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Abstract—We propose a reconstruction algorithm called al-
goRIM for super-resolution fluorescence microscopy, based on
speckle illuminations and image variance matching. Super-
resolution with a factor two or close can be achieved under
realistic conditions in terms of number of images and signal
to noise ratio. Here, our key result is an approximation of the
statistical variance equation, leading to a drastic reduction of
the computational complexity. Moreover, we demonstrate that
the unmodulated out-of-focus light does not contribute to the
data variance, and that the statistical component due to noise
can be estimated and removed in an unsupervised way, which is
a crucial contribution to the practical robustness of algoRIM.

Index Terms—Fluorescence microscopy, structured illumina-
tion, super-resolution, optical sectioning, variance, estimation

I. INTRODUCTION

Fluorescence widefield microscopy is a decisive imaging
tool for biology. However, the spatial resolution is limited
by the diffraction barrier, around 300 nm. Imaging subcellular
structures requires to improve the resolution beyond this bar-
rier. Furthermore, phototoxicity limits the number of photons
that can be sent to the sample. In such conditions, structured
illumination microscopy (SIM) reaches an excellent trade-off
between spatial and temporal resolution, and low toxicity [1]–
[3]. SIM consists in recording several low-resolution images of
the sample illuminated with known periodic illuminations with
different positions and orientations. The periodic illumination
of SIM permits to downmodulate the previously inaccessible
high spatial frequency components of the sample inside the
low-resolution images. The super-resolved reconstruction is
obtained through a joint demodulation process using the
illumination as a carrier wave. Such a data processing step
requires the precise knowledge of the illumination pattern, thus
a tight control of the latter, which makes SIM difficult to use
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and limits its application to weakly scattering samples [4].
SIM is prone to introduce artifacts in the reconstruction as
soon as the illuminations are distorted at the sample plane,
because of imperfect calibration, or because of the diffusion
in the thickness of the sample [1], [5].

Random illumination microscopy (RIM) was proposed as a
more robust imaging technique than SIM [6]. RIM consists
in shining the sample with several uncontrolled speckles and
in extracting a super-resolved image from the multiple low
frequency images acquired. The maximum super-resolution
gain of RIM is the same as SIM [7], i.e., a factor of two
in the lateral dimensions. On the other hand, RIM requires
only simple modifications of a fluorescent microscope, and it
is easy to use [8]. Moreover, it is robust to optical aberrations,
which makes it an excellent candidate for functional cell
imaging. Some RIM algorithms jointly estimate the object and
the illuminations using positivity and/or sparsity constraints
[9], [10]. However, the latter algorithms do not provide a
guaranteed super-resolution gain, and they are not robust to
the presence of an umodulated background. Moreover, their
computational complexity (CC) is proportional to the number
of acquired images.

An alternative is to estimate the fluorescence map
marginally on the unknown illuminations, using a method of
moments based on matching some statistics of the acquired
images. Such a method is asymptotically consistent [11], and
it does not rely on a prior knowledge about the quantity
of interest. In [7], a Kullback Leibler divergence is used
as a contrast function between the empirical and statistical
second order moments. However, this estimator relies on
image covariance matching, which has a prohibitive cost of
O(N2) and O(N3) in terms of memory and CC for N -pixel
images, respectively. A patch method was investigated with a
reduction of the CC to O(N2 logN) [12].

In this paper, we propose a new reconstruction algorithm
called algoRIM, based on variance matching. We introduce
an approximation of the statistical variance equation leading
to a CC of O(N logN).We also show that it is possible to
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separate the statistical contribution of the “useful” photons
from the unwanted components, in a fully unsupervised way.
The latter components include both the electronic and the
photon counting noise, but also the fluorescence light emitted
from out-of-focus planes, real tissues being three-dimensional.
AlgoRIM was recently applied to cases of super-resolved
functional imaging of living cells and tissues [8], which
confirms its practical super-resolution capability, as well as
its versatility and robustness.

In Section II, we introduce the discretized model for RIM
and we express second-order statistical moments of the mea-
surements which are useful in the rest of the paper. In Sec-
tion III, a reformulation of the statistical variance is proposed,
which is a key part of algoRIM, leading to a substantial
reduction of the computational complexity. Section IV proves
that the noise component of the data variance can be estimated
from the acquired images. In Section V, we give some details
about the adopted objective function and minimization strat-
egy. In Section VI, simulation results illustrate the capacity of
algoRIM to estimate a super-resolved image of the object in
presence of noise and of an unmodulated background. We also
provide a two-color fluorescence super-resolved reconstruction
from experimental RIM images of podosomes.

II. MODEL AND STATISTICAL MOMENTS

Let us first derive the statistical variance of the RIM images.
We restrict ourselves to the problem in a 2D fully discrete
setting, where both the recorded images and the sample are
represented on regular grids, with a sampling rate common
to both, and we assume a linear invariant fluorescence micro-
scope with a linear response of the fluorophores. Then, the
mth noiseless acquired image reads

xm =HDiag(Im)ρ+ b (1)

where

• H is the convolution matrix corresponding to the point
spread function (PSF) of the microscope. Here, H is
assumed known, real symmetric, and block circulant with
circulant blocks (BCCB), and we call optical transfer
function (OTF) the Fourier transform of the PSF.

• Im the mth unknown speckle illumination,
• ρ the unknown fluorophore concentration, which is the

only quantity of interest.
• b is an unknown background corresponding to the con-

tribution of out-of-focus planes. Here, it is considered as
a deterministic, unmodulated component.

Finally, Diag() defines a diagonal matrix from a vector. With-
out loss of generality, the spatial sampling rate is normalized
to unity in each direction. Since our goal is to demonstrate a
factor two in terms of super-resolution, the normalized cutoff
frequency fcut imposed by the PSF is assumed to be smaller
than 1/4. Experimental setups are usually designed so that
fcut is close to 1/2, but for the sake of simplicity, we do not
include the numerical oversampling required in our model.

We assume that a spatially uncorrelated noise pledges the
measurements, so that the acquired images read

ym ∼ P(ym|xm), (2)

where P is the conditional distribution of ym given xm,
induced by the presence of noise. In a typical way, both
the electronic noise and the photon counting noise can be
taken into account simultaneously using (2). We postulate
the statistical expectation of the image ym knowing the
illumination Im to be equal to the noiseless measurement,
i.e., E(ym|I) = xm. We also assume that the illuminations
are fully developed speckles with known stationary second
order statistics:

µI = E(Im)

C = ΣI = E
(
(Im − µI)(Im − µI)

t
)
,

C being a real symmetric BCCB matrix.
The spatial correlation of the acquired images can be

expressed using the law of total covariance:

Σy = Σx + Diag(w),

where

Σx =HDiag(ρ)CDiag(ρ)H (3)

is the covariance of the expectation of y given I , and
Diag(w) is the covariance of the noise component, w being
an unknown map of noise variance. Let us stress here that Σx

does not depend on the background component b, in contrast
with the first-order statistics

µy = µx =HDiag(ρ)µI + b.

Such a property corresponds to the sectioning capacity of
speckle illumination microscopy, as already noticed in [13],
[14]. Finally, the statistical variance of y is simply the diagonal
part of Σy:

vy = diag(Σy) = vx +w

with vx = diag(Σx). We temporarily assume w to be known,
Section IV being focused on an estimation procedure for w.
Unfortunately, computing Σx using (3) costs O(N3), as well
as computing vx alone. However, the computation of vx can
be reformulated, leading to an efficient approximation scheme,
as shown below.

III. STATISTICAL VARIANCE REFORMULATION

Each element of vx has a quadratic expression with respect
to the object: [vx]i = ρtT (i)ρ, with

T (i) = Diag([H]i,:)CDiag([H]i,:), (4)

where [H]i,: is the ith row of H . Matrices T (i) are real
nonnegative definite, so they admit an eigendecomposition.
Therefore,

[vx]i =

N∑
k=1

(
ρ ◦m(k,i)

)t(
ρ ◦m(k,i)

)
(5)
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Fig. 1. Eigenvalues and vectors of matrices T (i). A) Eigenvalues of T (0) for
N = 100 and N = 400 normalized by the first eigenvalue. B) From top left
to bottom right, the amplitude of the Fourier transform of the eigenvectors
|m̃(k,i)| for N = 400.

with m(k,i) =
√
s(k,i) u(k,i), where s(k,i) > 0 and u(k,i) are

the kth eigenvalue and eigenvector of T (i), respectively, and
◦ is the Hadamard (i.e., entrywise, or Schur) matrix product
[15, Chap. 5]. One can notice that matrices T (i) are related
one to each other by two similar permutations along both the
rows and columns (see Eq. (4)). Therefore, they share the same
spectrum and the same rank R 6 N , and their eigenvectors
are related one to each other through the same permutation
[16]. Any element k of the sum in (5) can be computed for
all pixels i simultaneously by convolution with a filter m(k,0),
due to the BCCB structure of H , and therefore

vx =

K∑
k=1

∣∣M (k)ρ
∣∣2 (6)

with K = N and M (k) = BCCB(m(k,0)), BCCB() being
the BCCB matrix with the input vector as its first row. Exact
computations are obtained if K > R (let us remark that
matrices T (i) are not full rank). In Fig. 1A, the decrease speed
of the eigenvalues s(k,0) are shown for N = 100 and N = 400.
The decrease is very fast, and almost identical for the two
cases. Hereafter, only K = 10 terms will be kept with the
corresponding 2D Fourier transform of the m(k,0) shown in
Fig. 1B.

IV. CONDITIONAL NOISE VARIANCE ESTIMATION

In this section, we demonstrate that the conditional variance
w can be estimated from an asymptotically large number of
images, and we deduce a practical estimator.

Theorem 1. If RIM images are sampled above the
Nyquist–Shannon sampling limit, then the conditional variance
w is identifiable from an asymptotically large number of
images ym.

A. Proof of Theorem 1

We call DPSF the support of the OTF, we also define ã =
1PSF as the indicator function of the complement of DPSF:

[ã]i =

{
0 for all i inside the OTF domain,
1 otherwise.

A = BCCB(a) is the convolution matrix by the 2D inverse
Fourier transform of ã. By definition, we have AH =HA =
0. Let us define the intermediate variables zm = Aym. Their
covariance matrix is Σz = AΣyA

t = ADiag(w)At, and
their statistical variance is [17]

vz = diag(ADiag(w)At) = (A ◦A)w.

Moreover, as the number M of images grows, the sample
variance of {zm}m=1...M converges towards vz .

Proposition 1. If RIM images are sampled above the
Nyquist–Shannon sampling limit, then A ◦A is an invertible
matrix.

Proof: MatrixA◦A is a convolution matrix with the filter
|a|2. The 2D inverse Fourier transform of |a|2 is ã⊗ã with ⊗
the convolution operator. The circular convolution operation is

[ã⊗ ã]i,j =
∑
m,n

[ã]m,n[ã]i−m (mod N),j−n (mod N) (7)

where vectors are indexed by two indices going from 0 to
N − 1 to identify individual elements of the two-dimensional
normalized frequency grid (NFG). We remark that [ã]i,0 =
1,∀i and [ã]0,j = 1,∀j because such components correspond
to positions at the boundary of the NFG, and the sampling rate
is above the Nyquist-Shannon sampling limit. Elements of the
sum (7) are either 0 or 1. However, particular terms of the
sum can be shown to be 1: indeed, [ã]0,j [ã]i,0 = 1,∀(i, j),
and therefore [ã ⊗ ã]i,j > 0,∀(i, j). Matrix A ◦ A is thus
positive definite and therefore invertible.

As an estimator of the conditional variance, we propose
ŵ = (A ◦A)−1ṽz with ṽz the empirical variance of images
zm. This estimation step is especially useful because of the
Poisson noise component, which makes the conditional noise
variance depend on the unknown map ρ, but also on the
unknown background light b.

V. ALGORITHM

In order to estimate the object ρ, we rely on the matching
of the variance,

F (ρ) = D (v̂y − ŵ − vx(ρ)) ,

using a simple least-square fit D(·) = ‖ ·‖22. We perform local
descent on F using an L-BFGS scheme [18] with a memory
size of 10. The optimal step size is calculated by solving a
single variable polynomial of degree three at each iteration.
The gradient of F is given by

∂F (ρ)

∂ρ
= 4

K∑
k=1

M (k)t
((
M (k)ρ

)
◦ r(ρ)

)
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Fig. 2. Simulation results from 1000 noisy RIM images. A) Siemens target
object ρ, B) mean of the RIM images µy , C) unmodulated background
b, D) variance of the RIM images vy , E) standard deviation of additive
Gaussian noise, F) estimated conditional variance w, G) one noisy RIM
image, H) reconstruction output from algoRIM. Red and blue circles indicate
the limits of the regions that are non-resolvable with uniform and structured
illuminations, respectively.

with r(ρ) = v̂y − ŵ − vx(ρ). Let us remark that the least
square fit may be replaced by a more accurate measure with
a better statistical justification. Moreover, in practice, a pre-
liminary Wiener deconvolution step is performed on the RIM
images. This step produces a whitening effect, which improves
the statistical variance approximation, more information being
concentrated in the variance component.

VI. RESULTS

To illustrate the performances of algoRIM, we simulate
1000 RIM images like the one in Fig. 2G. We assume C ∝H ,
which is roughly the case in epi-fluoresence if we neglect the
Stokes shift. We use a Siemens star object (see Fig. 2A) and
speckle illuminations. A filtered version of the cameraman
image is added as an unmodulated background b. Let us
remark that it is reasonable to assume that b has no spatial
frequency content outside the support of the OTF. Images
are scaled by a multiplicative factor so that after the photon

counting noise is simulated, the overall signal to noise ratio is

SNR = 10 log

( ∑
m,i[xm]2i∑

m,i[ym − xm]2i

)
is 50 dB. Then an additive Gaussian noise with a standard
deviation displayed in Fig. 2E is added. The mean of all
RIM images is shown in Fig. 2B. A red circle indicates
the limit of the OTF support, the inner region being non-
resolvable in the widefield image. Moreover, the background
artefact is clearly visible and could lead to misinterpretations
in real widefield fluorescence microscopy. The variance of all
RIM images is shown in Fig. 2D. It contains smaller details
inside the red circle. However, vx is not linearly related to
the object (see Eq. (6)) and the presence of the Gaussian
noise is visible. Relative intensities are not preserved, so no
quantitative evaluations can be retrieved in a direct way from
v̂x nor

√
v̂x.

In Fig. 2F, the estimated conditional variance ŵ is shown.
Finally, Fig. 2H shows the reconstructed object ρ̂ using algo-
RIM. The blue circle indicates the region of the Siemens target
that is non-resolvable, even using structured illumination. We
can see that the object is reconstructed almost up to the blue
circle, and much better than what is directly visible in the
variance image. In simulations with more than 10000 RIM
images and no noise, the reconstructed images perfectly reach
the blue circle.

In Fig. 3, we show results obtained from real data acquired
with a two-color fluorescence microscope described in [8].
The sample is a cell membrane with marked podosomes
(lifeact-GFP in red and zyxine-mCh in green). Podosomes
are composed of an approximately 500 nm high and large
F-actin protrusive core surrounded by an adhesion ring. In
Fig. 3, we see a resolution improvement in the reconstructed
image compared to the deconvolved widefield image. In the
deconvolved widefield image, we observe an undesired low
frequency hallow, probably due to out-of-focus light, which is
perfectly rejected in the reconstructed image.

Fig. 3. Real data reconstruction of podosomes from 800 illuminations and an
exposition time of 10 ms per image. A) Widefield image simulated by taking
the average of all the RIM images, B) Reconstruction output of algoRIM.

VII. CONCLUSION

AlgoRIM is a fast algorithm dedicated to RIM, based
on the minimization of a distance between the statistical
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variance and the empirical variance of the acquired images.
An approximation computation of the statistical variance leads
to a reduction of the complexity to O(N logN). We have
proposed an estimator of the conditional noise statistical vari-
ance suited to noise distributions encountered in microscopy.
Simulations clearly show the capacity of algoRIM to recover
a super resolved image of the object even in presence of an
unmodulated background and of photon noise. We have also
illustrated the super-resolution capacity of algoRIM, as well
as the rejection of out of focus light on a real data case.
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