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1 Introduction

Crossdocking is a warehouse management concept in which items delivered to a warehouse by inbound
trucks are quickly sorted out, reorganized based on customer demands and loaded into outbound trucks for
delivery to customers, without requiring excessive inventory at the warehouse (van Belle et al. 2012). If any
item is held in storage, it is usually for a brief period of time that is generally less than 24 hours. Advantages
of crossdocking can accrue from faster deliveries, lower inventory costs, and a reduction of the warehouse
space requirement (Apte and Viswanathan 2000, Boysen et al. 2010). Compared to traditional warehousing,
the storage as well as the length of the stay of a product in the warehouse is limited, which requires an
appropriate coordination of inbound and outbound trucks (Boysen 2010, Yu and Egbelu 2008).

The crossdock truck-scheduling problem (CTSP), which decides on the succession of truck processing
at the dock doors, is especially important to ensure a rapid turnover and on-time deliveries. The problem
studied concerns the operational level: trucks are allocated to the different docks so as to minimize the
storage usage during the product transfer. The internal organization of the warehouse (scanning, sorting,
transporting) is not explicitly taken into consideration. We also do not model the resources that may be
needed to load or unload the trucks, which implies the assumption that these resources are available in
sufficient quantities to ensure the correct execution of an arbitrary docking schedule. In this abstract, we
present some new complexity results that refer to a situation in which the number of docks (or doors) at
the terminal is small, namely one or two. This situation has been indeed addressed in the literature, e.g.
(Chiarello et al. 2018). However most authors focus on tardiness objectives, while we focus on minimizing
overall soujourn time of the pallets, which is especially meaningful for perishable goods or for reducing stock
holding costs.

This abstract is structured as follows: Section 2 formalizes the problem and introduces some basic nota-
tions, Section 3 addresses the complexity of the crossdocking truck scheduling problem in various scenarios
(complexity proofs are not provided for the sake of conciseness), then a few concluding remarks are provided.

2 Detailed problem statement

We consider a crossdocking warehouse where inbound trucks ¢ € I need to be unloaded and outbound
trucks o € O need to be loaded (where I is the set of all inbound trucks and O is the set of all outbound
trucks). The warehouse features n docks that can be used both for loading and unloading. The unloading
and loading processing times of trucks ¢ € I and o € O are referred to as p; and p,, respectively. Similarly,
let W; (respectively, W,) denote the number of pallets to be unloaded from 4 (respectively, to be loaded on
0). We let w;, denote the number of pallets that must be transferred from i to o. It is sometime convenient
to visualize an instance of the problem through a bipartite graph G = (1,0, P) called transfer graph. In
G, the two node sets correspond to inbound and outbound trucks respectively, and there is an arc (i,0) if
wi, > 0. The arc set P expresses start-start precedence constraints, i.e., if (i,0) € P, truck o € O cannot
start being loaded before truck i € I starts being unloaded. In this paper we consider two scenarios:



(i) There is no relationship between the number of pallets that need to be loaded/unloaded and the pro-
cessing time of a truck. In this case, for any two trucks h and k, in general Wy /p, # Wy /pi. We say
that in this scenario processing times are unrelated;

(#) The loading/unloading time of a truck is proportional to the number of pallets that must be loaded /unloaded.

For simplicity, in this case we assume that the processing times are expressed in terms of number of pallets
being moved, i.e.,

pi=Wi=Y wi,Viel (1)
oe0
and
po:Wo:Zwioavon (2)
i€l

We say that in this scenario processing times are correlated. Notice that, in this case,

Zpo = Zpi' (3)

0cO i€l

It is assumed that there is sufficient workforce to load/unload all docked trucks at the same time. Hence,
a truck assigned to a dock does not wait for the availability of a material handler.

Products can be transshipped directly from an inbound to an outbound truck if the outbound truck is
placed at a dock. Otherwise, the products are temporarily stored and will be loaded later on. The problem
is to determine time-consistent start times s; and s, of unload and load tasks ¢ € I and o € O so as to
minimize the total time spent in the warehouse by all pallets (total flow time). For each pallet which has to
be transferred from i to o such a flow time equals s, — s;. Therefore, the total flow time is

D wio(so — si)- (4)

(i,0)eP

In what follows, CTSP(n,U) denotes the problem with n gates and unrelated processing times, while
CTSP(n,C) denotes the problem with n gates and correlated processing times.
Due to (1) and (2), it is easy to show that problem CTSP(n,C) consists in finding the feasible schedule

that minimizes
Z PoSo — szsz (5)
0€0 i€l

We are considering the problem without any time restriction on trucks in this complexity analysis. Indeed,
for general release dates and deadlines and n gates, even finding a feasible truck schedule is NP-complete,
as this problem is a generalization of the 1|r;, d;|— problem which is NP-complete (Lenstra et al. 1977).

3 Complexity results

Let us first consider the problem CTSP when n = 1, i.e., the crossdocking platform has a single gate,
and let us start with the special case in which the transfer graph G is complete, i.e., it is a "1-biclique"
(Figure 1). This means that w;, > 0 for each ¢ € I and o0 € O, i.e., each inbound truck has at least one pallet
that must be transferred to each outbound truck.

Let us consider the unrelated problem CTSP(1,U) in the "1-biclique" case. Since Gr is complete, in any
feasible schedule all inbound trucks must be consecutively scheduled, before all outbound trucks. So, the
problem consists of deciding in which order they should be scheduled. The following property holds.

Theorem 1. When Gr is a biclique, CTSP(1,U) is solved by first scheduling all inbound trucks in nonin-
creasing order of the ratio p;/W;, then all outbound trucks in nondecreasing order of the ratio p,/W,.



Inbound Outbound Inbound Outbound Inbound Outbound
trucks trucks trucks trucks trucks trucks
Fig. 1. Gr in the case of 1-biclique. Fig. 2. G'r in the case of 3-biclique. Fig. 3. Gr in the general case.
]

Note that such an optimal sequence can be obtained in O(nlogn). Concerning problem CTSP(1,C),
recalling (1) and (2), Theorem 1 implies that, when G is a biclique, CT'SP(1,C) is solved by scheduling
all inbound trucks before all outbound trucks, in any order. Theorem 1 easily extends to the case in which
G consists of k disjoint bicliques (e.g., see Figure 2 with k = 3).

Corollary 1. When Gr is a collection of bicliques, CTSP(1,U) is solved by sequencing the trucks involved
in each biclique consecutively as dictated by Theorem 1, and then sequencing the bicliques in any order. 0O

Let us now turn to problem CTSP(1,U) when Gr has a general structure (see Figure 3), which can be
stated in decision form as follows.

“Given a positive integer H, is there a truck sequence at the dock such that the total flow time does not
exceed H ?”

The following result holds.

Theorem 2. CTSP(1,U) is NP-complete.

Proof. Reduction from OPTIMAL LINEAR ARRANGEMENT. O
OLA problem of course NP-hard (Garey et al. 1978).

The complexity of CTSP(1,C) when G has a general structure remains open.
Let us now turn to CTSP(2,C), i.e., the case in which there are two gates and processing times are
correlated. The following result holds:

Theorem 3. CTSP(2,C) is NP-complete even when G is a 1-biclique.

Proof. Reduction from PARTITION. a

4 Conclusion

In conclusion, we summarize our findings in the following table (where NPH stands for NP-hard). Note
that the case where G has a bi-clique structure is significant to determines the frontier between the poly-
nomial and NP-hard cases. Moreover, as it is always possible (by removing arcs) to transform a general G



graph in order to give it a bi-clique structure, having efficient methods to solve the biclique case can give
good lower bounds for the general case.

n||C , 1-biclique C U, 1-biclique U
O(n) open  |O(nlogn) (Th. 1)|NPH (Th.2)
2| NPH (Th.3) [NPH (Th.3)] NPH (Th.3) |NPH (Th.3)
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