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One of the main problems for a realistic journey planning in public transit is the need to give the user multiple qualitative choices. Usually, public transit journeys involve 4 main criteria: the departure time, the arrival time, the number of transfers and the walking distance. The problem of computing Pareto sets with these criteria is called the Pareto range query problem. This problem is complex and difficult to solve within the constraints of the industrial world of smartphone applications, like a response time of the order of a second. In this paper, we present the Goal Directed Connection Scan Algorithm (GDCSA), an algorithm that allows, for the first time, to solve this problem with run times of less than 0.5 seconds on most European city or country-wide networks, like Berlin or Switzerland. In addition, GDCSA satisfies other industrial needs: it is conceptually simple and easy to implement. It partitions the graph in geographically small areas and precomputes some lower bounds on the duration of a trip in order to select for each itinerary a sub-set of these areas to decrease the number of scanned connections. Combining this sub-set and a journey planning using 4 criteria, we scan up to 17 times fewer connections than the best algorithms (CSA and RAPTOR), the number of nodes opened during the search is lowered by a factor of up to 2.9 and the query times are lowered by a factor of up to 9 on metropolitan networks. The integration of GDCSA in a smartphone app backend server led to an improvement in results by a factor of 5.

INTRODUCTION 1.Problem Description

With the advent of smartphones, millions of passengers use computer-based journey planning systems to obtain public transport directions. Those directions need to be given in a reasonable amount of time, usually in less than a second, and a user does not want only the shortest path from A to B but may want a journey with the lowest walking distance, the least transfers, something in between or any number of combinations of criteria. A journey planning system cannot guess what a passenger wants specifically so it has to give directions containing more than one journey. This can be done by computing Pareto sets with multiple criteria (arrival time, departure time, walk distance, number of transfers, accessibility, ...). A lot of work exists on the shortest path problem in public transit but few integrate the real needs of the users: not only the earliest arrival journey but a Pareto optimal set of journeys.

Multiple variants of the public transport routing problem exist: the profile variant solves simultaneously the earliest arrival problem for all source times, the range query variant solves simultaneously the earliest arrival problem for journeys that are at most two times as long as the fastest journey. For each of those variants we can add a Pareto set to solve a multicriteria problem, leading to the Pareto profile variant and the Pareto range query variant.

The Pareto range query variant, mainly the one that involves 4 criteria (departure time, arrival time, number of transfers and walked distance) has a practical relevance because travelers do not want to arrive significantly later than the earliest arrival time and may have specific preferences on the number of transfers or the walk distance. The two main criteria for the range query are the arrival and the departure time. The other criteria provide a wide array of choices for the user, which allows users to find a suitable answer according to their mobility or their aversion to changing vehicles. Note that the price is not used as a criteria because most users have a transit subscription either where the user lives or when visiting another city as a tourist, and therefore do not care about the price.

To solve this kind of problem there are mainly two types of methods. The first one proceeds by pre-processing and pre-calculating many solutions for multiple hours (for example at night) in order to be able to respond quickly to users. The second calculates solutions on demand. We can also imagine combining these two types of methods.

The major drawback of preprocessing methods is that they cannot integrate seamlessly the modifications that may appear on a network and that inevitably occur every day. On the other hand, on-demand calculation methods (called search methods) do not have this problem, but they are too slow at the moment to be used into a modern journey planning system.

In this paper, we propose to speed-up the response time by guiding a search method using goal directed techniques and using a little preprocessing not affected by real-world hazards.

Proposed Solution

Algorithms that yield fast query times for public transit routing in large metropolitan networks are numerous, with extensions of Dijkstra's algorithm [START_REF] Disser | Multi-criteria shortest paths in time-dependent train networks[END_REF][START_REF] Müller-Hannemann | Timetable information: Models and algorithms[END_REF][START_REF] Pyrga | Efficient models for timetable information in public transportation systems[END_REF], graph labeling algorithms (Delling et al., 2015a;[START_REF] Wang | Efficient route planning on public transportation networks: A labelling approach[END_REF], non graph based algorithms like the Connection Scan Algorithm (CSA) [START_REF] Dibbelt | Connection scan algorithm[END_REF] or RAPTOR [START_REF] Delling | Roundbased public transit routing[END_REF], preprocessing heavy approaches with Transfer Patterns [START_REF] Bast | Fast routing in very large public transportation networks using transfer patterns[END_REF][START_REF] Bast | Frequency-based search for public transit[END_REF], or with a lighter preprocessing with Trip-Based Public Transit Routing [START_REF] Witt | Trip-based public transit routing[END_REF]. There are also extensions to these algorithms to allow for shorter response times, Trip Based Routing is made faster with the use of condensed search trees [START_REF] Witt | Trip-based public transit routing using condensed search trees[END_REF], RAPTOR with the use of hyper graphs [START_REF] Delling | Faster transit routing by hyper partitioning[END_REF], CSA with the use of overlaygraphs (CSAccel) [START_REF] Strasser | Connection scan accelerated[END_REF] and Transfer Patterns by reducing the space and time consumption of the preprocessing [START_REF] Bast | Scalable transfer patterns[END_REF].

Among search based methods the two main ones are CSA and RAPTOR. CSA based algorithms are simple, short, easy to implement and have good performances which makes them often used in journey planning systems (e.g. Instant System on the Paris metropolitan network, TrainLine on the European train network, ...). In addition, the PRVCSA, the Pareto range variant of the CSA, seems to be one of the faster algorithms to solve the Pareto range query problem as mentioned in multiple well-known articles (Bast et al., 2016a;[START_REF] Dibbelt | Connection scan algorithm[END_REF]. Therefore, we focus our study on CSA based algorithms.

In CSA, the connections are treated one after the other, without distinguishing if they are useful or not for the journey, CSA trades relevance of information with simplicity and speed. Adding criteria to the CSA leads to a performance degradation because more complex data structures are needed and with each added criterion the size of the Pareto set increases which decreases even more the performance. In practice, for a system to be considered interactive it should respond in less than 1 second. Unfortunately, the PRVCSA does not have this performance when more than three criteria are involved.

One way to achieve such a goal for the PRVCSA is to combine it with goal-directed techniques, that is to "guide" the search toward the target by avoiding the scan of an element (a vertex for Dijkstra, a connection for the CSA) that is not in the direction of the target. Classic algorithms using goal-directed techniques are the A* search [START_REF] Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF]) and the ALT algorithm [START_REF] Goldberg | Computing the shortest path: A search meets graph theory[END_REF] which have been successfully used on road networks. The CSAccel algorithm [START_REF] Strasser | Connection scan accelerated[END_REF] can be seen as the first combination of goal directed technique and CSA. It applies CSA on multi-level overlay graphs to reduce the number of scanned connections and in doing so lower the run time. The main idea behind CSAccel is to avoid looking at rural buses that are neither near the departure city nor the arrival city, and only keep a subset of connections between cities. This reduces the number of scanned connections and the run time as well. CSAccel uses extremely sound principles and has significant gains on country-wide networks. Unfortunately, it does not improve run time for large dense metropolitan networks. It is also a complex algorithm to implement.

In this article, we present GDCSA, a novel approach that combines goal-directed techniques with the PRVCSA to allow the use of more criteria. We reuse the principles behind CSAccel but in an easier and more pragmatic way. We roughly use the same idea of partitioning the graph but we introduce additional lower and upper bounds, and remove the multilevel part of the partitioning. The key idea is to partition the graph in areas and only use the connections of a sub-set of the areas when computing a journey, thanks to lower and upper bounds on the duration of the public transit journey. The lower bounds are computed in a preprocessing step for each pair of areas while the upper bounds are computed during the journey planning. Each area is opened or discarded with a simple evaluation between the upper bound and the sum of two lower bounds (from the start stop to the candidate area and from the candidate area to the arrival stop). Then we merge the connections of the chosen areas and launch the PRVCSA on this restricted set of connections.

Our experiments reveal that on a large and dense metropolitan public transit networks, the GDCSA allows a journey planning using 4 criteria (departure time, arrival time, number of transfers and walked distance) with a run time 2.5 to 9 times faster than the PRVCSA and 4.3 to 16 times faster than the Pareto range query variant of the RAPTOR. Thus, the journey planning can be used in an interactive setting to satisfy the client's needs (i.e. on the passenger's smartphone) with run times of less than 0.5 second on most of the compared networks.

Integrating a Solution in an Industrial Setting

We can identify multiple problems when integrating an algorithm in an industrial setting: the accuracy of the data, the maintainability and adaptability of the algorithm and the integration into an existing system. The problem when using public transport journey planning systems on metropolitan data is that the data is never 100% accurate, we can have multiple problems, e.g. circular lines that are not declared as such, lines that have not been updated with the new stops and departure times and any number of other problems. As such an algorithm that is robust to inaccurate data is essential.

With inaccurate data and real life usage, we have a lot of bug fixing and in a small company like ours with 30 employees, any one of the R&D engineers should be able to debug the core of the journey planning because a debug task is assigned independently of who wrote the code. This means that an algorithm that is easy to code, understand and maintain is vital.

An easily adaptable algorithm is important because each client has different needs, depending on the size of the public transport network, the wish of the community and other factors. This leads to an algorithm that has to be easily modifiable. For example certain clients want specific modes at the top or the bottom, to use gps coordinates instead of stops as departure and arrival, to combine free floating bikes or kick-scooters with public transport which means journeys to or from other modes will have specific constraints.

A complete app containing other components, such as ticketing, next departure times, favorite notification, guiding, transport on demand and more, involves more complex data structures than the ones described in the literature. For example simple identifiers are used for benchmarking whereas they are more complex in an app to be human readable. So access times to the data structures are longer and therefore the run time is slower. We also have the problem of persistence and the need for databases which limit access times, and when connecting to real time providers the correspondence between the line and stop ids is never automatic.

During the development of the GDCSA, we made sure to integrate all those aspects and we will give experimental results as well as results of an integration in an industrial backend server.

This paper is organized as follows: Section 2 will give all the notions necessary to understand the algorithm. Section 3 introduces the GDCSA, the intuition behind it and how the transit network graph is partitioned. Section 4 presents the experimental evaluation of the algorithm on the performance and other metrics. Section 5 concludes with a summary and a discussion of future work.

PRELIMINARIES

In this section we formalize the inputs and algorithms used in this work, we use the same formalization as the CSA [START_REF] Dibbelt | Connection scan algorithm[END_REF] because it is the centerpiece of our algorithm.

Timetable

A timetable represents for one specific day the vehicles that exist (train, bus, tram, ferry, ...), when they travel, where they travel and how passengers can go from one vehicle to another. A timetable is a quadruple (S, T,C, F) of stops S, trips T , connections C and footpaths F:

• A stop is a position outside of a vehicle where a passenger can wait. At a stop (and only at a stop) a vehicle can halt and passengers can leave or get on.

• A trip is defined by a vehicle going through stops at fixed times. Formally a trip is a scheduled vehicle: a journey done by a unique vehicle from a starting stop to a last stop at a fixed time and made of connections. The inequality allows a passenger to be sure the transfer can be done even if one or both of the vehicles have a delay. The variable s change depends on the departure stop, arrival stop and modes for each of these stops. A loop is introduced on each stop to allow a passenger to get off at a stop and take another trip going through this stop.

Example We will use the public transit network of New York City.

Trips can be done by trains, trams, buses, ferry and other modes of transportation that have fixed departure and arrival times. Let t be a trip of the line 1 of the metro going to "South Ferry" with a departure date at 08/16/19 3:14 PM. The trip without a departure date is not a unique identifier because this trip exists each day of the week.

If we take 3 consecutive stops of t "50 Street", "Times Square -42 Street" and "34 Street -Penn Station", then there is a valid connection with "50 Street" as a departure stop, "Times Square -42 Street" as an arrival stop and t as a trip. There is another valid connection with "Times Square -42 Street" as a departure stop, "34 Street -Penn Station" as an arrival stop and t as a trip. A non-valid connection is a connection that has "50 Street" as a departure stop, "34 Street -Penn Station" as an arrival stop and t as a trip because there exists an intermediate stop (i.e. "Times Square -42 street").

Journeys

A journey describes how a passenger can travel through a public transit network. It is made of legs that are pairs of connections (l i enter , l i exit ) from the same trip. l i enter must appear before l i exit in the trip or l i enter = l i exit if the trip has only one connection. Formally a journey is composed of legs and footpaths alternately f 0 , l 0 , f 1 , l 1 , . . . , f k , l k . A journey must start and end with a footpath, which can be a self loop.

Connection Scan Algorithm

Given a source stop s, a target stop t, a minimum departure time τ and a timetable T , the CSA outputs a journey with the minimum arrival time over all journeys that depart after τ from s and arrive at t. This earliest arrival variant assumes that the connections are stored as a sorted array using the departure time of the connections, and that the footpaths are stored in a data structure that allows an iteration over the incoming or outgoing footpaths. A connection is reachable if a passenger can get on the connection. Similarly to Dijkstra's algorithm, tentative arrival times are stored for each stop but a priority queue is not used. Instead, the CSA iterates over all the connections (sorted by departure time) and tests if they are reachable. For each reachable connection, the algorithm updates the tentative arrival time for each stop that can be reached by foot from the arrival stop of the connection. The CSA is significantly faster than Dijsktra's algorithm even though it touches more connections, because the work required per connection does not involve a priority queue operation.

Variants of the Connection Scan Algorithm

The CSA can be extended to account for all of the source times with the profile variant. This is still done by scanning the ordered connections only once, but the journeys are constructed from late to early and the algorithm exploits the fact that an early journey can only have later journeys as sub-journeys. We then can add a Pareto set to solve a multi-criteria problem, the Pareto profile variant. When adding one criterion, the code can be modified in a specific way to avoid decreasing the performances too much but when adding more the code needs to be generic leading to a bigger decrease in performance.

Another way the CSA can be extended is the range query variant, where we only solve the earliest arrival problem for journeys that are at most two times as long as the fastest journey, the solution to this problem is a sub-set of the solution to the profile problem. In the same way as before, we can also then add a Pareto set to solve a multi-criteria problem, the Pareto range query variant. This algorithm is the PRVCSA.

GOAL-DIRECTED TECHNIQUES MEET CSA

From now on we will only consider the Pareto range query variant of the journey planning in public transit with the 4 criteria mentioned in the introduction (departure time, arrival time, walking distance and number of transfers).

CSAccel [START_REF] Dibbelt | Connection scan algorithm[END_REF] uses goal-directed techniques in the form of multi-level overlay graphs. A multi-level (hierarchical) partition of the stop set is done, this approach relies on small balanced graph cuts and while they can easily be found between cities on a country-wide scale, it is significantly more difficult to do so for a particular city. CSAccel works on a hierarchical graph that is organized geographically, large cells at the top and small cells at the bottom. A level corresponds to a geographic abstraction of the reality, the goal is to avoid scanning all the connections of a given cell. This is done with a preprocessing step by keeping a sub-set of the connection in a cell that will allow us to go through it, called transit connections, because a core observation is that connections in a journey where a passenger does not get off or on a bus do not need to be scanned. This allows the CSAccel to scan a lower number of connections by identifying potential relevant cells and only using their transit connections. CSAccel is strongly dependent on its non-obvious hierarchical graph partitioning and has a significant increase in code and algorithmic complexity compared to CSA, as said by its authors.

Our approach is simpler. It partitions the graph in areas, on a single level, and uses lower and upper bounds to open a sub-set of areas needed to compute the journey that will lead to a smaller search space, i.e. the number of connections, and in doing so the run time is lowered as well.

The idea behind the algorithm is that when computing a journey between New York and Washington, it is important to look at trips going between the two cities as well as those that go a little bit off-course, i.e. Atlantic City. On the other hand looking at trips near Boston or Syracuse will only lengthen the journey, thus we can safely remove those trips from the search space.

Partitioning the Graph

Intuitively, we want to geographically partition the timetable to allow a preprocessing step to compute lower bounds to guide the search of the GDCSA.

In order to define the geographical partitioning, we present some notations and define the core concepts of: geographical graph of a timetable, areas, boundaries and geographical partitioning.

Geographical graph

A geographic graph G = (S, E) can be abstracted from a timetable T where S is the set of stops, E is the set of edges and M is the seconds of a day such that

(u, v) ∈ E ⇒ ∃t 1 ,t 2 ∈ M, z ∈ T | (u, v,t 1 ,t 2 , z) ∈ C (1)

Area

An area a is a connected sub-graph of G. The areas partition the graph, i.e. they are pairwise disjoint, such that the union of the parts give you the entire set of stops.

We have a few definitions for an area:

• A connection c belongs to an area a if and only if c dep stop ∈ a.

• For all u ∈ S, A(u) is the area containing u.

• Let connections(a) be the list of connections of the area a. 

Boundary of an area

The boundary of an area a is the set of stops B(a) ⊆ a who have at least one edge with an extremity outside of the area a.

The boundary B(a) contains the stops that allow us to leave an area a to reach another and to get to the internal stops of other areas. They are the red stops in the Figure 1.

Management of Candidate Areas

We have two definitions for the duration in public transport:

• An upper bound of the duration in public transit between two stops s and t ∈ S, with a departure time τ s is written d PT (s,t, τ s ).

• A lower bound of the duration in public transit between two stops s and t ∈ S is written d PT (s,t).

Goal directed techniques aim to guide the search toward the target by avoiding the scan of unnecessary stops. We apply the same techniques only to the areas of the graph G to avoid scanning connections that will only take us away from the target. By using upper and lower bounds on the duration between stops and more specifically between the areas.

Opening or not a candidate area will either add the connections of an area to the search space of the current journey computation if it is opened or discard them if the candidate area is not opened.

Given s,t ∈ S. A candidate area a is opened when computing a journey from s to t at time τ s if and only if

d PT (A(s), a) + d PT (a, A(t)) ≤ d PT (s,t, τ s ) (2)
Traversing an area cost 0 in time because the lower bounds are always computed using stops on the boundary. The opening of an area is schematized in Figure 2, let us assume the shortest path between points is the length of a straight line. The green and red arrows represent the lower bounds between the areas and the orange arrow represents the upper bound between and t. Two areas are depicted, the one in green will be opened because the sum of the length of the green arrow from the area containing s to the green area and the length of the green arrow from the green area to the area containing t (traversing an area cost 0) is less than the length of the arrow between s and t. However the red area will not be opened because the sum of the length of the red arrow from the area containing s to the red area and the length of the red arrow from the red area to the area containing t is greater than the length of the arrow between s and t.

Upper Bound on the Duration

Intuitively, the upper bound on the duration is found by quickly computing the size of the search span because a user isn't interested in journeys that arrive significantly later than the earliest arrival time.

We use the maximum arrival time τ t as defined in [START_REF] Dibbelt | Connection scan algorithm[END_REF], which is equal to

τ t = τ s + 2 • (x -τ s ) (3)
Where x is the earliest arrival time. This upper bound is advantageous because it is realistic e.g. consider a traveler departing at 8:00 AM and arriving at the earliest at 9:00 AM, then journeys arriving after 10:00 AM can be discarded because they are not of practical relevance.

The upper bound on the duration we use is

d PT (s,t, τ s ) = τ t -τ s (4)
That is the time span to satisfy a journey request. We can estimate d PT (s,t, τ s ) easily:

d PT (s,t, τ s ) = τ t -τ s = τ s + 2 • (x -τ s ) -τ s = 2 • (x -τ s ) (5) 
The only unknown is x which is the earliest arrival time and can be computed with a CSA in an extremely small amount of time.

Lower Bound on the Duration

Intuitively, the lower bound on the duration between two stops s and t is the minimum duration over all the journeys of the day going from the the boundary of the area containing s to the boundary of the area containing t.

The lower bounds associated with an area a s is computed by launching a PCSA, the profile variant of the CSA. The start stops are the boundary of the area, as if we could reach all of them instantly. Then, we iterate over every other area and take the minimum duration to reach the boundary of the area a t from the boundary of the area a s . Algorithm 1 is a possible implementation of these computations.

The lower bounds can be computed once and for all in a preprocessing step, note that this preprocessing step can be parallelized, because each PCSA is independent and we don't access the same variables in memory, meaning the preprocessing time can be reduced. And also because the lower bound is valid for an entire day because public transit vehicle can only be delayed and cannot arrive earlier than the time written in the schedules. 

GDCSA

GDCSA works in four phases, the first computes the upper bound, the second iterates over each area to only keep the ones that will be useful to the journey planning, the third will merge all the connections from the chosen areas and the last will launch a PRVCSA using the sub-set of connections.

Algorithm 2 GDCSA algorithm in pseudo-code.

function GDCSA(G, s,t, τ s ) L a ← empty list ub ← d PT (s,t, τ s )

We iterate over all areas of the graph for all a ∈ G.areas()

do if d PT (A(s), a) + d PT (a, A(t)) ≤ ub then L a .insert(a) end if end for L c ← empty list
We iterate over all opened areas of the graph for all a ∈ L a do L c .insertAll(connections(a)) end for

L c ← sort(L c )
We only use the connections of the opened areas return PRVCSA(G, s,t, τ s , L c ) end function

The GDCSA is described in the algorithm 2. We can see 4 phases: the first computes the upper bound (line 3), the second opens areas (from line 5 to line 9), the third retrieves the connections and sorts them (from line 12 to line 15) and the last launches a 4 criteria Pareto range query variant of the CSA using only the sorted connections of the opened areas (line 18). The first two parts (opening the areas and getting their connections) are easy to code and understand leading to an easy code implementation. We only need to precompute the lower bounds but we do so using a profile variant of the CSA which is also fast and easy to code.

Optimizations

Using the earliest arrival CSA instead of the lower bound Instead of using equation 2 to open a candidate area, we can use

d PT (s, r, τ s ) + d PT (r, A(t)) ≤ d PT (s,t, τ s ) (6)
by replacing the lower bound between the start stop and a candidate area with the earliest arrival time already computed by the CSA.

This will let us discard more candidate areas, allowing us to have a more fine-grained management of the candidate areas.

Optimizing the opening time All the connections of an area are not relevant, because the further away we are from the start of the journey s the lower the number of reachable connection there is. Therefore, for an area a the first connection that can be scanned by the PRVCSA has

c dep time ≥ τ s + d PT (A(s), a) (7) 
So we only keep connections that have a departure time greater than the first reachable connection. For example, consider a journey from New York to Washington with a departure time at 3:00 PM, then an area near Washington only needs to scan connections with a departure time greater than 5:30 PM because the lower bound between New York and Washington is 2 hours and 30 minutes. This leads to a lower number of scanned connections.

Optimizing the closing time The same optimization can be done but for the last reachable connection.

The last connection of an area a that can be scanned by the PRVCSA must satisfy

c dep time ≤ τ t -d PT (a, A(t)) (8) 
So we only keep connections that have a departure time lower than the last reachable connection.

Geographical Partitioning

The areas partition the graph. Thus, by geographically partitioning the graph, a passenger can go through an area using only its connections. We partition the graph using the inertial flow algorithm [START_REF] Schild | On balanced separators in road networks[END_REF], a simple and efficient algorithm that minimizes the boundary between the areas. This is done by sorting the list of stops using either latitude or longitude or both, choosing a certain percentage (lower than 50%) of stops at the start and end of the sorted list, which will be the sources and the sinks respectively. Then a flow algorithm is used, the min-cut gives the smallest boundary that divides the stops into two new areas. These steps are repeated for each new area, until a maximum depth or a minimum size of the area is reached.

For example, when partitioning New York City and New Jersey the algorithm will try to find the smallest boundary which would be the extremities of the bridges connecting New York City to the mainland.

Once the graph is partitioned, we precompute the lower bounds.

EXPERIMENTS

We evaluate the GDCSA and compare it to the 4 criteria Pareto range query variant of the CSA. Apart from measuring the run times, we also report the time needed for the preprocessing as well as other metrics related to the size of the search space (i.e. number of scanned connections, number of stops with at least one label). We also compare the run time of the GD-CSA to the run time of the 4 criteria Pareto range query variant of the RAPTOR.

Our test instance is based on the data of the public transit network of 3 cities (Paris, Berlin and Stockholm) and 2 country wide train networks (Germany and Switzerland), the data is openly available via a GTFS feed (https://transitfeeds.com/) which has been downloaded in October 2019. The details of the size of the instances are in table 1.

We can see that the city wide network range from big with Paris, to smaller with Stockholm, the goal of those metropolitan public transit network is to show the performances of the GDCSA on dense networks. Whereas the goal of the country wide train networks is to show the performances on sparse networks. The footpaths were given in the GTFS feed but the graph was not transitively closed, we then programmatically generated the missing ones.

We implemented all the algorithms in Java 8 and run them with OpenJDK 8. All experiments were conducted on a Intel Core i7-7700HQ processor with 16GiB of RAM.

In our evaluation, we ran for each variant of the algorithm the same set of 1000 queries generated randomly. The source and target stops are chosen uniformly at random. The departure time is picked uniformly at random within the day.

We ran a 4 criteria Pareto range query variant of the CSA (PRVCSA in the table 2), as well as the GDCSA, the 4 criteria are: maximizing the departure time, minimizing the arrival time, minimizing the number of transfers and minimizing the walked distance. We also ran a Pareto range query variant of the RAPTOR (PRVRAPTOR in the table 2) on the same set of queries.

The GDCSA uses an Inertial Flow partitioning with a maximum depth of 12.

The table 2 reports the average for the run time (query), the number of scanned connections, the number of updated stops (stops that have at least one label) and the total number of labels.

We can see that the run time of the GDCSA is 2.5 to 9 times faster than the PRVCSA. The run times for the smaller networks have a greater gain from the GD-CSA, whereas the bigger network the lower the gains are. Across all the networks we see that the number of updated stops (stops with at least one label), the number of scanned connections and the number of labels have considerably decreased when comparing the PRVCSA and the GDCSA.

As for the results of the PRVRAPTOR, we can see that the PRVCSA is 1.42 to 1.99 faster than the PRVRAPTOR, except on the Germany network where the PRVRAPTOR is faster due to the fact that the number of journeys is extremely low. This is in line with the results of (Bast et al., 2016a;[START_REF] Dibbelt | Connection scan algorithm[END_REF] where the same factors between PRVRAPTOR and PRVCSA are shown.

Note that the gains from the GDCSA are really good, one possible alternative would have been to use the same ideas on the PRVRAPTOR. Unfortunately there is no straightforward way to apply the same ideas of partitioning the stops of the graph for the PRVRAPTOR, as said in [START_REF] Delling | Faster transit routing by hyper partitioning[END_REF].

Precomputing the lower bound

Precomputing the lower bound is done by launching a profile variant of the CSA for each area.

We benchmark the partitioning and precomputing on 5 public transit networks, with a maximum depth for the Inertial Flow going from 8 to 14.

As we can see from table 3 and 4, the preprocessing time is quite short. It takes on average 30 minutes except for the biggest city-wide and country-wide network where the preprocessing is close to 3 hours. All those results are sequential, and the longest part of the preprocessing can be easily parallelized (the profile variant of the CSA for each area), meaning that a large gain is possible.

For the query times, we can see that a query with a maximum depth of 12 has the most gain compared to the preprocessing time and that with a maximum depth of 14 the gains are not worth the added preprocessing time.

Integration in an industrial product

The GDCSA is integrated in an industrial backend server for a smartphone app, with less than 1000 lines of code added. We achieve the same results as those found for the European networks, on a large and sparse instance of comparable size to the Germany instance we see that the GDCSA is 5 times faster than the PRVCSA. While also being a more complex problem, the departure and arrival stops can be GPS coordinates, mixing multiple modes of transportation (car, scooter, ...).

With a volume of only 1000 lines, this means that an external engineer could comprehend the code and then be able to modify it in less than a day, in my opinion.

CONCLUSION

In this article we presented an improvement of the CSA to compute Pareto range queries by introducing additional upper and lower bounds that guide the search by safely discarding areas that are not needed during the search. The GDCSA uses preprocessed lower bounds between each areas, and upper bounds that are computed during the journey planning. It also uses the PRVCSA as a center-piece which receives as an input the sorted list of connections from the opened areas. This leads to a simple implementation, with an already working Pareto range query variant of the CSA, the only code needed is the earliest arrival and the profile variants of the CSA. Furthermore the algorithm is easily extensible, because the addition or removal of a criterion is made simple by the fact that the upper and lower bound computation are not affected by the Pareto criteria.

Our experiments on large realistic metropolitan and country-wide public transit network have shown that the GDCSA is up to 9 times faster than the PRVCSA when computing 4 criteria Pareto range queries. An interactive use can be considered for most networks with a response time near or under 0,5 second, even if the Paris network is still too slow some headway has been made.

For future works, we would be interested in using other graph partitioning. One other interesting direction to look in would be the addition of real time information (delays, strikes, major events, ...) in the public transit journey computation. And lastly, we could look at the computation of the lower bounds and try to make them closer to the optimal by adding a temporal aspect with the computation of the lower bound for every 4 hour span of a day.

•

  A connection is a vehicle going from one stop to another with no intermediate stops, it is a sub-part of a trip. It is a quintuple (c dep stop , c arr stop , c dep time , c arr time , c trip ) whose attributes are the departure stop, the arrival stop, the departure time, the arrival time and the trip of c respectively. Each connection must respect two conditions: c dep stop = c arr stop and c dep time < c arr time . All the connections of a trip form a set. This set can be ordered in a sequence c 1 , c 2 , . . . , c k such that c i arr stop = c i+1 dep stop and c i arr time < c i+1 dep time for all i. • The footpaths are used to model transfers, in other words how to get from one vehicle to another. They are neither trips, nor connections. Formally a footpath f is a triple ( f dep stop , f arr stop , f dur ). Going from a connection c to a connection c with c trip = c trip is possible if and only if: -A footpath from c arr stop to c dep stop exists c dep timec arr time > f dur + s change

Figure 1 :

 1 Figure 1: Example of an area.

Figure 2 :

 2 Figure 2: Example of an area opening.

  Algorithm 1 Lower bound algorithm in pseudo-code.

	function LOWER BOUND(G)
	dur ← [G.areas()][G.areas()]
	Creation of a duration matrix
	for all a s ∈ G.areas() do
	r ← PCSA(B(a s ))
	We compute a PCSA using the boundary
	as starting points
	for all a t ∈ G.areas() do
	min dur ← +∞
	Minimum duration to reach a t from a s
	for all b ∈ B(a t ) do
	min dur ← min(min dur, r[b])
	end for
	dur[a s ][a t ] ← min dur
	end for
	end for
	return dur
	end function

Table 1 :

 1 Instance size.

	Network	Stops Connections Lines	Trips Footpaths
	Paris	44534	3209401 1864 150963	502291
	Berlin	28651	1379755 1296	63569	62456
	Stockholm	14258	703326	664	34799	22138
	Germany	74398	3601420 3599 168024	599284
	Switzerland 29844	2599675 5645 248826	27202

Table 2 :

 2 Details of the GDCSA and the variants of the CSA on metropolitan and country wide public transit networks.

	# Scanned # Updated

Table 3 :

 3 Performance of the precomputing on metropolitan public transit networks.

		Paris		Berlin		Stockholm	
	Depth Query (ms) Prepro. (min) Query (ms) Prepro. (min) Query (ms) Prepro. (min)
	8	3849	∼ 33	450	∼ 4	103	∼ 2
	9	3686	∼ 39	408	∼ 8	102	∼ 3
	10	3364	∼ 61	379	∼ 13	92	∼ 5
	11	3133	∼ 96	357	∼ 15	91	∼ 8
	12	2981	∼ 172	338	∼ 20	89	∼ 12
	13	2953	∼ 315	323	∼ 30	85	∼ 14
	14	2884	∼ 413	317	∼ 43	88	∼ 16

Table 4 :

 4 Performance of the precomputing on country-sized public transit networks.

		Germany		Switzerland	
	Depth Query (ms) Prepro. (min) Query (ms) Prepro. (min))
	8	898	∼ 26	238	∼ 12
	9	843	∼ 43	217	∼ 16
	10	703	∼ 73	195	∼ 27
	11	598	∼ 120	187	∼ 29
	12	529	∼ 178	147	∼ 43
	13	513	∼ 240	132	∼ 58
	14	505	∼ 301	129	∼ 70
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