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Abstract

Bayesian inference with coordinate transformations and polynomial chaos for a Gaussian process with a
parametrized prior covariance model was introduced in [61] to enable and infer uncertainties in a parameter-
ized prior field. The feasibility of the method was successfully demonstrated on a simple transient diffusion
equation. In this work, we adopt a similar approach to infer a spatially varying Manning’s n field in a
coastal ocean model. The idea is to view the prior on the Manning’s n field as a stochastic Gaussian field,
expressed through a covariance function with uncertain hyper-parameters. A generalized Karhunen-Loeve
(KL) expansion, which incorporates the construction of a reference basis of spatial modes and a coordinate
transformation, is then applied to the prior field. To improve the computational efficiency of the method
proposed in [61], we propose to use two polynomial chaos expansions to: (i) approximate the coordinate
transformation, and (ii) build a cheap surrogate of the large-scale advanced circulation (ADCIRC) numerical
model. These two surrogates are used to accelerate the Bayesian inference process using a Markov chain
Monte Carlo algorithm. Water elevation data are inverted within an observing system simulation experi-
ment framework, based on a realistic ADCIRC model, to infer the KL coordinates and hyper-parameters of
a reference 2D Manning’s field. Our results demonstrate the efficiency of the proposed approach and suggest
that including the hyper-parameter uncertainties greatly enhances the inferred Manning’s n field, compared
to using a covariance with fixed hyper-parameters.

Keywords: Coastal ocean model, Manning’s n coefficients, Bayesian inference, Karhunen-Loève
expansion, Polynomial Chaos, MCMC

1. Introduction

The global economy and security rely heavily on ocean productivity, with approximately 50% of the
human population being located next to coastal and estuarine systems [75, 46]. Accurate forecasts of the
dynamics of the coastal ocean are crucial to all aspects of marine activities. These include, but are not limited
to, fisheries, nearshore construction, tourism, recreational activities, extreme event mitigation, contaminant
transport management, and ocean conservation. In particular, the information gained from coastal ocean
simulations and forecasts is critical for the authorities to make informed decisions and develop smart and
sustainable policies to exploit the ocean resources.

Advanced coastal ocean models based on the shallow water equations (SWEs) have been widely utilized
to simulate and predict shallow water circulation [29]. The SWEs are based on the simplified Navier-Stokes
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equations, which assume hydrostatic pressure and relatively large horizontal length scales with respect to
vertical length scales [42]. Even when the model is assumed to be perfect in describing the underlying physical
processes, the model solutions are always subject to uncertainties that emerge on account of errors originating
from numerous sources [20], e.g., initial conditions, model parameters, forcing fields, and resolution of the
implemented numerical methods. To provide robust and reliable forecasts of the ocean states, uncertainty
quantification and reduction techniques have, in recent years, played a major role toward enhancing state-
of-the-art coastal ocean simulation systems [20, 59, 28, 1, 46, 62, 57].

This work considers the uncertainty reduction of the model parameters in the coastal ocean, focusing
on the inference of the Manning’s n coefficient of roughness, introduced in the SWEs through the bottom
stress components in the momentum equation [29, 32]. The Manning’s n coefficients describe the bottom
surface characteristics, which further define the resistance of water flow. Mayo et al. 2014 [46] demonstrated
that water elevation is highly sensitive to the change in this parameter, particularly in shallow coastal areas.
The Manning’s n coefficients are highly variable in space but cannot be measured directly [8], and as such
often empirically derived. To infer such a parameter from the limited available observations, one may resort
to Bayesian inversion [26, 6, 33, 60]. The Bayesian inference framework views the parameter estimation
problem as the inference of a probability density function (pdf). A prior pdf is then updated into a posterior
pdf by incorporating the likelihood of the observations [69].

Several well-established approaches to Bayesian inference are widely used in parameters inference prob-
lems, the most prominent of which is the Markov chain Monte Carlo (MCMC) method [25, 19, 49], which
directly samples the posterior of the inferred parameters given the sample points of likelihood. A large num-
ber of model runs is required for MCMC to efficiently sample the posterior distribution [62, 23]. This renders
the MCMC implementation computationally prohibitive for large-scale systems. To alleviate this hurdle,
model reduction techniques have been exploited, both to build inexpensive surrogates of the forward models
and to reduce the dimension of the parameter estimation problems. Of particular interest is the spectral
projection method used with the polynomial chaos (PC) basis proposed by [45]. The PC method expresses
the dependence of the model predictions on the model parameters using orthogonal stochastic polynomials.
This spectral expansion enables the construction of extremely cost-effective surrogate models that can be
used as substitutes of the full model predictions to efficiently sample the likelihood [20, 35]. The PC method
has been successfully implemented with a wide scope of large-scale problems, including mechanical systems
(e.g., [38, 21, 37]), chemical systems (e.g., [48, 39, 47]), and more recently, large-scale oceanic systems (e.g.,
[1, 62, 63, 58]). Nevertheless, the PC method suffers from the ‘curse of dimensionality’ [1], in which only a
limited number of stochastic parameters can be accommodated to build the PC surrogate before it becomes
computationally prohibitive. To alleviate this issue, one may implement a parameter search space reduction
technique, namely, Karhunen-Loève (KL) expansion [40, 31]. This technique expresses stochastic processes
in terms of an orthonormal set of eigenfunctions, which can be used to parametrize highly spatially variant
parameters with only a few dominant modes. Marzouk et al. [44] demonstrated the efficiency of combining
PC and KL schemes to infer the spatially varying diffusivity of a medium in the context of a transient
diffusion equation.

Sequential Bayesian inference method, such as the ensemble Kalman filter (EnKF) [4, 7, 27], has also
been intensively utilized for parameter estimation of ocean models (e.g., [2, 3, 5, 11, 55, 66, 70]). The EnKF
has been found efficient, with advantages over the MCMC approach in accommodating large state-parameter
vectors at reasonable computational cost [46, 57, 58]. Recently, the EnKF has been successfully used for
the inference of a spatially varying Manning’s n field in an idealized coastal ocean framework, both in the
full and reduced KL space [57]. The main merit in using an EnKF is its ability to accommodate larger
member of parameters or KL modes. However, exploring the posteriors of these coordinates is limited to
the directions defined by the subspace of the prior ensemble covariance model [17]. The prior covariance
matrix describing the Gaussian process needs to therefore be well known a priori.

In both MCMC- and EnKF-based inference, presented in [44] and [57], respectively, the underlying
Gaussian process is associated with prior covariance models that are often poorly known. This is because
a prior covariance model that describes the stochastic parameter field is subjected to the uncertainty in
hyper-parameters, e.g., prior variance and length scales. An early attempt to include the hyper-parameter
uncertainty in Bayesian inference problems was proposed by Tagade and Choi [67]. In this study, a KL
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expansion of a stochastic process is derived as a function of the hyper-parameters. The hyper-parameters
are then cast as stochastic variables in the PC expansion, which can then be directly estimated alongside
the KL coordinates via MCMC. However, this method can become computationally prohibitive due to the
requirement in building the PC surrogate with increasing augmented stochastic dimensions.

In this work, we adopt the generalized KL expansion with the coordinate transformation approach in-
troduced in [61] to account for the covariance hyper-parameters in a PC-based MCMC inference of spatially
varying Manning’s n coefficients of a coastal ocean model. This approach only requires building the PC sur-
rogate based on a KL basis decomposed from a reference covariance matrix. A change of basis methodology
is then utilized to transform the KL coordinates based on one basis to a different basis. A similar coordinate
transformation is finally applied to the KL expansion of the reference basis to obtain the PC expansion for
any other basis required for the inference. Here, we avoid introducing the hyper-parameters as additional
stochastic dimensions to the PC expansion. However, the computation of the coordinate transformation
matrix proposed in [61] can be computationally quite demanding, since it requires decomposing of the prior
covariance corresponding to each set of hyper-parameters. Therefore, we propose to introduce the construc-
tion of a PC surrogate of the coordinate transformation matrix. This present contribution is essential for
the application of a generalized KL expansion to any large-scale fluid system, which involve very large prior
covariance matrices.

The rest of this paper is organized as follows. Section 2 presents our Bayesian inference framework.
Section 3 describes the change of coordinates methodology for incorporating hyper-parameters uncertainty
to KL and PC expansions. The experimental setting for the evaluation of our proposed inference framework
is outlined in Section 4. In Section 5, the results of the inference of the Manning’s n coefficients coastal
ocean model are presented and discussed. Concluding remarks are finally offered in Section 6.

2. Bayesian inference framework

Our objective is to estimate spatially varying parameters of a coastal ocean model given a set of (indirect)
observations d ∈ RNo , No ≥ 1. The Manning’s n roughness parameters, for example, can be viewed as a
deterministic field m(x), x = (x, y) ∈ D. We also assume that the observations can be predicted using
the forward model (in our case the SWEs), which takes m(x) as input and the model predictions of the
observations as output. Bayes’ rule then updates the prior probability distribution function (pdf) of the
unknown parametersm, conditioned on the discrepancy between the model prediction u(m) and observations
d as [51, 30]:

p(m,σ2
o | d) ∝ p(d | m,σ2

o)pm(m)po(σ
2
o), (1)

where p(m,σ2
o | d) is the posterior pdf, p(d | m,σ2

o) is the likelihood function of obtaining observations d
given the parameter field m and the observations error model hyper-parameter σ2

o , with priors pm(m) and
po(σ

2
o), respectively. In this work, we consider for simplicity an unbiased additive Gaussian error model,

ε
.
= d − u(m), ε v N (0, σ2

oINo), where N (0, σ2
oINo) denotes the multivariate Gaussian distribution with

zero mean and diagonal covariance σ2
oINo

.
We resort to the adaptive Metropolis-Hastings MCMC algorithm [24, 52] to efficiently sample the pos-

terior pdf of the Manning’s n parameters m. Metropolis-Hastings algorithm iteratively generates a Markov
chain based on the accept/reject methodology, in which the state of the chain at a given iteration depends
only on the previous one. The high-dimensional nature of the Manning’s n field discretized on a computa-
tional mesh, however, renders the node-wise parameter inference using MCMC computationally prohibitive.
A model reduction technique, which statistically describes the Manning’s n field as a stochastic process,
parametrized using a few random variables, is thus required.

2.1. Karhunen-Loève (KL) expansion
The Manning’s n roughness parameters physically characterizing the seabed surface are generally con-

tinuous in space, with correlated neighboring values. It is therefore effective to describe a Manning’s n
field as a stochastic process, M(x, ω), where M is a function defined on the product space D × Ω, x ∈ D

3



is the index set of the location of the physical domain, and ω ∈ Ω is the sample space of the probability
space, (Ω,F , P ). Given a stochastic process M(x, ω), with mean µ(x) and symmetric positive semi-definite
covariance function C(x,x′), the Mercer theorem [74] states that C can be decomposed as:

C(x,x′) =

∞∑
k=1

λkφk(x)φk(x′), (2)

where λk > 0 are the eigenvalues of C, and φk are the corresponding normalized eigenvectors. The eigenpairs
satisfy the Fredholm equation of the second kind:

∫
Ω

C(x,x′)φk(x′)dx′ = λkφk(x), k = 1, 2, ... (3)

Sequencing the eigenvalues in decreasing order, any realization of M can then be written as [22]

M(x, ω) = µ(x) +

∞∑
k=1

√
λkφk(x)ηk(ω). (4)

The coordinate coefficients ηk(ω) can be deterministically computed by evaluating the integrals

ηk(ω) =

∫
(M(x, ω)− µ(x))φk(x)dx. (5)

In case M is a Gaussian process (GP ), ηk(ω) are Gaussian-independent identically distributed random
variables with zero mean and unit variance, such that E[ηkη

′
k] = δkk′ . The parameter field M is then

fully characterized by a set of coordinates ηk’s given the eigenbasis is known. By truncating the series in
Equation (4) to retain the first few K terms, the KL expansion efficiently approximates the high-dimensional
parameter field using a few dominant modes. The size of the retained terms K depends on the desired energy
percentage to be retained by the KL expansion, which is defined as

∑K
k=1 λk/

∑∞
k=1 λk [17]. In practice, it is

preferable to choose K such that the truncated KL expansion encapsulates as much information as possible
with respect to its infinite counterpart. Larger K are required for prior covariance functions with smaller
correlation lengths for the KL expansion to capture a similar information percentage. There exist several
strategies to set K in practice [40, 37]. For instance, for λ1 ≥ λ2 ≥ . . . , one can control the representation
error on M by selecting K such that λK < cλ1 or

∑K
k=1 λk ≤ c

∑∞
k=1 λk for some truncation parameter

c� 1.
The truncated KL expansion is optimal, in the mean square sense, in approximating stochastic processes

[21]. It is used as the model reduction technique for Bayesian inversion. The problem of inferring the
continuous field M from a few discretely collected observations is then reduced to the inference of the KL
coordinates vector η ∈ RK , written as

p(η, σ2
o | d) ∝ p(d | η, σ2

o)pη(η)po(σ
2
o), (6)

where pη(η) = exp(−ηTη/2)/(2πK/2) is the Gaussian prior of the KL coordinates. The unbiased additive
Gaussian observational error model considered in this work leads to the likelihood function of the form

p(d | η, σ2
o) =

No∏
i=1

pε(di − ui(η), σ2
o),

pε(di − ui(η), σ2
o)

.
=

1√
2πσ2

o

exp

[
− (di − ui(η))2

2σ2
o

]
. (7)
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2.2. Polynomial Chaos (PC) expansion
Even with a parameter reduction technique (e.g., KL expansion), MCMC sampling remains compu-

tationally prohibitive for realistic large-scale models. This is because the sampling of the posterior pdf
requires a massive collection of likelihood evaluation, each one relying on a full model run. PC expansion
is a suitable technique for building a model surrogate that helps accelerating this MCMC sampling process
[35, 37]. The PC method expresses the dependency of model solution U on some uncertain model inputs,
using a truncated spectral polynomial expansion [21, 37]. Generally, one has to approximate U(ξ), where
ξ = (ξ1, ..., ξs) ∈ Ω∗ ⊆ Rs are independent second-order random variables, with given density pξ : Rd 7−→ R+,
and Ω∗ is the image of the sample space over ξ. In the present work, the uncertain model inputs are the
random variables ηk of the KL expansion such that ξ consists of the normalized vector η and s = K. If
other independent uncertainty sources were present, ξ would consists of an extended vector with s > K.

Let {Ψk, k ≥ 0} be a set of s-variate orthogonal polynomials. The PC method expresses the model
output U using a spectral decomposition of the form

U(ξ) =

∞∑
k=0

UkΨk(ξ) ∼=
P∑
k=0

UkΨk(ξ), (8)

where Uk are called the stochastic modes of U . Because we restrict our investigation to Gaussian processes,
ξ = η will be a vector of standard Gaussian random variables, and Ψk are the normalized multi-variate
Hermite polynomials [72]. The number of terms P in (8) is defined by the polynomial order No and the
stochastic dimension s, such that P + 1 = (No + s)!/(No!s!). The terms in the PC expansion therefore
increases exponentially with respect to an increase in both the polynomial order and the number of the
stochastic inputs, which results in the so-called ‘curse of dimensionality’ for PC expansions [1].

Various projection methods can be used to determine the stochastic modes Uk of the PC expansion [68].
These methods can be categorized as the Galerkin and non-intrusive approaches. The Galerkin projection
method [21, 37] defines the PC coefficients through the reformulation of the system equations, using a weak
form with respect to the stochastic dimension. This requires modifying the model code, which makes the
method only suitable for small problems. The non-intrusive approaches, as the name implies, do not require
modifying the model code by defining the stochastic modes based on the ensemble of the deterministic
evaluation of U(ξ), using a suitable quadrature formula. In this study, we resort to the non-intrusive
spectral projection (NISP) method to build the PC surrogate.

From the infinite expansion (8), the orthogonality of the polynomials implies that

〈U,Ψk〉 =

∞∑
l=0

Ul〈Ψl,Ψk〉 = Uk〈Ψk,Ψk〉, (9)

Where 〈·, ·〉 denotes the stochastic inner product,

〈u, v〉 =

∫
Ω∗
u(s)v(s)pξ(s). (10)

In other words, the coefficient Uk = 〈U,Ψk〉/〈Ψk,Ψk〉 is given by the correlation between U(ξ) and the
considered polynomial Ψk(ξ), up to the squared norm of Ψk, which can be evaluated analytically [37]. The
evaluation of the Uk, thus, involves computing a set of P + 1 integrals over Ω∗.

In NISP, the correlation defining the projection coefficient is approximated by a finite sum, using an
appropriate quadrature formula:∫

Ω∗
U(s)Ψk(s)dpξ(s) '

Nq∑
j=1

wjU(sj)Ψk(sj). (11)

Here, wj denotes the weights associated to the node sj , and Nq is the number of quadrature nodes. The set
of quadrature nodes is denoted by

S = {sj}
Nq

j=1 ⊂ Ω∗. (12)
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To evaluate the summation (11), one needs to evaluate U for all sq ∈ S . Let Π ∈ R(P+1)×Nq denote the
NISP projection matrix

Πk,j =
wjΨk(sj)

〈Ψk,Ψk〉
, k = 0, . . . , P, j = 1, . . . , Nq,

and ζ be the vector with coordinates ζj = U(sj). Then, the vector of PC coefficients U can be expressed
as Πζ, or in coordinate form,

Uk =

Nq∑
j=1

Πkjζj =

Nq∑
j=1

ΠkjU(sj), k = 0, . . . , P. (13)

A more comprehensive derivation of the NISP method can be found in [1, 37]. The complexity in performing
NISP scales withNq and grows exponentially with stochastic dimension s. Consequently, the implementation
of the NISP method to construct the PC surrogate is usually restricted to a limited small number of stochastic
dimensions.

3. Change of coordinates for uncertain covariance functions

The inference framework described in the previous section incorporates the parameter reduction tech-
nique (i.e., KL expansion) and PC surrogate to enable the use of MCMC sampling of large dimensional
spatially varying parameters, assuming the underlying covariance function is known. However, in real-world
applications, this is rarely the case. The covariance functions are often characterized by some (uncertain)
hyper-parameters, such as the variances and correlation length-scales.

The unknown hyper-parameters were traditionally estimated prior to inference using a Gaussian process
regression (GPR) [50], where the marginal likelihood function is maximized with respect to the hyper-
parameters via stochastic interpolation, using a set of noisy observations of the parameter field and data
collected at a few locations. One may further use the model outputs observation to further reduce the hyper-
parameter uncertainty via Bayesian inference [67]. This however requires building a more computationally
demanding PC surrogate, compared to the case of fixed covariance model. Here, we resort to the ‘change of
coordinates’ technique, proposed in [61] to simultaneously infer the covariance function hyper-parameters and
the KL coordinates vector η without introducing the hyper-parameters as additional stochastic dimensions
in the PC surrogate.

3.1. Generalized Karhunen-Loève expansion
Let q be a random vector of covariance function hyper-parameters with joint density pq (e.g. q = {σ2

f , l},
where σ2

f is the process variance, and l is the correlation length scale). The centered (µ(x) = 0) stochastic
prior process M has a covariance function C = C(x,x′, q) parametrized by q ⊂ Rh, where h is the number
of hyper-parameters. The KL expansion in (4) can be truncated and modified to reflect the dependency of
the covariance function on q as

MK(x, ω, q) =

K∑
k=1

√
λk(q)φk(x, q)ηk(ω). (14)

Hereafter, we omit the x dependence to simplify the notations and introduce the scaled eigenfunction
Φk(q)

.
=
√
λk(q)φk(x, q), which gives (14) the compact form

MK(ω, q) =

K∑
k=1

Φk(q)ηk(ω). (15)
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3.1.1. Coordinate transformation
To eliminate the q-dependence of the eigenfunctions, we introduce φrk, the ordered and normalized

eigenvectors of reference covariance Cr, and the projection coefficients bkk′(q). Since a set of reference
eigenfunctions constitutes an orthogonal basis, a change of basis can be applied to express any scaled
eigenfunction in the reference basis as

Φk(q) =

∞∑
k′=1

bkk′(q)φrk′ , bkk′(q) = (φrk,Φk′(q))D =

∫
D

φrk(x)Φk′(x, q)dx. (16)

In practice, the latter expansion is truncated to the first Kr terms. Here, we shall assign Kr = K to allow
for convergence analysis with respect to the first few dominant KL modes. This leads to the expression of
the generalized KL expansion of M as

MK(ω, q) =

K∑
k=1

Φk(q)ηk(ω) ≈ M̂K(ω, q)
.
=

K∑
k=1

(
K∑
k′=1

bkk′(q)φrk′

)
ηk(ω). (17)

To further simplify (17), M̂K(ω, q) can be recast as

M̂K(ω, q) =

K∑
k=1

φrkη̂k(ω, q), η̂k(ω, q) =

K∑
k′=1

bkk′(q)ηk′(ω). (18)

Since η̂k(ω, q) is a linear combination of i.i.d standard random variables, this term can be cast in matrix as

η̂(ω, q) = B(q)η(ω), (19)

where B(q) is called the coordinate transformation matrix.
Ultimately, Equation (19) is the result of recasting the q-dependence of C into the expansion of MK in

(15), using scaled eigenfunctions and the further approximation of MK using a q-dependent linear transfor-
mation bkk′(q). The above derivations require the continuity assumption of the scaled eigenfunctions Φk(q)
with respect to q (for more details, see [61] and [36]). To ensure such conditions, the orientation of the
decomposed eigenfunctions needs to be consistent. Sraj et al. [61] achieved this by defining the orientation
of the eigenfunctions, such that (Φk(q), φrk)D has a consistent sign for all q [53].

A KL decomposition of C(x,x′, q) is required at the beginning of each MCMC iteration to compute the
corresponding change of coordinates matrix B(q). This computation becomes costly for large-scale systems,
and motivates us to build a PC surrogate of the coordinate transformation B(q) in order to bypass this
expensive step. Hence, we introduce the PC expansion:

B(q) ≈ B̃(q) =

P∑
k=0

BkΨk(q), (20)

where the Ψk are the orthogonal random polynomials in q. Following the previous discussion on the NISP
method, the PC modes of B(q) are defined by

∀k, Bk〈Ψk,Ψk〉 = 〈B,Ψk〉, (21)

which right-hand-side can be estimated using a numerical quadrature rule. With this PC expansion of B,
the processes is approximated as

M̃K(x, q) =

K∑
k=1

Φk(x)η̃k(q), η̃k(q)
.
= B̃(q)η. (22)
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3.1.2. Example
To illustrate the coordinate transformation and its PC approximation, we consider the case of a one-

dimensional centered Gaussian process M defined on the unit interval [0, 1] and with uncertain covariance
function C(x, x′, q) = exp(−|x − x′|γ/γlγ). The covariance has two independent hyper-parameters, being
the correlation length l and the regularity parameter γ: q = (l, γ). The priors of the hyper-parameters are
both uniform with ranges l ∼ U [0.25, 1], and γ ∼ U [1.5, 2]. The integral equations defining the q-dependent
modes, ∫ 1

0

C(x, x′, q)φ(x′, q)dx′ = λ(q)φ(x, q),

is discretized using piecewise constant approximations on a mesh involving Nel = 200 elements with size
h = 1/Nel. A Galerkin procedure is employed to obtain a linear system eigen-value problem for the value of
the modes over each element. Note that the discrete problem admits at most Nel KL modes. Consistently
with the notation above, we denote MK(x, q) the truncated version of M(x, q) to the K-dominant modes,

MK(x, q) =

K∑
k=1

√
λk(q)φk(x, q)ηk, ηk =

∫ 1

0

M(x, q)φk(x, q)dx,

M̂K(x, q) the exact projection of MK(x, q) on the reference space,

M̂K(x, q) =

K∑
k=1

Φk(x)η̂k(q), η̂k(q) =

∫ 1

0

MK(x, q)Φk(x)dx,

and finally M̃K(x, q) the approximation of MK in the reference basis and using the PC approximation of
the change of coordinate,

M̃K(x, q) =

K∑
k=1

Φk(x)η̃k(q)

with η̃k(q) = B̃(q)η. As discussed, the reference basis is constructed on the averaged covariance,

C(x, x′) =
1

(1− 0.25)(2− 1.5)

∫ 1

0.25

∫ 2

1.5

C(x, x′, l, γ) dγ dl,

while the PC expansion of B(q) uses a basis of Legendre polynomials (orthogonal with respect to the
uniform measure [73]) and the Pseudo-Spectral Projection (PSP) method, see [13, 12], to compute the PC
coefficients:

B(q) =

P∑
i=0

BiΨi(q), Bi =

NPSP∑
j=1

B(q(j))Wi,j ,

where Wi,j are the coefficients of the PSP matrix associated to the sparse-grid with points {q(j), j =
1, . . . , NPSP}. Overall, the PC projection requires the computation of the dominant bases for the NPSP

covariances given by C(x, x′, q(j)), in addition of the reference basis.
Table 1 reports the resulting mean-square errors norm due to the representation in the reference basis,

MK−M̂K , global error of the change of coordinate with PC approximation, MK−M̃K , and error due to the
PC approximation of B(q): M̂K − M̃K . The errors are computed by squaring the differences, integrating
for x ∈ [0, 1], and averaging over q and realizations of the process. Note that the mean-square norm of
M(x, q) is one, so the error reported in the Table 1 are normalized and, therefore, reported as percentages.
The Table reports the errors for different dimensions K of the reference basis and the level ` of the PSP
method. The level ` controls the polynomial degree of the PC expansion and the size of the PC basis.
Table 1 shows that the error due to the representation in the reference basis decreases when K increases.
The PC approximation of the change of coordinate introduces an additional error that becomes dominant
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Error (%) K = 5 - ` = 2 K = 10 - ` = 2 K = 15 - ` = 2 K = 10 - ` = 3 K = 10 - ` = 4

‖MK − M̂K‖ 0.88 0.23 0.10 0.26 0.27
‖MK − M̃K‖ 1.10 0.77 0.72 0.26 0.23
‖M̂K − M̃K‖ 0.66 0.74 0.71 0.13 0.03

Table 1: Error analysis of the Change of Coordinate. Errors are reported as percentages for different dimension K of the
reference basis and different levels ` of the Pseudo-Spectral-Projection method.

for K ≥ 10 when ` = 2. The PC error quickly decays when ` increases from 2 to 3 and 4, such that the
truncation error becomes dominant in MK − M̂K with K = 10.

This example illustrates the possibility of approaching the change of coordinate by a PC expansion.
However, the convergence of the PC expansion requires sufficient smoothness of the function q 7→ B(q).
Also, using non-intrusive projection methods for the determination of the PC expansion requires a unique
definition of B at each quadrature node. In fact, the definition B is not unique, as the definition of the
eigenvectors φk(·, q) can be ambiguous. In particular, it is well-known that the eigenvectors are defined up
to a sign (−φk is also an eigenvector). This ambiguity can compromise the non-intrusive projection if one is
not careful in setting the correct signs of the eigenvector at a given q when constructing the PC expansion
of B(q).

In this study, the coastal ocean domain is two-dimensional with several symmetries. As a result, eigen-
values with multiplicity ≥ 1 and the crossing of eigenbranches (with q) emerge, making it more difficult to
compute a numerical solution of smooth eigenfunctions in q, and obtain smooth dependencies of the matrix
B(q). One possibility that we started to explore is to rely on clustering algorithms (based on similarity
measures) to the set of eigenvectors computed at several q-values and obtain groups corresponding to dis-
tinct branches (q-dependent modes). Although quite promising, these clustering strategies are beyond the
scope of the present paper and will be presented elsewhere. To avoid the above complications in the experi-
mental demonstrations of Section 5, we limit ourselves to low KL truncation orders K, ensuring sufficiently
well-separated eigenvalues.

3.2. PC surrogate with coordinate transformation
Given that the hyper-parameters q are considered to be uncertain and inferred alongside the KL coor-

dinates η, the model prediction is expressed as U(η, q). Intuitively, this suggests building a PC surrogate
that includes q as stochastic inputs, that is, U(ξ) =

∑P
k=0 UkΨk(η, q). However, this approach drastically

increases the computational requirement for evaluating the PC coefficients due to the exponential increase in
the terms of the PC expansion. This is particularly problematic for a large-scale ocean model, which requires
a large number of model integrations and a large polynomial order to obtain an accurate PC surrogate for
such a system. Adopting a similar framework applied to KL expansion as presented in section 3.1 for the
inference problem, we seek to replace the direct augmentation of q to solve the PC problem with the change
of coordinates method, based on a reference model problem dictated by a fixed covariance function.

An immediate approach would consist in seeking a PC expansion in terms of the reference coordinate η̂
given by η̂ = B(q)η. However, depending on the selected reference basis, the actual distribution of η̂ may
not be easily derived. Instead, it is preferred to rely on a priori coordinates ξ with known prior distribution.
A reasonable choice is to define the reference Gaussian process:

M̂PC
K (ξ) =

K∑
k=1

√
λrkφ

r
kξk, (23)

where the ξk’s are independent standard Gaussian random variables. We now denote Ũ(ξ) the reference PC
surrogate, which approximates the predictions of the reference model, that is,

U(η, q) ≈ Ũ(ξ(η, q)) =

P∑
k=0

UkΨk(ξ(η, q)). (24)
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Similar to Equation (19), which expresses the q-dependent Gaussian process M̂K through the mapping
(η, q) 7→ η̂ using the transformation matrix B(q), we can apply the change of basis principle to express the
surrogate Ũ through the mapping (η, q) 7→ ξ(η, q) using another coordinate transformation matrix:

ξ(η, q) = B̂(q)η, (25)

where the q-dependent B̂(q) denotes the change of coordinates, mapping the couples (η, q) to ξ. Based on
(23), it comes

B̂kl(q) =

{B̃kl(q)√
λrk

, λrk/λ
1
k > κ,

0, otherwise,

(26)

where κ is a small constant related to the level of numerical accuracy introduced to discard the diminishingly
small λrk and avoid numerical overflows. Note that B̂ is derived from B, and therefore, the KL and PC
expansions used for the Bayesian inference are said to have a similar coordinate transformation.

3.3. Bayesian inference with the change of coordinates (COC)
The Bayesian inference framework for uncertain hyper-parameters based on the change of coordinate

(COC) methodology can be split into two main steps. The invariant quantities, which are used throughout
the MCMC simulation, such as the reference basis and the PC coefficients, can be precomputed offline and
stored for the later usage, while the calculation of (η, q)-dependent quantities, i.e., coordinate transformation
matrix and approximated PC solution of U , are embedded inside each iteration of MCMC sampling, which
is referred to as the online step.

3.3.1. Offline step
Given that the reference covariance function Cr has been already selected, the KL decomposition is

applied to Cr according to (2). The eigenpairs (λrk, φ
r
k)k=1,K obtained from KL decomposition are then

stored in memory. Subsequently, according to (23), the same eigenpairs are utilized to build M̂PC
K (ξ), which

represents the reference Gaussian process that characterizes the stochastic parameter field of the reference
mathematical model L̂(ξ). Finally, the coordinates ξ, which specify the realization of L̂(ξ), are sampled
using a suitable quadrature formula to construct the surrogate Ũ(ξ) of U . The PC coefficients {Uk}Pk=0

computed in the latter step are stored in memory, to be used later to evaluate the model solutions for
likelihood sampling in the inference step. Additionally, in this work, we also construct the PC surrogate
B̃(q) of B(q) to be used for fast coordinate transformation in the online step.

3.3.2. Online step
Each iteration of MCMC embedded in the online step involves several substeps. First, q and η are

proposed. Then, the PC approximated coordinate transformation matrix B̃(q) is used to compute the
corresponding reference coordinate ξ = B̂(q)η. Subsequently, we evaluate the PC surrogate of the reference
model prediction Ũ(ξ) for an infinitesimal CPU time. This PC approximation of U(η, q) is then used for
the likelihood computation, generating the MCMC chains of the posterior of the couple (η, q), based on
the accept/reject method imposed by the Metropolis-Hastings algorithm. The above processes are repeated
until the MCMC simulation reaches its designated terminal iteration.

4. Experimental setup

The experimental setup for the problem of inferring the Manning’s n coefficients (and any other spatially
varying parameters) of the coastal ocean is presented in this section. Albeit rather idealized, the setup we
propose for the experimentation represents well the dynamics of the coastal ocean.
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4.1. The advanced circulation model (ADCIRC)
We employ the advanced circulation (ADCIRC) model [41] to test the proposed inference framework.

ADCIRC has been widely implemented for simulating coastal and estuarine systems, as well as the analysis
of tides and currents [42, 46]. It has also been validated intensively in many storm surge hindcast studies,
such as those of hurricanes Betsy (1965), Ivan (2004), Dennis (2004), Katrina (2005), Rita (2005) [71, 9, 15],
Gustav (2008) [16], and Ike (2008) [32].

The machinery behind ADCIRC solves a modified version of the SWEs, in which the continuity equation
is replaced by the second-order, hyperbolic generalized wave continuity equation (GWCE) to prevent spurious
oscillations that often arise from the numerical solution of the original form [43, 34]. Together with the
momentum equation, these governing equations are solved on unstructured, triangular elements using a
first-order continuous Galerkin finite element scheme. The time derivatives are approximated using centered
finite differences in the GWCE and forward differences in the momentum equations. ADCIRC supports
a wide range of domain specifications and complex bathymetry structures, including the range of scales
necessary to represent the deep ocean basins, continental shelves, and coastal inland areas [10].

4.2. The model discretization
We consider an idealized inlet with an ebb shoal domain as depicted in Fig.1. The domain comprises a

lagoon that is connected to the open ocean on the west through an inlet with twin jetties. The domain is
4500 m wide and 3000 m long, and is discretized to have 1518 grid nodes and 2828 elements. The bathymetry
of the domain is designed to resemble the realistic vertical profile of a coastal ocean with the deepest depth
in the open ocean area. The depth of the ocean floor increases linearly from 3.8 m at the left-most boundary
to 1 m at the mouth of the inlet on the west side of the domain, leveling off at the landlocked area. The
diameter of the ebb shoal is 750 m. On the open ocean boundary, ADCIRC is forced with the principal
lunar semi-diurnal M2 tidal constituent, with an amplitude of 0.25 m relative to the geoid. This domain is
a simplified version of a real ebb shoal, which is a common natural feature of coastal inlets.

Figure 1: Idealized inlet with ebb shoal domain shown with the finite element discretization. Observation stations are marked
with white dots. The color bar represents the bathymetry of the domain measuring down from the geoid (m).

4.3. Prior covariance function and the reference basis
We assume that the covariance function describing the Gaussian process underlying the uncertain Man-

ning’s n field is isotropic. Specifically, we also note here that the field M is Gaussian, while the Manning’s n
coefficients have a finite range [0.005, 0.2]. Thus, we use the normal cumulative distribution function (cdf)
to map N (0, 1) to U [0, 1] and our own customized rescale function that maps U [0, 1] to U [0.005, 0.2], to
transform between the realizations of a GP and the actual Manning’s n fields.
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A popular class of covariance kernels employed in the field of geostatistics is the Matérn function [65],

C(x,x′) =
21−ν

Γ(ν)

(√
2ν|x− x′|

l

)ν
Kν

(√
2ν|x− x′|

l

)
. (27)

Here, ν is a smoothness parameter, Γ is the gamma function, and Kν is a modified Bessel function of the
second kind. The roughness of the stochastic process has the inverse relation with the value of ν. As ν →∞,
this covariance kernel becomes infinitely differentiable, and the Matérn covariance function converges to the
squared exponential covariance function, which can be written as

C(x,x′, q) = σ2
fexp

(
− (x− x′)2

2l2

)
, (28)

where q =
{
σ2
f , l
}
. We select this special case of the Matérn covariance to simulate the stochastic process; it

is one of the most used covariance functions to simulate spatially varying parameter fields [64]. In our case,
only the correlation length l affects the shape of the eigenfunctions, while the process variance σ2

f simply
scales the eigenvalues. Therefore, we fix σ2

f = 1 for all experiments and only assume the uncertainty in l,
that is, q = {l}.

The choice of the reference basis is similar to that chosen in [61]. We compute the reference eigenbasis
by solving (3), given the q-averaged covariance function defined as

Cr = C
.
=

∫
C(q)pq(q)dq. (29)

This choice of reference covariance function has been analyzed (see [61]) and contrasted with the choice
Cr = C(lr) for several values of lr. It has been shown to yield the lowest representation error (averaged
relative error over q) compared to selecting any reference covariance as C(lr). This choice is optimal because
it uses the eigenfunction spanning the optimal subspace to represent M(ω, q) when q varies with proba-
bility law pq(q). Additionally, the error in approximating U with the PC surrogate Ũ through coordinate
transformation is consistent with the previous analysis, i.e., the error is minimized when C is used for all
truncation order K.

In practice, the explicit expression of the averaged covariance function in (29) is rarely available. It
therefore needs to be approximated using a sampling-based approach. In our case, the Gauss quadrature
rule was used to appropriately sample a set of q = {l} from U [lmin, lmax], where lmin and lmax are the
minimum and maximum correlation length scales, respectively. In the present work, we take adventage of
the moderate size of the mesh to create and store the 1518× 1518 discrete covariance matrix whose entries
are computed by quadrature. For each quadrature representing a certain l, the value of each element xij in
this matrix is simply C(xi,xj , l). We then perform the summation of this matrix over l using a for loop
and take the average over the number of quadrature points, to finally obtain the approximated C matrix.
Note that this method only requires storing a single covariance matrix. For the problems with much larger
spatial discretization in which computing a large covariance matrix is intractable, covariance approximation
methods such as fixed rank kriging [14], covariance tapering [18], and the full-scale approximation [54] could
be used.

4.4. Observation simulation system experiments (OSSEs)
To assess the performance of the proposed inference framework, we implement ‘observation simulation

system experiments (OSSEs)’. In these experiments, the true Manning’s n field is chosen (assumed to be
known). Then, this true field is used in the ADCIRC model, to compute the reference solution (i.e., water
elevation), denoted by u(x, t), where x is the location and t is time. Water elevation data are then extracted
from the reference solution at 15 measurement stations every hour for 4.5 days, after the 12 hour ramp-up
period. This yields a total No = 15×108 = 1620 observations. These are then perturbed with i.i.d. additive
noise εi ∼ N(0, σ2

ε = 0.01) and are used to infer the true Manning’s n field. We investigate two test cases:
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• Random profile: Mran(x) drawn at random from a Gaussian process, GP (0,C), where C is the
squared exponential covariance. To do so, we sample the quadruplet, {η1, η2, η3, l}, that characterizes
the random field MK=3. We limit ourselves to only three modes (K = 3), on account of the limitation
in the size of the stochastic dimension that can be accommodated in the PC construction scheme (i.e.,
NISP with full tensorization quadrature rules). This does not undermine the validity of our assessment,
which is to identify the improvement of the inference using COC with respect to the inference without
COC, using the same number of modes. Furthermore, one can alleviate this limitation of small
stochastic dimensions due to the chosen PC scheme by using the sparse quadrature methods [1]. By
constructing a true field from a known prior covariance, we can assess our method by comparing the
posterior pdf and maximum a posteriori probability (MAP) estimate with the true field, in terms of
η and q directly (see in the next section). We show the image of the true field Mran on the left of
Fig.2. Here, the sampled quadruplet that generates this particular Manning’s n field realization is
{η1, η2, η3, l} = {1.73, 0.26, 0.04, 1255}.

• Zonal profile: the true Manning’s n profile Mzone(x) is derived from the equation:

Mzone(x) = αM1(x) + βM2(x) + (β − α)M3(x). (30)

Here, M1(x), M2(x) and M3(x), are the parametrization coefficients, which take a value between 0
and 1. The Manning’s n coefficients in the open ocean area are equal to α, and β are the Manning’s n
coefficients in the landlocked area. This parameterization is such that the east and the west sides of the
inlet have constant Manning’s n values, and there is a linear increase (or decrease) in the Manning’s
n coefficients inside the inlet, with the rate of change proportional to the difference between α and
β. Therefore, we refer to this parameterization as the ‘zonal’ profile. The zonal profile has also been
used in [46] to represent the simplistic approximation of the realistic Manning’s n field in the coastal
domain, where the seabed roughness varies depending on the distance from the coastline, and the
monotonic increase in the Manning’s n parameter within the inlet is caused by the sediment transport
between the open ocean and the lagoon. By specifying α = 0.005 and β = 0.1, we generate the true
field Mzone, as shown in the right panel of Fig.2.

Figure 2: The true Manning’s n field of the two test cases. Truths were used to generate the synthetic water elevation
observations for the inference. Left: Mran, generated from sampling the KL coordinates and l of the squared exponential
covariance model. Right: Mzone generated by setting α = 0.005 and β = 0.1 in Equation (30).

For the inference, we consider the squared exponential prior covariance with q = {l} for both cases.
The prior for l is uniform U [lmin = 1000 m, lmax = 4000 m]. This range of the correlation length scale was
chosen such that lmax does not exceed the domain length in any direction, and lmin is approximately 1/4
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in diameter of the computational domain. This is to ensure that the prior covariance can be adequately
represented by just a few eigenmodes. In addition, we do not want to assign an exceedingly small lmin to
our inference problem because the sparse observation points in our domain cannot resolve the small-scale
variability assumed by the prior covariance with small correlation length scale.

For the second test case, Mzone, we use a simplified 1D prior covariance in which we implicitly state that
a priori, there is no dependence between two points in space on the transverse direction; the dependence
between two points only exists in the horizontal (x) direction. To derive such a covariance function, we
consider that the Gaussian kernel is separable, that is, the multidimensional kernel can be written as a
product of one-dimensional kernels:

C(x,x′) =

ND∏
i=1

Ci(xi, x
′
i), (31)

where, ND is the number of the dimension of D. For 2D domain, we use

C1(x1, x
′
1) = exp

(
− (x1 − x′1)2

2l2

)
, C2(x2, x

′
2) = 1, (32)

that is an infinite correlation in the second dimension. The variability range for l is the same as previously.

5. Results and Discussions

5.1. Offline step constructions results
We first construct the reference basis (λrk, φ

r
k)k=1,K derived from the reference covariance Cr = C for

both test cases. Fig.3 shows the first six eigenmodes (from left to right, top to bottom) and the spectrum
(bottom) of the KL decomposition of C of the first test case. We observe that, to retain about 90% of the
energy, truncation order K = 7 is required. Similar plots for the second test case Mzone are shown in Fig.4.
In this case, the reference covariance C is simpler and K = 4 is sufficient to retain more than 90% of the
energy.

To setup the MCMC inference with the change of coordinates method, we compute the coordinates
transformation matrix B(q). For Mran(x), the dimension of B(q) is 3 × 3. For the second test case,
Mzone(x), we increase K to 4; hence, B(q) is of the dimension 4× 4.

In a large-scale system, it is not practical to compute B(q), which requires performing KL decomposition
each time q changes at every MCMC iteration. Therefore, we build the PC surrogate B̃(q) ofB(q) according
to Equation (20) using an Pseudo-spectral projection (PSP) method [13, 12], a variant of the NISP which
uses the nodes of a sparse grid in the domain Ω∗. PC construction using 15 Gaussian quadrature points (15
different realizations of l) based on Legendre polynomials with PC order o = 5 was found to be sufficient for
approximating B̃(q) for both test cases. Fig. 5 shows the results of approximating the true fieldMran of the
first test case, using the reference basis and the change of coordinates. The top left-plot is Mran generated
using Gaussian process with the true η and q. The top-right plot is M̂K , which is the approximation ofMran,
using the reference basis and transformation B(q). Finally, the bottom plot is M̂PC

K , the approximation
of Mran with additional PC approximation of the coordinate transformation itself. M̂PC

K exhibits a larger
error in approximating the truth than M̂K because it accumulates both the errors from the truncation in
building the COC and the PC approximation of B(q). However, for this simple test case, the difference in
error between M̂K and M̂PC

K is almost negligible because a sufficient number of quadratures and polynomial
order were used to construct the PC surrogate. Nevertheless, the discrepancy in estimating the truth in
the reference basis is noticeable. The circular gradient pattern of Mran in the top-left plot is slightly
compressed in the x-direction for both M̂K and M̂PC

K plots. Also, the range between the maximum and the
minimum Manning’s n coefficients is slightly underestimated. This is clearly due to theK-term truncation in
Equation (17). However, overall, we have demonstrated that the COC method is efficient in approximating
the Gaussian process M̂K on the q-averaged reference basis.
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The second task in the offline step is to build the PC surrogate of the model solution U(η, q) following
(24), based on the reference Gaussian process M̂PC

K (ξ) in (23). Following the former setup, M̂PC
K (ξ) is a

stochastic process with q-averaged covariance function C, in which the KL decomposition is truncated to the
first K = 3 dominant modes. Employing the NISP approach, we obtain the PC approximation Ũ(ξ(η, q)) of
the reference model solution. For the first test case, full tensorization of 1-D Gauss quadrature and Hermite
polynomial order o = 6 were used to accurately emulate the response surface of the full solution U(η, q).
With stochastic dimension s = 3 and 5 Gauss nodes in each direction, 125 ADCIRC model runs are required.
After the surrogate is successfully built, we can evaluate the PC approximation of the ADCIRC forecasts,
i.e., the water elevation at observation stations, denoted by ũ(ξ). Given the location in space xi and time
ti, the components of ũ(ξ) are

ũi(ξ) = Ũ(xi, ti, ξ) =

P∑
k=0

Uk(xi, ti)Ψk(ξ), i = 1, ..., 1620. (33)

These model predictions then enter the likelihood computation in the MCMC inference. In Fig.6, we plot for
the first test case, the time-evolution of the water elevation prediction, produced by the ADCIRC, contrasted
with its surrogate counterpart at three observation stations, with each panel plotting a different realization
of ξ. We notice that the water elevation predictions are approximated well by the surrogate and, thus, the
surrogate can be used in place of the full ADCIRC in MCMC.

Similar offline construction procedures were carried out for the second test case Mzone. However, we
increase the KL truncation to K = 4, for the Gaussian process to capture better the small-scale variability
in the true Manning’s n field we attempt to infer. This requires 625 ADCIRC runs to build the surrogate,
using the full tensorization quadrature method.

5.2. 1st case: inference of a random Manning’s n field drawn from a Gaussian process
To perform the MCMC inversion, we start by specifying the priors. Since η = {η1, η2, η3} are the

standard normal random variables, pη(η) is a centered Gaussian. As for the length scale l and the noise
hyper-parameter σ2

o , we use the uninformative, improper, Jeffrey prior [61]. However, instead of inferring
the actual correlation length scale, we seek to infer the normalized correlation length scale lnorm, which can
be computed through the mapping [1000, 4000] 7→ [0, 1]. For example, the lnorm = 0.085 is equivalent to
l = 1255 m.

Having identified all priors, we can use the data predicted by the surrogate ũ(ξ(η, q)) to compute the
likelihood:

p(d | η, q, σ2
o) ≈ p̃(d | η, q, σ2

o) =

No∏
i=1

pε(di − ui(ξ(η, q)), σ2
o), (34)

where ξ(η, q) and pε is given in Equation (25) and Equation (6), respectively. To specify B̂ in Equation
(26), we set κ = 0 because λrk≤3/λ

1
k remains large enough for the current setting. With all components

of the Bayes rule defined, we can proceed with generating the posterior p̃(d | η, q, σ2
o) using an adaptive

Metropolis-Hasting algorithm.
We first examine the inference results from using PC-MCMC with COC. A total of 3 × 105 MCMC

iterations were found to be sufficient in obtaining the posterior with good resolution. We also observe well-
mixed MCMC chains for all inferred parameters (not shown). The marginal posteriors are estimated using a
standard kernel density estimation (KDE) method [56]. The posteriors of the inferred 3 first KL coordinates
and the hyper-parameter l for the inference of Mran are shown in Fig.7. We also infer σ2

o , which we found
a MAP close to the value used to generate the data, i.e., σ2

ε = 0.01. Similar findings are also the case
for all later experiments (not shown for brevity). Concerning the posterior pdf of the KL coordinates, the
information gained from the observations is found to be significant only for η1, which shows large divergence
from the prior and significant decrease in the posterior pdf spread. An interesting result in these plots is in
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the posterior pdf of the normalized length-scale lnorm as depicted on the right of the second panel. Here, the
MAP estimate of the posterior of lnorm (presented with dashed blue) matches almost perfectly with the true
normalized length-scale used to generate the field Mran. This demonstrates the efficiency of PC-MCMC
with COC to estimate the uncertain length-scale of the Gaussian process that best estimates the reference
profile. However, Fig.7 is not informative in terms of validating the accuracy of the inferred KL coordinates
with respect to the true field Mran, since these plots only display the raw inference results, in which all
parameters simultaneously change within the MCMC sampler. Each sample on the posterior is, in fact,
defined on a different basis. For this reason, it is not possible to define "true" values of the coordinates,
and assess their distance to the MAP, as the coordinate of Mran depends on each sampled value of the
hyper-parameters.

To assess the inference results against the truth in a fixed system of coordinates, one needs to express
the sampled fields in the same basis. To this end, we express all sampled fields in the reference basis using
the relation ξ(η, q) = B̂(q)η as given in (26). Fig.8 shows the posteriors of the KL coordinates ξ compared
to the prior and the KL coordinates of the true field Mran. Similar to the conclusion drawn from Fig.7,
the clear information gained from the observations is only revealed by the improvement of the posterior of
the 1st KL coordinate ξ1. The MAP of the posterior of ξ1 clearly converges to the value of the first KL
coordinate of the truth, and the posterior spread is greatly reduced compared to the prior. This is not the
case for ξ2 or ξ3, in which the MAP estimate accurately matches the truth, but shows no clear improvement
in term of posterior spread. This is likely due to the fact that the mean of the priors was already close to
the true values and because of the observation noise. Nevertheless, Fig.8 further emphasizes the strengths
of the PC-MCMC with COC, which is efficient at inferring the hyper-parameters and concurrently improve
the estimation of the KL coordinates.

After inferring ξ, we can reconstruct the inferred Manning’s n field using the KL expansion with known
reference eigenbasis, and compare this field to the true field Mran. We present in Fig.9 the comparison of
the inferred Manning’s n fields from different inference settings and methods: 1) the truth 2) the fixed l
basis, 3) the reference basis without using the change of coordinates, and 4) PC-MCMC with COC. First, we
observe the top right plot of Fig.9 where the correlation length-scale is fixed to lnorm = 0.189 or l = 1567 m.
As expected, we obtain a poor estimate of the truth in this case, simply because the scheme is non-adaptive
in q. In addition, the size of fixed lnorm, in this case, is larger than the lnorm so it cannot resolve small-scale
oscillations. As a result, the inference retrieves a MAP value that misses north-south features and appears
more one-dimensional than the truth. We also plot in the bottom-left of Fig.9 the inferred Manning’s n field
using the basis derived from the q-averaged prior covariance C. In this case, the pattern of the inferred
field shows more resemblance to the truth, which can be explained by the better fit of the basis derived
from C compared to Cr with fixed q. It is nevertheless, visually, a poor estimate of the true field, with a
pronounced asymmetry between the north and south parts of the domain. This asymmetry is present but
much less significant in the truth. Finally, as expected, the PC-MCMC with COC case in the bottom-right
of Fig.9 clearly suggests significant improvement in the spatial structure of the inferred field compared to
the two former cases. It actually matches almost perfectly to the true field reconstruction based on the
reference basis and COC present in Fig.5. This indicates that the COC approach is very robust, up to the
limit of accuracy in the approximation of C and B(η, q). Further, this result underlines the potential of
the proposed approach, which is able to produce much more satisfying estimates by encompassing a whole
family of priors, and, in the present case, to handle satisfactorily the third coordinate associated with the
third field of the reference basis shown in Fig.3.

We further investigate the accuracy of the estimated fields by calculating the percentage error e% of each
inferred field with respect to the truth (figures not shown), calculated node-wise as

e%(xi) =

∣∣∣∣M in(xi)−M true(xi)

M true(xi)

∣∣∣∣× 100, i = 1, ..., 1518, (35)

where M true = Mran in the first test case, M in represents the inferred field, and xi represents the dis-
cretization node i in the domain. For the fixed l case, a large error is shown at the southeast corner of the
land-locked area of the domain with the maximum error of about 150%. This clearly highlights the mismatch
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between the truth and the inferred field when hyper-parameters uncertainty is not considered. Similar to
the previous discussion, using the basis derived from C yields very low error in most area. However, the
exceedingly large error is still shown in both lower corners of the domain. In contrast, the PC-MCMC with
COC yields relatively small e% throughout the domain, with the maximum relative error at about 60% in
areas where the coefficient is the lowest. To complete the discussion on this test case, we mention that the
results reported above are not sensitive to the particular realization of Mran; obviously, unless one uses
systematically the correct (sampled) correlation length for each inference, the COC method provides better
MAPs on average compared to using a fixed correlation length or the averaged prior.

In many scenarios, the ocean tides may not be very sensitive to the small change in the model parameters
such as Manning’s n coefficients. We are also interested in examining the resulting water elevation data
produced by ADCIRC run subjected to the inferred Manning’s n field we have obtained. Fig.10 show
the time-evolution of the water elevation in the final 12 hours of the ADCIRC simulations. Each curve
in each subplot is the water elevation produced with the different MAP values of the Manning’s n field.
Here, we want to highlight the difference in the sensitivity of the water elevation to the inferred Manning’s n
coefficients with respect to the observed location. Therefore, the three subplots represent the water elevation
at different spatial locations in the domain (Fig.1) along the inlet cross-section: the open ocean (x = -1000 m,
y =0 m), the inlet (x = 500 m, y =0 m), and the landlocked area (x = 1500 m, y =0 m), respectively. In the
open ocean area, the modelled water elevation is less sensitive to the difference in the field of the Manning’s
n coefficient compared to the landlocked area. This is reasonable since the west side of the domain has
deeper bathymetry, reducing the value of the drag law coefficient [46]. The differences are larger at stations
where the model is more sensitive. Among the three inference results, the fixed hyper-parameter case clearly
shows the largest difference in water elevation in the landlocked area with respect to the truth (RMSE =
0.0023), consistent with the corresponding inaccurately inferred Manning’s n field. For the landlocked area,
using q-averaged basis with and without COC produce accurate recovery of the water elevation. However,
the case without COC shows the best estimate, with the smallest RMSE among all three cases at 0.00015.
This can also be expected since, given the sufficiently well-approximated structure of the true field, it is
often the case that water elevation in numerical models are not sensitive to its value at every point in the
computational domain, but rather more sensitive to the range of the parameter in the domain itself. In
our case, the range of Manning’s n coefficients given by the q-averaged basis without COC is the closest
to the range of the true Manning’s n field, while the case with COC slightly underestimates the maximum
Manning’s n value. This may also suggest the need to better approximate B(q) by increasing the number of
truncation terms K in (17), at the cost of increasing the computational load for building the PC surrogate
of U .

5.3. 2nd case: Inference of a 2D parametrized zonal Manning’s n field
In the 2nd test case, we proceed our assessment of the PC-MCMC with COC method in similar manners

as presented in the 1st test case. However, the true Manning’s n field Mzone used in this test case is
derived independently from the Gaussian process assumption. As a result, this test case better simulates
the inference problem in real-world settings. According to the observed spectrum in Fig.4, we set K = 4,
which gives λ4/λ1 = 0.101. This ensures that the q-averaged reference eigenbasis encapsulates roughly 90%
of the information contained in C. Without loss of generality, we omit the inference results using fixed-q
basis on the experiments reported below, as we found in the previous section that the fixed-q case is not very
informative. We will instead focus on the comparison between the inference results using q-averaged basis
with and without COC. For simplicity, we shall also refer to the inference using q-averaged basis without
the change of coordinates as the baseline case, while the inference with the change of coordinates will be
referred as the COC case.

Fig.11 outlines the inference of Mzone of the baseline case. The posteriors of the four coordinates are
compared with their respective standard Gaussian priors. We notice the significant improvement of the
posteriors distributions for the first two coordinates, while the other two only show the shift in the posterior
with no improvement on the pdf spread. With COC, shown in Fig.12, better information gain has clearly
been discerned for all four coordinates. Namely, the posteriors of the first three coordinates clearly exhibit
smaller spread compared to their respective posteriors in the baseline case, and the posterior of the fourth
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coordinate clearly show larger divergence from the prior than that of the baseline case, demonstrating the
ability of the MCMC sampler to explore the posterior in a more suitable subspace. These improvements
are indeed the result of including the uncertainty in l in the inference problem. Note also that, as in the
previous case, it is not possible to provide true values for the coordinates of Mzone in the COC approach,
as these vary with the sample value of the correlation length.

Next, we examine the fields of inferred Manning’s n coefficients constructed using the MAP estimates
of η and l. The resulting Manning’s n fields and their respective absolute errors with respect to the truth
Mzone are presented in Fig.13. Looking at the second line of Fig.13, the inferred Manning’s n fields from
both the baseline and the COC case show resemblance in the overall spatial structure with respect to the
truth. Both methods are observed to be equally successful in recovering the Manning’s n value in the open
ocean area (α = 0.005). However, overall, the COC case provides better results for the Manning’s n values
in the inlet and the landlocked areas. The range of the Manning’s n values is overestimated in the two cases,
but appears to be larger for the baseline case, as can be discerned by observing and comparing the first three
subplots. In the bottom line of Fig.13, the percent error maps are presented. Overall, the percent error was
found to be small over most of the area, except at the west side of the inlet, where the error reaches almost
390% for the baseline case and 360% for the COC case along the edge of the two barriers. This is due to a
significant overestimation in areas where the coefficient is actually small. This behavior can be explained by
the squared exponential prior covariance model considered to approximate the field, which is very smooth
in space and therefore not well-suited for representing the discontinuous slopes of Mzone at the two inlet
boundaries. The results then highlights that even, in a situation where the a priori is poor and the truth
very unlikely, the introduction of the change of coordinate does not compromise the procedure but only
slightly improve the MAP estimate.

To better discern the differences in the inferred field results between the baseline and the COC cases,
we present in Fig.14 the cross-section plot of the parameter fields at y = 0 with varying Manning’s n value
in the x-direction. Clearly, the truth Mzone is not a smooth function with sharp turns at the two entrances
of the inlet, which is the result of the field parameterization in Equation (30). Similar to the conclusion we
have drawn from the previous figure, both baseline and COC cases accurately estimate the parameter field
in the open ocean with the exception of a small area around the western boundary. This is again the result
of the attempt to fit the constant function in a basis of eigenmodes for squared exponential prior covariance.
The consequence of this limitation is more pronounced when estimating large Manning’s n values in the
even smaller landlocked area. Here, the results from both cases manifest significant discrepancy with respect
to the truth. The shape of the inferred field subjected to a smooth Gaussian process with a few modes do
not well-represent the constant profile in the landlocked area. That aside, the COC case demonstrates clear
improvement compared to the baseline in recovering the Mzone profile in this area, with the maximum
Manning’s n value of 0.1088; less than 10% larger than β = 0.1. The baseline, on the other hand, produces
the maximum Manning’s n value of 0.1233; 20% larger than the true maximum. Furthermore, one can
observe the clear benefit of including the uncertainty in l in the COC case, that is, it also attempts to
recover the maximum Manning’s n coefficients of the eastern boundary of the landlocked area.

Finally, the sensitivity of the produced water elevation to the inferred field is investigated. The water
elevation at three locations during the 12 final hours of ADCIRC simulation for different Manning’s n fields
are illustrated in Fig.15. Similar to the 1st test case Mran, the resulting water elevation in the open ocean
of the baseline and the COC case is well estimated compared to the truth. This is both because the inferred
Manning’s n fields from both cases in this area are well recovered and the water height is not very sensitive
to the differences in Manning’s n values in the area with deep bathymetry. The distinction in the resulting
water elevation between the three cases starts to be noticeable in the inlet and the landlocked region. The
baseline produces the larger error compared to the COC case in both areas, mainly, due to the exaggeration
in the range of the estimated Manning’s n values with the maxima exceeding more than 20% of that of the
true field. The improvement in the resulting water elevation produced by the COC case over the baseline
case is clearly outlined in the landlocked area.

To summarize, this section has demonstrated the efficiency of the change of coordinates approach for
inference in a more realistic coastal ocean scenario compared to the first test case, with significant improve-
ments in the inference results.
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6. Conclusions

This work presented an extension of the Bayesian inference framework proposed in [61] and tested its
application to a 2D spatially varying parameter field from a prior defined by a Gaussian process in the
context of coastal ocean modeling. The approach is designed to handle hyper-parameters q in the prior
covariance kernel. To infer the spatial field, we relied on a generalized Karhunen-Loève (KL) expansion
involving a reference (spatial) basis, independent of the hyper-parameters, while the effects of changing the
hyper-parameters is accounted for by the random coordinates of the expansion. Specifically, the reference
coordinates are defined by a Change Of Coordinates that maps the original KL coordinates η, in the q-
dependent basis, into q-dependent coordinates ξ(η, q) in the reference basis. The reference covariance was
chosen as the q-averaged covariance, which has been shown to minimize the resulting representation error
of the Gaussian process [61]. The change of coordinates is also exploited to construct a unique surrogate
model of the forward model, which is then used to speed up the posterior sampling in a MCMC algorithm.

The Bayesian inference with COC can be summarized as follows. In the offline step, we defined and
decomposed the reference covariance function from which the reference eigenbasis is computed through KL
decomposition. Then, we construct the PC surrogate of the forward model that accounts for the dependence
of the model prediction on the KL coordinates defined on the reference basis. Next, in the online step, every
MCMC iteration samples η and q are mapped to coordinates ξ in the reference basis, which is the result of
transforming η through the relation ξ = B(q)η. Using these reference coordinates, we evaluate the surrogate
model of the predictions required in the likelihood evaluation to explore the Bayesian posterior. The most
demanding part of the online step is the determination of the COC matrix B(q) for each sampled q, as it
requires the decomposition of the corresponding prior covariance. Therefore, in this work, we proposed and
analyzed the possibility to approximate B(q) with an auxiliary PC expansion in the hyper-parameters q.
This approximation is constructed in the offline step and used in the online step to avoid multiple costly
decompositions of the correlation kernel. This greatly accelerates the online step and allows the inference
framework with COC to be applied to realistic ocean models.

We tested the efficiency the proposed inference framework in an idealized coastal ocean setting, by
conducting OSSEs to infer the Manning’s n field from synthetic water elevation observations generated
by running ADCIRC model with the assumed known true field. Two test cases with different reference
Manning’s n profile were utilized for this analysis: 1) the true profile drawn randomly from a Gaussian
process with a prescribed hyper-parameter value and 2) the zonal Manning’s n profile parametrized using a
linear equation. While the first test case is quite informative in term of assessing the proposed framework by
comparing directly the inferred η and q to those used to generate the truth, the second test case represents
a more realistic Bayesian inference scenario where the truth is not predetermined by a similar underlying
stochastic process as the prior. In each test case, we compared the inference results using a fixed covariance
function with those using the COC. We observed better information gain when the hyper-parameters were
included in the inference, most notably in the first test case. The COC case also accurately recovered the
true correlation length-scale in the first test case, resulting in a more accurate recovery of the true Manning’s
n field. Similar results have been obtained in the second test case, that is, including the COC in the Bayesian
inference helps producing a slightly better estimate of the true parameter profile compared to the baseline
where the inference is performed without incorporating the change of coordinate technique.

Despite the efficiency of the Bayesian inference with COC, this approach calls for a few comments.
Firstly, the COC method is very robust, but its accuracy in transforming the coordinates from one basis to
another is limited by the approximation reference basis and the coordinate transformation matrix. Secondly,
the COC method relies on the q-continuity of B(q). In the large-scale problems where the domain has
several spatial dimension, this assumption would not hold through the emergence of the multiplicity of
eigenvalues and crossing of eigen-branches with B(q). This limits the scope of using COC to the few
first dominant eigenmodes before the crossing/multiplicity issues become intractable. Motivated by these
limitations, we plan in our future work to develop the inference method accounting for the uncertainty in the
hyper-parameters that works on quantities that directly present smoothness and unambiguous dependences
with q, such as the prior covariance, thus alleviating the need to follow a particular eigen-mode as the
hyper-parameter q varies.
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[63] Ihab Sraj, SarahE. Zedler, OmarM. Knio, CharlesS. Jackson, and Ibrahim Hoteit. Polynomial chaos-based bayesian
inference of k-profile parameterization in a general circulation model of the tropical pacific. Monthly Weather Review,
0(0):null, 2016.

[64] M.L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer New York,
1999.

[65] D. Stoyan. Matérn, b.: Spatial variation. 2nd ed., springer-verlag, berlin, heidelberg, new york, london, paris, tokyo 1986,
151 s., dm 33,—. Biometrical Journal, 30(5):594–594, 1988.

[66] Jacob Viborg Tornfeldt Sørensen and Henrik Madsen. Efficient kalman filter techniques for the assimilation of tide gauge
data in three-dimensional modeling of the north sea and baltic sea system. Journal of Geophysical Research: Oceans
(1978-2012), 109(C3), 2005.

[67] Piyush M. Tagade and Han-Lim Choi. A generalized polynomial chaos-based method for efficient bayesian calibration of
uncertain computational models. Inverse Problems in Science and Engineering, 22(4):602–624, 2014.

[68] Piyush. M. Tagade and Han-Lim Choia. A generalized polynomial chaos-based method for efficient bayesian calibration
of uncertain computational models. Inverse Problems in Science and Engineering, 22(4):602–624, 2014.

[69] Albert Tarantola. Inverse problem theory and methods for model parameter estimation. siam, 2005.
[70] M Verlaan and AW Heemink. Tidal flow forecasting using reduced rank square root filters. Stochastic Hydrology and

Hydraulics, 11(5):349–368, 1997.
[71] J. J. Westerink, R. A. Luettich, J. C. Feyen, J. H. Atkinson, C. Dawson, H. J. Roberts, M. D. Powell, J. P. Dunion, E. J.

Kubatko, and H. Pourtaheri. A basin-to channel-scale unstructured grid hurricane storm surge model applied to southern
louisiana. Monthly Weather Review, 136(3):833–864, 2008.

[72] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60(4):897–936, 1938.
[73] D. Xiu and G. Karniadakis. The weiner-askey polynomial chaos for stochastic differential equations. SIAM J. of Sci.

Comp., 24:619–644, 2002.
[74] Dongbin Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press,

Princeton, NJ, USA, 2010.
[75] T. Yanagi. Coastal oceanography, Vol. 1. Springer, 1999.

22



Figure 3: Resulting basis from KL decomposition of C for the first test case, Mran. First six panels: the first six eigenmodes
(from left to right, top to bottom), bottom: the spectrum of C.
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Figure 4: Resulting basis from KL decomposition of C for the second test case,Mzone. First six panels: the first six eigenmodes
(from left to right, top to bottom), bottom: the spectrum of C.
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Figure 5: Approximation of Mran, using the reference basis and change of coordinates. Top-left: MK , the true profile, top-
right: M̂K , the approximation of MK in the reference basis, and bottom: M̂PC

K , the approximation of MK in the reference
basis with the PC approximation of the change of coordinates, B̃(q).
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Figure 6: Time-evolution of the water elevation as produced by the full model (blue) and the surrogate model (red). Each
plot shows the water elevation at different observation stations and different quadrature points (i.e., different realization of ξ),
which characterizes the Manning’s n field.
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Figure 7: Comparison between the priors and marginal posteriors of the 3 KL coordinates ηk, the length-scale hyper-parameter
lnorm, and the noise variance hyper-parameter σ2

o (only the posteriors are shown for lnorm and σ2
o) for the inference of Mran

using the COC method. The maximum a posteriori probability (MAP) estimate for each parameters are also presented using
dashed blue line. The true lnorm used to generate the true field is plotted in dashed green.
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Figure 8: Comparison between the priors, marginal posteriors of the 3 KL coordinates ηk and the true KL coordinates ofMran

in the q-averaged reference subspace (ξ). In each plot, the prior is the black curve, the poterior is in blue, the MAP estimate
in dashed blue, and the truth is in dashed green.
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Figure 9: Spatial maps of several inferred Manning’s n fields compared to the truth: (top-left) the true Manning’s n field, (top-
right) the inferred Manning’s n field using a fixed correlation length scale, (bottom-left) the inferred Manning’s n field based
on the basis derived from C without using COC, and (bottom-right) the inferred Manning’s n field from using PC-MCMC
with COC.
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Figure 10: Time-evolution of the water elevation in the final 12 hours of the ADCIRC simulations subjected to different
Manning’s n field.
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Figure 11: Comparison between the priors and marginal posteriors of the 4 KL coordinates for the inference of Mran using
q-averaged covariance basis. The maximum a posteriori probability (MAP) estimate for each parameters are also presented
using dashed blue line.
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Figure 12: Comparison between the priors and marginal posteriors of the 4 KL coordinates and the length-scale hyper-parameter
l (only the posterior is shown) for the inference ofMran using the COC method. The maximum a posteriori probability (MAP)
estimate for each parameters are also presented using dashed blue line.
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Figure 13: Spatial maps of several inferred Manning’s n fields compared to the truth: (top) the true Manning’s n field, (middle-
left) the inferred Manning’s n field based on the basis derived from C without using COC, and (middle-right) the inferred
Manning’s n field from using PC-MCMC with COC. Bottom panel, spatial maps of the percent error with respect to the truth:
(bottom-left) the inferred Manning’s n field based on the basis derived from C without using COC, and (bottom-right) the
inferred Manning’s n field from using PC-MCMC with COC.
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Figure 14: Cross section plot at y = 0 (midway between north and south) of the inferred Mannning’s n fields compared to the
true field Mzone (black). The inferred field based on the basis derived from C without using COC and with COC are plotted
in red and blue, respectively.

Figure 15: Time-evolution of the water elevation in the final 12 hours of the ADCIRC simulations subjected to different
Manning’s n field.
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