≥ δt ∀ t ∈ T \{1} (38)

fyt ∈ {0, 1} ∀ y ∈ Y, t ∈ T (39)

qxt, ext ∈ {0, 1} ∀ x ∈ X , t ∈ T (40)

δt ∈ {0, 1} ∀ t ∈ T (41)
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The objective function minimizes the makespan defined by min
∑
t∈T

δt.

Constraint (29) ensures that for each output tile y, there is an instant t in
which this tile is computed. Constraint (30) means that for each instant t,
there is at most one prefetch of an input tile that will be finished at this
time. In the same way, constraint (31) ensures that for each input tile x,
there is an instant t in which this tile is loaded. Constraint (32) means that
for each instant t, there is at most one computation of an output tile that
will be finished at this time. Constraint sets (33) — (35) imply constraints
(21) — (23), respectively. Constraint (36) is an initialization constraint for
computation steps. Constraint sets (37) — (38) imply constraints (27) — (28),
respectively. Constraint sets (39) — (41) set the ranges of the variables.

Remark 2 Constraints (34) can be rewritten as:

β ∗ |Ry| ∗ fyt ≤
∑
x∈Ry

t∑
s=t−β+1

exs∀ y ∈ Y, t ∈ {β, . . . , T} (42)

This constraint ensures that for each output tile y and each instant t, if the
computation of y ends at t, then there is a time interval of time {t−β+1, . . . , t}
to which all the prerequisites of y (given by Ry) are prefetched. That is to say,

the sum

t∑
s=t−β+1

exs must be greater than or equal to the time required for a

computation step (β ) multiplied by the number of prerequisites of y.
For example, for any instance with Y = 10 output tiles to compute and

X = 9 input tiles to load, the inequality (34) has 8795 constraints while (42)
has 2174 constraints. We can then say that this inequality reduces the number
of constraints that has a significant impact on solving performance.

4.3 Dominance Properties

In this subsection, we introduce some dominance properties which should apply
for the MCT-1 as well as for both MCT-2 and MCT-3. These properties can be
stated as “dominance rules” whose aim is to reduce the solution space of a
problem (to reduce the searching scope) by adding new constraints to it in
order to speed up the search process. In our case, we used these dominance
properties as a preprocessing step that aims to reduce the search-space of the
variables, or directly in building interesting solutions, or even a subsets of
solutions in which it is sufficient to search for optimal solutions.

Property 1 (Tiles computation).
Without loss of generality, we can assume that in an optimal solution Ry1 ⊆
Ry2 ,∀(y1, y2) ∈ Y implies that output tile y1 must precede output tile y2.

The property 1 can be simply described by the following inequalities: ∀y1, y2 ∈
Y and Ry1 ⊆ Ry2 :
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uj ∗ cy1j ≤ uj ∗ cy2j+1 + β (for the MCT-1) (43)

t ∗ cy1t ≤ t ∗ cy2t + β (for the MCT-2) (44)

t ∗ fy1j ≤ t ∗ fy2t − β (for the MCT-3) (45)

Proof 1 (Property1)
Suppose there exists an optimal schedule where Ry1 ⊆ Ry2 and y2 precedes y1
that contradicts dominance 1. In this case, Cmax = α.|Ry2 | + 2.β. Without
breaking the precedence rule, we can exchange y2 and y1 in the schedule since
both their prerequisites are loaded before either s1 and s2. Doing so, we get
Cmax = α.|Ry1 | + max(α.|Ry2 \ Ry1 |, β) + β which is at most α.|Ry2 | + 2.β.
This contradicts the assumption of the existence of an optimal schedule where
Ry1 ⊆ Ry2 and y2 precedes y1 contradicting dominance rule 1. Thus there
exists no optimal schedule that contradicts dominance 1.

Fig. 6 shows an example when applying the dominance 1 allows to get a
smaller Cmax. ut

(a) y2 before y1 (b) y1 before y2

Fig. 6: Case where dominance 1 gets a smaller value

Property 2 (Tiles requirement).
If an input tile is required by all output tiles, ∃x ∈ X/∀y ∈ Y, x ∈ Ry, then
this input tile must be
prefetched at the first prefetch step in an optimal schedule.

Proof 2 (Property2)
Consider xi the prerequisite which is required by all output tiles. It is prereq-
uisite of the first loaded input tiles. Since permuting prerequisites of the first
output tiles do not change the completion time, there exists an optimal solution
with the prerequisite required by all output tiles loaded first.

ut

Property 3 (Tiles utilization).
If an output tile y requires all the input tiles, ∃y ∈ Y/Ry = X , then there
exists an optimal schedule in which this output tile is computed at the last
computation step.

Proof 3 (Property3)
Consider y an output tile which is required all the input tiles in X . Let Cy
the completion time of y. The makespan Cmax can be defined as Cy + β ∗ k,
where k ∈ {0, . . . , Y − 1} is the number of output tiles computed after y. As
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Cy ≥ α ∗X, then Cmax ≥ α ∗X + β ∗ k. This means that minimizing Cmax
implies minimizing k. So, there exists an optimal schedule, where k = 0, which
means that y is computed at the last computation step.

ut

5 A Constraint Programming Approach

Constraint Programming (CP) is a declarative programming paradigm suit-
able for solving constraint satisfaction problem (CSP). A CSP consists of a set
of decision variables defined by a corresponding set of values (a finite domain)
and a set of constraints that limit the possible combination of variable-value
assignments. After a model of the problem is created, the solver interleaves two
main steps: constraint propagation, where inconsistent values are removed from
variables domains, and search. CP has been widely used to solve scheduling
problems.

To present the CP-1 model for the MCT-PSDPP, we use IBM ILOG opti-
mization suite and the docplex python module [1] to program our model. We
first define two set of variables as follows:

– I1: the interval variable for each input tile (prerequisite) x ∈ X ;
– I2: the interval variable for each output tile (task)
y ∈ Y;

The objective is to minimize the makespan, which is denoted by the fol-
lowing expression:

max{end of(I2[y],∀y ∈ Y) 3 }

subject to the following constraints:

no overlap(I1[x]) 4 ∀ x ∈ X (46)

no overlap(I2[y]) ∀ y ∈ Y (47)

end before start(I1[x], I2[y]) 5 ∀ x ∈ X ,∀ y ∈ Y (48)

– Constraints (46) ensures that each input tile x is loaded at a prefetch
instant only once.

– Constraints (47) ensures that each output tile y is computed at a compu-
tation instant only once.

– Constraints (48) means that for each each x precedes y, x must finish before
y starts. That is to say that an output tile y can be computed only after
prefetching all its required tiles x.

3 end of(): End of an interval variable.
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6 Constructive Greedy Algorithms

The MCT-PSDPP was considered for the first time by Hadj Salem et al. [19].
They have developed a set of two constructive greedy algorithms, called as
follows:

a Earliest Computations for MCT (ECM):
The main idea of the ECM algorithm is to compute the output tiles at
the earliest, while satisfying the input tiles requirement constraint. Note
that the prefetches are sequenced in their decreasing order of the number
of occurrences Oc(x),∀x ∈ X .

b Computation Grouping for MCT (CGM):
The main idea of the CGM algorithm is to find a set of groups G in order to
define the computations sequence. A Group G defines a set of output tiles
y ∈ Y which share the same required input tiles and will be successively
computed after y. More formally, consider an output tile y, y ∈ Y, a Group
G of y is defined by G(y) = {g : g ∈ Y, g 6= y, and Rg ⊆ Ry}. To
determine this computations sequence, we first construct the set of groups
Y ′, associated to the set output tiles y, y ∈ Y, while ensuring that each
output tile y belongs to exactly one group G. Then, the computations are
sequenced in their increasing order of |Ry|,∀y ∈ Y ′ and Y ′ ⊆ Y.

For all these algorithms, the number of prefetches N equals its lower bound
lbN = |X ′| and the number of buffers Z equals its number of required input
tiles |X ′|.
The flowchart in Fig. 7 summarizes the basics steps of each of these meth-
ods. However, a more detailed description of these algorithms as well as an
illustrative example can be found in [19].

7 Split Algorithm

Before going in specific meta-heuristics, we present a Split algorithm for
MCTP-PSDPP. Split algorithms are a way to search in a smaller search space.
A good example of application can be found in [32]. Indeed, given a permuta-
tion on output tasks, there exists an optimal schedule of input tasks relative to
the output permutation. It consists of scheduling input tasks that are prereq-
uisites of the first scheduled output task. Then all prerequisites of the second
scheduled output tasks. And so on until all input tasks are scheduled. One
can prove that it leads to an optimal input task schedule by a permutation
argument. We use this routine in one LocalSolver model, the Beam Search
(BS) and the Simulated Annealing (SA).

8 Solving using LocalSolver

LocalSolver (LS) is a local search based mathematical programming software.
More informations about it can be found in [9].
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Start

Inputs: X ,Y, (Ry)y∈Y , α, β

1: Find a Prefetches Schedule

(di, ti)i∈N

2: Find a Computations
Schedule “ At Earliest”

(sj , uj)j∈M
, Cmax

1: Find a Computation
Sequence Using Groups G

(sj)j∈M

2: Find Prefetches and
Computations Schedules

(di, ti)i∈N , (uj)j∈M
, Cmax

End

ECM CGM

Fig. 7: Flowchart of ECM and CGM algorithms [19]

We propose two LocalSolver models (LS-standard and LS-split). The
first one is a naive approach using a straightforward model reflecting the MCT-1
formulation. It is implemented as the MIP defined in this paper. We take ad-
vantage of the set modeling in LocalSolver 7.5.
The second one uses the split routine defined before. It searches over permuta-
tion and defines a custom objective function that computes the optimal input
task schedule, then evaluates the resulting solution.

9 The Proposed Simulated Annealing

Simulated Annealing (SA) is one of the well known meta-heuristic that be-
longs to the class of randomized local search algorithms which are known as
threshold accepting algorithms.
Standard SA has been widely used in optimization and present in most of the
textbooks [16]. We use the split method defined before.

Like all others meta-heuristic methods, we need to define the different
parameters as follows:
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1. Initial solution: we generate randomly a permutation (sj)j∈Y of |Y| and
compute the permutation (di)i∈N of |X |.

2. Neighbourhood: the neighbourhood is defined by all the possible swaps
of two elements in the permutation (sj)j∈Y . It consists of O(|Y|2) elements.

3. Evaluation function: we measure the makespan Cmax.
4. Acceptance scheme: We accept a non-improving solution (of difference
∆ between the reference solution at iteration k) if a random number be-
tween 0 and 1 is less than: exp( −∆

exp−k/10 )

Algorithm 1 shows the pseudo-code of our proposed Simulated Annealing
algorithm.

Algorithm 1: Simulated Annealing algorithm
Input : X ,Y,Ry , α, β
Output: permutation of Y : (sj)j∈M
Result: optimal makespan Cmax

1 while not stoppingCriterion do
2 Initialize temperature t0 and s as a random solution for k ∈ {0, . . .K} do
3 Generate neighbour n ∈ N(s) ; // n is a neighbour of s
4 Cmax ← eval(n)− eval(s) ;
5 if Cmax ≤ 0 then // We found a better solution

6 s← n ;
7 else
8 s← n with probability exp(−Cmax/tk) ;
9 end

10 end

11 end

10 Iterative beam search algorithm

Beam Search (BS) has been used successfully to solve many scheduling prob-
lems (see [26,29]). Beam Search is a tree search algorithm that uses a param-
eter called the beam size (D). Beam Search behaves like a truncated Breadth
First Search (BFS). It only considers the best D nodes on a given level. The
others are fathomed. Usually, we use the dual bound of a node to choose
the most promising nodes. In our situation, MCTP-PSDPP is a minimiza-
tion problem, we use as a guide the value of the lower bound defined by the
following equation:

lbCmax
= idle time on machine M2 + |Y| (49)

It generalizes both a greedy algorithm (if D = 1) and a BFS (if D =∞). Re-
cently, an iterative scheme was proposed to solve with success various combina-
torial optimization problems using a beam search, or a variant of it (see [23]).
It consists of successive runs of larger and larger beam search algorithms. This
allows to rapidly get good solutions, and, being able to improve them.
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Algorithm 2 shows the pseudo-code of our proposed Iterative beam search
algorithm. The algorithm runs multiple beam searches starting with D = 1
(line 1) and increases geometrically the beam size (line 8). Each run explores
the tree with the given parameter D. At the end of the time limit, we report the
best solution found so far (line 10). We start by an empty output permutation,
then, chose the first output task at the first level. Then the second output task
on the second level. And so on.

Algorithm 2: Beam Search algorithm
Input : X ,Y,Ry , α, β
Output: permutation of Y : (sj)j∈M
Result: optimal makespan Cmax

1 D ← 1;
2 while time limit not exceeded do
3 Candidates ← root ; // root is an empty output permutation of Y
4 while Candidates 6= ∅ do
5 Children ← { children(n) | n ∈ Candidates } ; // children is a child

node of the tree a limited set

6 Candidates ← best D of Children;

7 end
8 D ← D × 2;

9 end
10 Report best solution found;

11 Computational Experiments and Discussion

The goal of the experiments is to evaluate the different proposed methods,
including exact and heuristic/meta-heuristic, for solving the MCT-PSDPP
given two sets of benchmarks.

11.1 Parameter settings

All experiments were performed on a Intel Core i5 processor, 2.60 GHz ma-
chine, equipped with 4 GB of RAM and operating system Windows. We
perform experiments with Gurobi Optimizer v7.5.1 and LocalSolver 7.5 us-
ing Python 3.6. Constraint programming approach was implemented using
IBM ILOG CP Optimizer. Simulated Annealing as well as greedy algorithms
were implemented using Python version 3.6. Beam Search was implemented
in C++. The CPU time limit for each run on each problem instance is 300
seconds. All our tests were carried out for the case where α = β = 1 time
unit. In addition, all the solvers are executed in their default settings with one
thread unless specified otherwise.
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11.2 Description of data-sets

Experiments were made using two kind of data-sets possessing different char-
acteristics.

Specifically we first considered a collection of 16 data-sets for the well-
known ToSP, available in the literature (see [7], [20], [4], and [34]) and down-
loadable at [2].
Each data-set contains 5 random instances (i.e., incidence matrices or relations
among input and output tiles) of the MCT-PSDPP (≡ ToSP), characterized
by having the same number of output tiles (≡ jobs), input tiles (≡ tools). For
the sake of simplicity, since instances sharing the same characteristics produce
the same results on considered algorithms, we only present the first one among
each class. As we can see from the Table 1, each data-set is also characterized
by the vector of parameters Y,X,Xmin, Xmax, Z, where:

– Y ∈ {10, . . . , 50}
– X ∈ {9, . . . , 60}
– Xmin = min

y∈Y
|Ry|

– Xmax = max
y∈Y
|Ry|

– Z ∈ {4, . . . , 30}. In our case, the Z is infinite number of buffers.

A specific instance with Y output tiles, X input tiles and buffers’s number
Z is labeled as: ZζXY .
As described in [7], [20], [4], and [34], a generic instance in a given data-set
is created by generating at random, for each output tile y ∈ Y, the set Ry
(Xmin ≤ |Ry| ≤ Xmax), and with the restriction that no output tile is covered
by any other output tile in the sense that ∀k, l ∈ Y and k 6= l : Rk * Rl.
In fact, data-sets belonging to the same group (eg., datAx, datBx, and so on)
differ from one on another by the number of input tiles X and the number of
buffers Z.

Note that all our proposed algorithms perform in the same way for the
different instances from the same group. So, in this paper, we present our
numerical results (given, in next sections, in both Tables 4 and 5) only on one
of them.

A visualization of these instances can be found in [3]. It is a homemade
web application helping to visualize hypergraphs, play with ToSP instances
and solutions. Each row can be dragged and dropped at an another position in
the order by picking its pink square. Similarly for columns and green squares.

We then considered a set of 12 benchmarks from real-life non-linear image
processing kernels already used by Mancini and Rousseau [25]. Note that the
incidence matrices of the kernels are our input, not the image processed by
the kernel.

As we can see from the Table 2, the benchmarks are variations of four
kernels (fisheye, polar, fd resize, and fd haar) for which the input data struc-
ture (multi-resolution (an)isotropic mipmap input data) is modified. In fact,
the first four kernels represent geometric non-linear transformations (see [31]
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Data-set Y X Xmin Xmax Z Label

datA1 10 9 2 4 4 4ζ910
datA2 - 10 2 4 4 4ζ1010
datA3 - 15 3 6 6 6ζ1510

datB1 15 12 3 6 6 6ζ1215
datB2 - 20 3 6 6 6ζ2015

datC1 20 15 3 8 8 8ζ1520
datC2 - 16 3 8 8 8ζ1620
datC3 - 20 4 10 10 10ζ2020
datC4 - 30 9 24 24 24ζ3020
datC5 - 36 9 24 24 24ζ3620
datC6 - 40 11 30 30 30ζ4020

datD1 30 25 4 10 10 10ζ2530
datD2 - 40 6 15 15 15ζ4030

datE1 40 30 6 15 15 15ζ3040
datE2 - 60 7 20 20 20ζ6040

datF 50 40 9 20 25 25ζ4050

Table 1: Characteristics of the 6 data-sets of the ToSP

No Kernel Input data type
Input tiles Output tiles Prerequisites

Dim X Dim Y0 Y Xmin Xmax

1 Test2D image 2D 256 2D 64 64 4 4
2 Test2D PE image 2D 64 2D 256 256 1 1
3 Fisheye image 2D 176 2D 176 158 1 9
4 Fisheye mipmap isotropic 3D 352 2D 176 158 2 13
5 Fisheye mipmap anisotropic 4D 704 2D 176 158 3 21
6 Polar image 2D 169 2D 112 112 2 8
7 Polar mipmap isotropic 3D 845 2D 112 112 2 12
8 Polar mipmap anisotropic 4D 4225 2D 112 112 5 20
9 Fd Resize mipmap isotropic 3D 1280 3D 3520 1186 1 13
10 Fd Haar pyramidal integral image 4D 7040 3D 2112 428 28 96
11 Cameleon image 3D 1200 2D 1350 877 1 9
12 Cameleon Sd image 3D 4800 2D 5400 3353 1 10

Table 2: Characteristics of the 12 benchmarks from real-life non-linear image
processing kernels

and [8]). The last one, which represents a kernel of a face detection application
based on Haar features, creates a pyramidal multi-resolution image (see [33]).
The number of the input image tiles varies between 60 and 7000 input tiles.
In the same way, the number of the output tiles varies between 60 and 3400
tiles, where Y0 is the initial number of output tiles and Y defines the number
of tiles to be computed: Y ≤ Y0.



22 K. Hadj Salem et al.

11.3 Experiments for ILP models

11.3.1 Comparison of the ILPs

We first define by R the average of |Ry|: R = 1
Y

∑
y∈Y
|Ry|.

Table 3 gives a comparison of the proposed ILP models: MCT-1, MCT-2a,
MCT-2b, MCT-3a & MCT-3b, in terms of the number of variables and the number
of constraints as well as the use of the Big-M constraints. These models are
based on the formulations MCT-1, MCT-2 and MCT-3 (described in Section 4),
where:

– MCT-1: is the position based MILP model;
– MCT-2a: is the Process Date-Indexed MILP model with a classical objectif

function of the makespan;
– MCT-2b: is the Process Date-Indexed ILP model with an objectif function

as a decision variable defined by constraints (26) — (27);
– MCT-3a: is the End Date-Indexed ILP model with the initial version of

constraints (33);
– MCT-3b: is the End Date-Indexed ILP model with the second version of

constraints (33) defined by constraints (41).

Models
No. Variables

No. Constraints Big-M
binary integer

MCT-1 X2 + Y 2 X + Y + 1 O(XY 2R) Yes
MCT-2a (2X + Y ) ∗ T 1 O((α+ β)Y 2R2 + αXY ∗ (αR+ β)) No
MCT-2b (2X + Y ) ∗ T + T 0 O((α+ β)Y 2R2 + αXY ∗ (αR+ β)) No
MCT-3a (2X + Y ) ∗ T + T 0 O(βY 2R ∗ (αR+ β) +XY ∗ (αR+ β)) No
MCT-3b (2X + Y ) ∗ T + T 0 O(Y 2 ∗ (αR+ β) +XY ∗ (αR+ β)) No

Table 3: Comparison of the ILP models: MCT-1, MCT-2a, MCT-2b, MCT-3a &
MCT-3b

As illustrated in Table 3, it is easy to see that MCT-2a, MCT-2b, MCT-3a &
MCT-3b are equivalent in terms of the number of binary variables. They have
the largest number of variables, but they also have some strong advantages.
In fact, they do not contain the Big-M constraints that are known to weaken
the linear relaxation and to decrease the performance of ILP models. Besides,
the use of a binary variable to define the makespan Cmax seems to be more
favorable than the use of the classical ones.
In contrast, MCT-1 has the smallest number of variables (binary and integer).
The most important disadvantage of MCT-1 is that it uses a large number Λ
in the constraint (8), known as the Big-M constraints. Because we can not
find an efficient way to closely estimate Λ, an exact procedure to separate this
constraint will be useless.
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To compare the number of constraints for the different models, we need to
study the size of R. In fact, if R ≤ X

α+β , both MCT-2a and MCT-2b are then

better than MCT-1 in term of number of constraints. Furthermore, if R ≤ X
αβ ,

MCT-3a has less constraints than MCT-1. Then, MCT-3b is always better.

11.3.2 Computational results

The first set of our Computational results provides the gap (expressed in per-
centage) and CPU (expressed in seconds) values for the five ILP models, on the
ToSP data-sets. These experiments were performed with Gurobi Optimizer,
when enabling its proprietary cuts and presolving strategies.

Analysis of the gap: Fig. 8 shows a comparison of both Gurobi gap and
Gap distribution using box-plots 6. The Gurobi gap is defined as the difference
between the best feasible solution and the best lower bound found by Gurobi
at the end of CPU time limit (300 s). However, the Gap is calculated using the
following equality, where C∗max is obtained by the CP model:

(Cmax − C∗max)

C∗max
∗ 100 (50)

Id C∗max
MCT-1 MCT-2a MCT-2b

lb Cmax GGap CPU Gap lb Cmax GGap CPU Gap lb Cmax GGap CPU Gap

A1 12 12 12 0 0.66 0 12 12 0 1.49 0 12 12 0 0.22 0
A2 13 13 13 0 4.62 0 13 13 0 0.89 0 13 13 0 0.27 0
A3 16 16 16 0 1.28 0 16 16 0 6.19 0 16 16 0 1.97 0

B1 19 19 19 0 5.86 0 19 19 0 12.41 0 19 19 0 1.20 0
B2 22 22 22 0 60.69 0 22 22 0 263.86 0 19 22 13.6 300 0

C1 25 25 25 0 58.54 0 18 25 28 300 0 25 25 0 216.12 0
C2 27 20 27 25.9 300 0 15 27 44.4 300 0 25 27 7.4 300 0
C3 28 20 28 28.6 300 0 16 28 44.8 300 3.57 24 30 20 300 7.14
C4 41 20 41 51.2 300 0 3 42 92.9 300 2.43 28 43 34.9 300 4.87
C5 44 20 45 55.6 300 2.27 1 56 98.2 300 27.27 27 50 46 300 13.63
C6 49 20 51 60.8 300 4.08 2 51 96.1 300 4.08 29 50 42 300 2.04

D1 39 30 40 25 300 2.56 5 41 87.8 300 5.12 34 40 15 300 2.56
D2 50 30 53 43.4 300 6 3 52 94.2 300 4 34 56 39.3 300 12

E1 55 40 57 29.8 300 3.63 3 66 95.5 300 20 44 58 24.1 300 5.45
E2 77 40 84 25.4 300 9.09 1 100 99 300 29.87 41 100 59 300 29.87

F 75 50 80 37.5 300 6.66 2 89 97.8 300 18.66 54 90 40 300 20

Average - - 25.63 - 2.14 - - 54.91 - 7.18 - - 21.33 - 6.09

Table 4: Numerical results of ILP models for MCT-PSDPP: MCT-1, MCT-2a &
MCT-2b

Tables 4 and 5 give the detailed numerical results of the different versions
of the ILP models for MCT-PSDPP using ToSP data-sets. For each of the five
models, we give the following parameters:

6 A box plot (or box-and-whisker plot) shows the distribution of quantitative data in a
way that facilitates comparisons between variables or across levels of a categorical variable.
Specifically, the bottom and the top of each box represent the first and third quartiles; the
band inside the box represents the second quartile (the median), and the ends of the whiskers
represent the 9th percentile and the 91 stpercentile. Outliers are plotted as individual points.
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Fig. 8: Comparison of the gaps of models MCT-1, MCT-2a, MCT-2b, MCT-3a and
MCT-3b

Id C∗max
MCT-3a MCT-3b

lb Cmax GGap CPU Gap lb Cmax GGap CPU Gap

A1 12 12 12 0 0.13 0 12 12 0 0.22 0
A2 13 13 13 0 0.30 0 13 13 0 0.27 0
A3 16 16 16 0 3.30 0 16 16 0 3.64 0

B1 19 19 19 0 1.43 0 19 19 0 2.92 0
B2 22 19 22 13.6 300 0 21 22 4.5 300 0

C1 25 25 26 3.8 300 4 25 25 0 11.27 0
C2 27 26 27 3.7 300 0 27 27 0 170.29 0
C3 28 25 28 10.7 300 0 25 28 10.7 300 0
C4 41 31 46 32.6 300 12.19 33 42 21.4 300 2.43
C5 44 31 47 34 300 6.81 31 46 32.6 300 4.54
C6 49 34 51 33.3 300 4.08 33 57 42.1 300 16.32

D1 39 35 39 10.3 300 0 35 41 14.6 300 5.12
D2 50 37 54 31.5 300 8 37 58 36.2 300 16

E1 55 46 57 19.3 300 3.63 47 59 20.3 300 7.27
E2 77 44 100 56 300 29.87 49 90 45.6 300 16.88

F 75 59 78 24.4 300 4 59 79 25.3 300 5.33

Average - - 17.07 - 4.53 - - 15.83 - 4.62

Table 5: Numerical results of ILP models for MCT-PSDPP: MCT-3a & MCT-3b

– lb: the best lower bound found by Gurobi;
– Cmax: the best feasible solution found by Gurobi Optimizer, when enabling

its proprietary cuts and presolving strategies;
– GGap: the Gurobi Gap expressed in percentage (%);
– CPU(s): the execution time expressed in seconds;
– Gap: the optimal gap, expressed in percentage (%).
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In these tables, we highlight the optimally solved instances within the time
limit (less than or equal one CPU minute) with bold type. This means that
GGap and/or Gap were equal to 0%.

From the results shown in the Fig. 9 and in both Tables 4 and 5, we
can make the following observations: (i) The four smaller instances (instances
goes from size 9 × 10 to 15 × 12) are easily solved by each of the proposed
ILP models. In contrast, none of the proposed ILP models is able to solve the
nine bigger instances with up to 20 input/output tiles. The quality difference
between the proposed ILP models is really visible with midle size instances
(instance B2, C1 and C2), which have been solved only by some models. (ii)
the best Gap results are with the MCT-1 model (average Gap: 2.14 %). However,
both MCT-3a and MCT-3b models (average Gap, respectively: 4.53 % and 4.62
%) are not so far from MCT-1 model. (iii) The number of solved instances is
a good quality indicator for ILP models. The proposed ILP models that solve
the most number of instances are MCT-1 and MCT-3b. (iv) The gurobi gap GGap

provide a value of the solving state. MCT-3b model gives the best GGap value
on our instance sets.

Fig. 9 shows a comparison of the last lower bound provided by Gurobi for
each of the five ILP models in terms of line plots. The results show that MCT-3b
is the tightest formulation for the MCT-PSDPP and that even if MCT-1 model
provides the best average Gap, it gives a weaker lower bounds than the other
three models (MCT-2b, MCT-3a and MCT-3b). The strength of the provided
lower bound is a major factor to prove optimality.
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Fig. 9: Comparison of the lower bound of models MCT-1, MCT-2a, MCT-2b,
MCT-3a and MCT-3b on the ToSP data-sets (Y are in either increasing)
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Analysis of the solution times: Fig. 10 shows a comparison of the solution
times of each of the five ILP models in terms of line plots.

Fig. 10: Comparison of the solution times (expressed in seconds) of models ,
MCT-2a, MCT-2b, MCT-3a and MCT-3b on the ToSP data-sets (Y are in either
increasing), where the second plot is a zoom-in of the dotted rectangle

As a general trend, we observed that both MCT-1 and MCT-2a are the slowest
to compute the solved instances. Furthermore, the three ones MCT-2b, MCT-3a
and MCT-3b have a similar behavior. This could be explained by the constraint
complexity analysis done before.

11.4 Experiments for Heuristics/Meta-heuristic methods

11.4.1 Computational results

The second set of results compares the makespan Cmax obtained by each of
our algorithms (Constraint Programming CP, Greedy algorithms ECM & CGM,
LocalSolver LS-standard & LS-split, Simulated Annealing SA and Beam
Search BS) and for each problem instance (described in section 11.2). The
results are given in Table 7 (on the ToSP data-sets) and Table 8 (on the
MMOpt kernels).

In theses tables, the first column Id refers to data sets, the second column
indicates the lower bound value lb on the makespan Cmax defined by the
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maximum of lb1 and lb2 given by the two Equations 1 and 2 and the third
column shows the optimal makespan C∗max obtained by the CP model. We
also noted that both lb and C∗max are the same value in the case of MMOpt
kernels (see Table 5). Besides, they give, for each algorithms, the following
parameters:

– C: the makespan Cmax value;
– G(%): the gap, expressed in percentage, calculated using the equality 50.

The last row in both Table 7 and 8 provides the average gains of the G(%)

parameter for all the kernels.
In the same way, Table 6 gives the average solution times (expressed in seconds)
taken by the different algorithms described in a previous sections to solve ToSP
instances and MMOpt kernels.

Algorithm/Data-sets ToSP instances MMopt instances

CP 2.33 22.33

ECM �1 ≤1
CGM �1 42.33

LS-standard ≤60 14.91
LS-split 3.62 1.08

SA ≤1 '250
BS �1 ≤1

Table 6: Average CPU(s) of CP, heuristics & metaheuristics methods for both
ToSP and MMOpt data-sets

Id lb C∗max
CP ECM CGM LS-standard LS-split SA BS

C G(%) C G(%) C G(%) C G(%) C G(%) C G(%) C G(%)

A1 12 12 12 0 13 8.33 13 8.33 15 20 12 0 12 0 12 0
A2 12 13 13 0 13 8.33 14 7.69 16 18.75 13 0 13 0 13 0
A3 16 16 16 0 18 12.5 18 12.5 20 20 16 0 16 0 16 0
B1 19 19 19 0 22 15.79 20 5.26 22 13.6 19 0 19 0 19 0
B2 21 22 22 0 25 13.63 27 22.72 26 15.4 22 0 22 0 22 0

C1 23 25 25 0 29 16 29 16 28 10.7 258 0 25 0 25 0
C2 23 27 27 0 30 11.11 30 11.11 31 12.9 27 0 27 0 27 0
C3 24 28 28 0 32 14.2 31 10.71 32 12.5 28 0 28 0 28 0
C4 31 41 41 0 45 9.75 43 4.87 46 10.8 41 0 41 0 41 0
C5 37 44 44 0 48 9.09 48 9.09 49 10.2 44 0 44 0 44 0
C6 41 49 49 0 52 6.12 52 6.12 56 12.5 49 0 49 0 49 0

D1 34 39 39 0 46 19.44 45 15.38 47 17 39 0 40 2.56 39 0
D2 41 50 50 0 56 12 54 8 58 16 50 0 50 0 50 0

E1 46 55 55 0 59 7.27 59 7.27 62 12 55 0 55 0 55 0
E2 61 77 77 0 85 10.38 82 6.49 91 15.3 778 0 79 2.59 77 0

F 59 75 75 0 80 6.66 81 8 84 10.7 75 0 76 1.33 75 0

Average - 1.25 - 10 - 9.97 - 14.27 - 0 - 0.51 - 0

Table 7: Numerical results of CP, heuristics & metaheuristics methods using
ToSP data-sets for MCT-PSDPP (300 second runs)
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Id Id/C∗max
CP ECM CGM LS-standard LS-split SA BS

C G(%) C G(%) C G(%) C G(%) C G(%) C G(%) C G(%)

1 257 257 0 257 0 257 0 257 0 257 0 257 0 257 0
2 257 257 0 257 0 257 0 257 0 257 0 257 0 257 0

3 177 177 0 179 1.13 187 5.65 191 7.3 177 0 188 6.21 177 0
4 225 225 0 226 0.44 238 5.78 281 19.9 225 0 235 4.44 225 0
5 361 361 0 361 0 364 0.83 388 6.9 361 0 363 0.55 361 0

6 147 147 0 154 4.76 153 4.08 154 4.5 147 0 153 4.08 147 0
7 114 114 0 126 10.53 136 19.30 114 0 115 0.87 125 9.64 114 0
8 245 245 0 252 2.86 263 7.35 256 3.9 245 0 250 1.62 246 0.8

9 1187 1187 0 1235 4.04 1323 11.46 1187 0 1192 0.42 1318 11.03 1187 0
10 2273 2273 0 2273 0 2423 6.6 2275 0 2273 0 2331 2.55 2273 0

11 878 878 0 949 8.09 917 4.44 878 0 890 1.36 1089 24.03 878 0
12 3354 3595 6 3638 8.47 3560 6.14 3354 0 3668 0.76 4394 31.01 3354 0

Average - 0.5 - 3.36 - 5.96 - 3.33 - 0.28 - 7.93 - 0

Table 8: Numerical results of CP, heuristics& metaheuristics methods using
MMOpt kernels for MCT-PSDPP (300 second runs)

11.4.2 Convergence Analysis

We study the convergence of LocalSolver (for both models LS-standard and
LS-split), Simulated Annealing SA and Beam Search BS, that give us an
upper bound, in term of line plots. Since the Simulated Annealing SA uses
random values, we run it 10 times and get the average time where each Cmax
is reached in figures 11 and 12. As we observe that the simulated annealing
reaches the same quality solutions in approximately the same time (less than
10 seconds) and that it is dominated by the beam search algorithm and the
“split LocalSolver model”, we run it only one time on all the datasets we
consider. We show the convergence on two instances: instance E2 (from ToSP
data-sets: datE2) and Kernel 12 (from MMOpt kernels: Cameleon Sd), since
the results were similar for all instances.
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Fig. 11: Convergence of LS-standard, LS-split, SA & BS methods for instance
E2 (from ToSP data-sets: datE2).
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Fig. 12: Convergence of LS-standard, LS-split, SA & BS methods for Kernel
12 (from MMOpt kernels: Cameleon Sd)

11.4.3 Discussions

As illustrated in both Table 7 and Table 6, we can see that the Beam Search
BS can solve optimally all the instances in the ToSP benchmark (instances
goes from size 9×10 to 40×60) in a few milliseconds. The second LocalSolver
model LS-split also obtains very good results. In a similar way, the Constraint
Programming CP can find the proof of optimality, except the instance E2 (we
get the proof in 465 seconds). We noted that instances with a smaller density
(like the instance E2) take more time than denser ones (like the instance F).
The Simulated Annealing BS gives good results on most instances, with an
average gap to the C∗max of 0.51%. From the Table 5, we can also see that the
Cmax provided by the two LocalSolver models (LS-standard, LS-split) is in
average more closer to the value of lbCmax than the different values given by
each of the other algorithms. Both ECM and CGM algorithms provide relatively
good upper bounds in a very short computation time.

In contrast, in the case of bigger instances of MMOpt (greater than 64×64
input/output tiles), we can see in both Table 8 and Table 6 that the Simulated
Annealing SA presents huge gaps (around 40% on some instances). On other
hand, the Beam Search BS can find the optimal value for 11 instances in a few
milliseconds, expect the 8th one (Polar kernel) where it gets stuck very close to
the optimal value (246 instead of 245). The Constraint Programming CP gives
the optimal Cmax for all instances in less than 22 seconds on average, expect
the 12th one (Cameleon Sd kernel where we need 8000 seconds to find the
proof of optimality). We remark that the split model of local solver performs
better globally, than the standard model. In fact, it can find the optimal value
on 8 over 12 instances an the 4 others, the gap is negligible (respectively 0.87%,
0.42%, 1.36% and 0.76%). Finally, we obtain gaps of 3.36%, resp. 5.96% for
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both ECM and CGM algorithms, they will still be able to provide relatively good
upper bounds even on big instances.

From both Fig. 10 and Fig. 11, we may find that (i) the Beam Search BS

finds optimal solutions in a few milliseconds (or on the only instance it does
not, provides very good solutions). (ii) the Simulated Annealing SA performs
well on small instances but it is far behind on big instances. (iii) the Local
solver standard model presents high gaps on most instances (around 20%).
The split version around less than 1.5%.

In summary, these numerical experiments show that the Beam Search BS

as well as the Constraint Programming CP perform better on both ToSP and
MMOpt benchmarks than the all other proposed algorithms for solving the
MCT-PSDPP.

12 Conclusion and Future Work

In this paper, we studied a non classical scheduling problem MCT-PSDPP
(Minimum Completion Time of 3-PSDPP). This problem is defined as a gen-
eralization of one of the most studied combinatorial optimization the ToSP
with unlimited buffers. Diverse solution methods, including three mathemati-
cal programming models and four sets of algorithms (Constraint Programming,
LocalSolver, Simulated Annealing and Beam Search), have been applied to
tackle this optimization problem. Computational results on two sets of bench-
marks have been reported and analyzed. Globally, MIP models fail to find
good bounds. In fact, the MCT-3b appears to be more convenient than the
other models. Constraint Programming in the other hand seems to be able to
handle well this kind of problems. Besides, the Beam Search algorithm seems
to be a very interesting choice since it finds optimal solutions very quickly and
can be implemented easily on embedded vision systems.

Further research may focus on scheduling problems with respect to other
objectives and/or other constraints related to some input parameters (i.e.
prefetch time α, computation time β, number of prefetches N , number of
buffers Z, . . . ).
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