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Abstract

ROS (superoxide and oxygen peroxide in this paper) play a dual role as signalling molecules and strong oxidizing agents 

leading to oxidative stress. Their production mainly occurs in mitochondria although they may have other locations (such as 

NADPH oxidase in particular cell types). Mitochondrial ROS production depends in an interweaving way upon many factors 

such as the membrane potential, the cell type and the respiratory substrates. Moreover, it is experimentally diicult to quan-

titatively assess the contribution of each potential site in the respiratory chain. To overcome these diiculties, mathematical 

models have been developed with diferent degrees of complexity in order to analyse diferent physiological questions ranging 

from a simple reproduction/simulation of experimental results to a detailed model of the possible mechanisms leading to 

ROS production. Here, we analyse experimental results concerning ROS production including results still under discussion. 

We then critically review the three models of ROS production in the whole respiratory chain available in the literature and 

propose some direction for future modelling work.

Keywords ROS · Superoxide · Oxygen peroxide · Respiratory chain · Modelling

Introduction

Accumulating evidence has suggested that reactive oxygen 

species (ROS), such as superoxide, hydrogen peroxide and 

other reactive forms of oxygen, play an important role in a 

broad range of cellular signalling processes [1–4]. However, 

at high concentrations, ROS damage proteins, lipid mem-

branes, DNA and triggers PTP opening [5, 6] generating 

what is called oxidative stress. Oxidative stress is deined as 

a perturbation in the balance between the production of reac-

tive oxygen species (free radicals) and antioxidant defences 

and contributes to pathologies such as cancer, ischemic 

cardiac injury and stroke, neurodegenerative diseases and 

other age-related degenerative conditions [7, 8]. Given their 

deleterious efects, ROS production is usually inely tuned 

by ROS-scavenging systems.

The mitochondrial electron transport chain is one of the 

major providers of ROS in most cells. In C2C12 myoblasts, 

Wong et al. [9] show that 45% of ROS comes from mito-

chondria and 40% from NADPH oxidase. Work by many 

investigators (see [10] for a review) has largely established 

that complexes I and III of the mitochondrial respiratory 

chain are the major sources of reactive oxygen species 

(ROS), in the form of superoxide (O2
·−) and hydrogen per-

oxide  H2O2. However, despite intensive biochemical and 

biophysical studies of electron and proton transfer in the 

respiratory chain (for reviews, see [9, 11–15]) many ques-

tions about the mechanisms of O2
·− generation, particularly 

in physiological conditions, remain unsolved.

The production of superoxide/hydrogen peroxide is dif-

icult to assess, particularly their site of production and their 

dependence upon the experimental conditions (respiratory 

substrate, inhibitors). Furthermore, when working with the 

whole respiratory chain in isolated mitochondria or in whole 

cells, it is diicult to assess the relative contribution of each 

separate site and to take into account contribution of the 

scavenging systems. This is why theoretical models of ROS 

generation can be useful to facilitate the quantitative analy-

sis of the features controlling mitochondrial O2
·− produc-

tion and help in the elucidation of experimental results and 

eventually predict new discriminant experimental protocols. 

Several theoretical models of ROS production by complex 

I and III exist [16–21] and also one involving complex II 
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[22]. However, we found only three theoretical models in 

the literature aiming at describing ROS production by the 

whole respiratory chain under diferent conditions. First, 

we will describe the main experimental results concerning 

ROS production for which a large consensus exists, and that 

theoretical models should reproduce, as well as experimental 

results leading to contradictory hypotheses, between which 

theoretical models might help to decide. We will emphasize 

the main points that a theoretical model must explain/simu-

late and inally we will proceed to the critical description of 

the three theoretical models.

Experimental data: the diferent sites of ROS 
production and the role of inhibitors

Using speciic inhibitors of diferent sites of ROS production 

(superoxide and/or hydrogen peroxide), particularly inhibi-

tors that do not prevent electron low and varying the respira-

tory substrates, the group of Martin Brand has inely dis-

sected the diferent sites of mitochondrial ROS production 

[9, 10]. They identiied eleven distinct sites associated with 

respiratory complexes or enzymes and they gave an estima-

tion of the maximal ROS production lux for each site. If 

we limit our description to the respiratory chain complexes 

(Fig. 1), the main producers are: the Flavin site of complex 

I  (IF), the ubiquinone reducing site of complex I  (IQ), the 

Flavin site of complex II  (IIF) and the ubiquinone oxidizing 

site of complex III  (IIIQo), (see Fig. 1 in [10] and Fig. 1b in 

[23]). Site  IIIQo has, at least, twice the capacity of any other 

site (see Fig. 2 in [10]).

ROS production by complex I

Site  IF has long been proposed as a site of superoxide pro-

duction [24, 25]. However, Brand et al. [10, 26] show that 

much of the ROS production previously ascribed to site 

 IF truly arises from other dehydrogenases, particularly 

sites  OF (2-oxoglutarate dehydrogenase) and  PF (pyruvate 

dehydrogenase).

Site  IQ during reverse electron transport (RET), the 

majority of ROS arise from site  IQ. In RET (Fig. 2a), elec-

trons are forced back into complex I by the high  QH2/Q 

ratio and the high proton motive force generated by electron 

low through complexes III and IV. In this process, the elec-

tron low is driven backwards by the consumption of pro-

ton motive force. Thus, production of ROS at site  IQ during 

reverse electron transport has a strong dependence on proton 

motive force [27–32]. However, several authors showed that 

it is much more sensitive to the magnitude of the pH gradi-

ent than of the membrane potential, even at constant proton 

motive force [30, 31, 33]. These results suggest that site  IQ 

is linked to an electroneutral proton-translocating step in 

the proton-pumping mechanism of complex I [34, 35]. The 

localization at site  IQ is conirmed by the inhibition of ROS 

production at this site by rotenone. Then addition of anti-

mycin stimulates ROS production at site  IIIQo (Figs. 2b, 4).

ROS production by complex II

The Flavin site  IIF (Fig. 3) is supposed to be the site of ROS 

production in complex II and displays a similar maximal 

capacity of ROS production as site  IQ [10]. However, Grive-

nnikova et al. [22] claim that their data are indicative of the 

[3Fe–4S] centre, close to the ubiquinone reduction site, as 

the site of superoxide generation in this complex. Wild-type 

complex II makes little contribution to ROS production in 

isolated mammalian mitochondria under normal conditions 

[36]. However, mutations in this complex can lead to abun-

dant ROS production and cause pathologies [37]. ROS pro-

duction by the Flavin site of complex II, site  IIF, in isolated 

mitochondria [23] requires two conditions: there must be a 

source of electrons to reduce the Flavin (succinate), and the 

site must be open, probably to allow access of oxygen [10].

This behaviour results in a bell-shaped response of 

ROS production to succinate concentration, with a maxi-

mum in the region of the KM of complex II for succinate 

Fig. 1  Possible sites of ROS 

production (red arrows) in 

respiratory chain. In the text, 

the site Qo and Qi of complex 

III are called  IIIQo and  IIIQi. 

All ROS are generated in the 

matrix except for ROS in IIIQo 

which are partly extruded in 

the IMS. FET forward electron 

transport (with NADH), RET 

reverse electron transport (with 

succinate)
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(100–500 µM) [22, 23, 38]. The capacity for ROS produc-

tion at site  IIF can be measured in two particular conditions 

illustrated in Fig. 3 in the presence of inhibitors of com-

plexes I and III [10]. In rat skeletal muscle mitochondria, 

the maximum capacity for ROS production of site  IIF is very 

high, of the same order as site  IQ (Fig. 2 in [10]).

ROS production by complex III (bc1 complex) at site 
 IIIQo

Complex III (Fig. 4) at site Qo  (IIIQO site) has the highest 

capacity of ROS production (Fig. 2 in [10]). It is com-

monly accepted that the complex III ROS production is 

due to the formation during the catalytic process of an 

instable semiquinone SQ in Qo. However, the mechanism 

of a semiquinone formation in Qo is still the matter of con-

troversy, which has to be taken into account for modelling. 

It is widely accepted that the modiied Q-cycle mechanism 

proposed by Mitchell [39, 40] and subsequently reined 

by Crofts [41, 42] correctly describes the  bc1 complex 

operation. It is based on a bifurcation of the two electrons 

coming from the  QH2 molecule bound at the Qo site. 

The irst electron is transferred to the iron sulphur pro-

tein (ISP) and the second to the lower potential heme  bL. 

The electron on heme  bL moves within the cytochrome 

b to reduce the higher potential heme  bH, which in turn 

reduces ubiquinone (Q) at a second ubiquinone binding 

site Qi (Fig. 4). The transfer of an electron from quinol 

to cytochrome c is a complex process involving: (i) a 

irst electron transfer from quinol bound at the catalytic 

Qo site to a [2Fe–2S] cluster situated in the head of the 

Rieske iron sulphur protein (ISP) anchored in the inner 

mitochondrial membrane (ii) a large-scale movement of 

the head of reduced ISP towards cytochrome  c1, (iii) the 

reduction of cytochrome  c1 and eventually, (iv) the reduc-

tion of cytochrome c by cytochrome  c1 and the return of 

ISP head to site Qo. How the steps following the transfer 

of the irst electron on ISP interweave with the transfer of 

the second electron on  bL then  bH, is still debated. Three 

main scenarios (Fig. 5) have been proposed which may 

have implications for the semiquinone formation/lifetime 

and its reaction with oxygen:
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a. The ISP leaves the Qo site to reduce  c1 before the 

second electron jumps on  bL and then  bH [43, 44] (Fig. 5a).

b. The ISP leaves the Qo site to reduce  c1 after the sec-

ond electron transfers from  bL to  bH [45, 46] (Fig. 5b).

c. A bypass/short-circuit mechanism can occur when 

reduced  bL transfers its electron not on  bH but in the reverse 

direction on a quinone in Qo, which can be either the product 

of the reaction or of a newly bound quinone [47–49] (Fig. 5c).

Summary of the main points to consider 
in a mathematical model of mitochondrial ROS 
generation

∙ The main site of ROS production by the respiratory 

chain are  IIIQO,  IQ and  IF with a decreased maximum capac-

ity in this order.

∙ In  IIIQO and  IQ, ROS are produced by the semi-

quinone  Q·−. The ROS production in  IF is through the fully 

reduced  FMNH− species.

∙ All ROS species by respiratory chain are pro-

duced in the matrix except for  IIIQO site, which produces 

ROS both in the matrix and in the intermembrane space.

∙ ROS production can also occur in the matrix at 

the FMN site of complex II  (IIF) at low succinate con-

centration around 100–500 µM, with a maximal capacity 

analogous to the one of  IQ.

∙ The relative contributions of distinct mitochon-

drial sites depend on many factors: the substrates being 

oxidized, the energetic demands of the cell, the transmem-

brane potential, the amount of  QH2 pool and ultimately the 

cell type.
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Mathematical models of ROS production 
through the whole respiratory chain

Models of the group of Aon and Cortassa

In [50], Kembro et al. extended previous mathematical mod-

els of the mitochondrial respiratory chain [51, 52] to account 

for ROS production. Their ROS production model is purely 

phenomenological, with a function called ‘shunt’ which 

is a small percentage of the rate of respiration (VO2) and 

depends on the state 3 or 4 of the respiration rate (Table 2 

in [50]). In addition, the model involves the important con-

tribution of ROS scavenging systems to study the balance 

between ROS production and scavenging in diferent redox 

environments. Model simulations were compared with 

experiments from isolated heart mitochondria reported in 

the same paper. However, in their conclusions the authors 

note that their model “is unable to simulate the increase in 

ROS levels when mitochondria evolve into state 4 respira-

tion” [50].

Shortly after, the same authors published a new model 

[53] which is, above all, a detailed respiratory chain model 

including variables describing the concentrations of ubiqui-

none, ubiquinol, and ubisemiquinone, along with the oxida-

tion states of cytochrome c and the redox centres in complex 

III, i.e., the high- and low-potential b-hemes  (bH and  bL) 

and cytochrome  c1. They use the forward and reverse rate 

constants for electron transfer of complexes II–IV from the 

model of Demin et al. [54, 55]. A model of complex I was 

based on the non‐equilibrium thermodynamic description 

from Magnus and Keizer’s mitochondrial model [56]. 

First, the authors it the experimental results in which the 

variables such as  bL and  bH reduction states [57, 58] are 

measured because these variables play an important role in 

semiquinone concentration at the Qo site of complex III. The 

production of ROS in complex I is supposed to occur from 

 FMNH− according to Pryde and Hirst [59], although the 

authors test the possibility of ROS production in site  IQ (but 

in the absence of ROS production by  FMNH−); they claim 

that they obtain similar results (not shown) and conclude 

that “Given that the modelling results for the two diferent 

hypotheses were identical, this modelling experiment was 

unable to distinguish between the two mechanisms” [53]. 

They also reproduce the pH dependence of ROS production 

by complex I observed in [33] (Fig. 5 in [53]). The ROS 

production from complex III is modelled from Demin and 

involves the semiquinone in Qo, a highly reduced quinone 

pool and a high proton motive force [54, 55]. The authors 

were aware of other hypotheses [47, 60] but did not take 

them into account in their model.

In addition, they added to their model of ROS production 

a previous minimal model of ROS scavenging [61], which 

allowed them to draw a U-shaped dependence of the ROS 

balance between production and scavenging as a function of 

mitochondrial redox environment (sum of redox potentials 

for NADH, NADPH and GSH weighted by their respec-

tive concentrations [62]): the measured ROS production 

is high in reducing environment which favours ROS pro-

duction which cannot be destroyed at limited scavenging 

mechanisms, but are also high in oxidizing environment, 
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as, despite a lower ROS production, the scavenging mecha-

nisms are also less eicient (less regenerated in oxidizing 

environment). The intermediate environment corresponds 

to a minimum in the ROS production.

More recently, the same authors proposed an experi-

mental and theoretical approach to assess the efects of 

β-oxidation in the heart on redox and energy metabolism 

[63]. They described the antagonist efects of fatty acids as 

respiratory substrates but also as uncouplers on the respira-

tion rate (VO2) and on the ROS production rate in relation-

ship with the level of the antioxidant system.

Markevich’s model [64]

In order to study the mitochondrial production of ROS in 

diferent conditions of respiratory substrates and membrane 

potential (Δψ), Markevich and Hoek developed an elabo-

rate computational model of the whole respiratory chain. 

Complex II, modelled by only one simple rate equation, is 

not taken into account in their work for ROS production. 

Electron transfers inside complex I and III are detailed with 

several sites of ROS production. In accordance with Kuss-

maul and Hirst [24], they proposed that O2
·− is formed by 

the transfer of one electron from the fully reduced Flavin 

 FMNH− to  O2. In addition, they assumed that the semiqui-

none  Q·− in site  IQ is a second site of O2
·− formation in Com-

plex I. Regarding complex III, they considered, as generally 

accepted, that the unstable semiquinone  Q·− in site Qo is 

the site of O2
·− formation. According to the various mecha-

nisms of electron transfer that have been proposed in Qo 

(see above), Markevich and Hoek compare three variations 

of their model. The irst one considers that O2
·− formation 

occurs at the same time as the reduced Rieske protein (Iron 

Sulphur Protein or ISP) leaves the site  Qo to transfer its elec-

tron to  c1 (‘early dissociation of ISP’, Fig. 5a) i.e. before the 

second electron is transferred to the heme  bL [43, 65]. The 

second variation suggests that the Rieske protein leaves the 

Qo site after the transfer of the second electron to  bL and 

then to  bH (‘late dissociation of ISP’, Fig. 5b) [46]. In a third 

variation proposed by Dröse and Brandt [47] they considered 

that the oxidized quinone can leave the Qo site before ISP 

and before  bL transfers its electron to  bH. This may allow 

the return of the reduced  bL electron on an oxidized Q mol-

ecule (bypass/short-circuit mechanism also proposed in [48, 

49]) by the reversion of the reactions to form a semiquinone 

which can react with  O2 and explain the activating role of the 

oxidized quinone in O2
·− formation by complex III (Fig. 5c).

The values of the kinetic parameters of superoxide pro-

duction were chosen such that the computer-simulated rates 

of ROS generation were close to those observed in liver 

mitochondria [66, 67].

Their model is detailed enough to dissect ROS production 

at each site in diferent experimental conditions, particularly 

as a function of the transmembrane potential Δψ with dif-

ferent respiratory substrates (NADH alone, succinate alone, 

 NADH+ succinate and  NADH+ Rotenone (ROT), Fig. 3 in 

[64]). The diference in ROS production when pH or Δψ 

were changed is noteworthy (Fig. 4 in [64]). Furthermore, 

comparing the diferent variations of electron transfer in site 

Qo of complex III, they proposed that the scenario with ‘late 

dissociation of ISP’ is more likely. Finally, their third vari-

ation of the model (with ‘late dissociation of ISP’ and with 

binding of Q when  cytbL is reduced) qualitatively repro-

duced the results of Dröse and Brand [47] and of Quinlan 

et al. [19] (see also Fig. 12 in [64]). They dissected this 

behaviour by analysing the amount of individual species, 

oxidized Q, reduced  bL and the b−
L.Q.ISP complex (Fig. 12B 

in [64]). Their results stressed the necessity of a detailed 

modelling in the multifaceted ield of ROS production by 

the respiratory chain. Furthermore Markevich and Hoek 

showed another advantage of modelling, i.e. generating 

testable hypotheses, some of them were conirmed later on, 

such as the ROS production by RET in  IQ [10]. Incidentally, 

they ofer a careful model of the calculation of the diferent 

volumes and concentrations of the diferent mitochondrial 

compartments (membrane, matrix, etc.). In fact, this very 

detailed model is not far from a complete model of the res-

piratory chain, i.e. the expression of VO2 as a function of 

diferent substrates (Fig. 3E in their paper) and can certainly 

be used to test other hypotheses.

Bazil and Vinnakota’s model [68]

Bazil et al. [68] integrated their previous models of super-

oxide and hydrogen peroxide production by complexes I 

[20] and III [69] into an updated Beard’s model of oxidative 

phosphorylation [70] that can simulate both the respiratory 

dynamics associated with ATP production and the kinetics 

of ROS production in a single integrated system. The authors 

distinguished hydrogen peroxide and superoxide generation.

The authors showed that the kinetic control is distributed 

and depends upon the experimental conditions as experi-

mentally reported by many authors [71–73] and they itted 

experimental results obtained using isolated rat heart mito-

chondria at low (1 mM) and high (5 mM) Pi concentrations.

They showed that ROS production depends indirectly on 

Pi concentration through changes in pH and Δψ.

Fig. 5  ISP movement, transfer of the second electron and ROS for-

mation. The dotted red arrows indicate the possible formation of O2
·− 

from the semiquinone SQ in Qo a ‘early dissociation hypothesis’: 

O2
·− formation can occur in the same time as reduced ISP leaves Qo 

site, i.e. before the second electron is transferred to heme  bL.; b ‘late 

dissociation hypothesis’: reduced ISP leaves Qo site after the second 

electron is transferred from  bL to  bH and c return of the electron of 

reduced  bL on a Q molecule in Qo forming the semiquinone which 

can react with oxygen
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Model simulations predicted that complex III is responsi-

ble for more ROS production during physiological working 

conditions relative to complex I in the condition of forward 

electron transport, where electrons are transferred along the 

Electron Transfer Chain (ETC) from NADH and succinate 

to  O2. However, simulating ischemia/reperfusion mecha-

nism, they showed that an accumulation of succinate lead-

ing to a highly reduced quinone pool can explain a burst of 

ROS generated in complex I corroborating the experimental 

results of Chouchani et al. [8] (who also used a mathemati-

cal model of ROS production in complex I [74]). Of note 

the authors explored the bistability behaviour reported in 

[16–18] characterized by diferent rates of ROS production 

in the same conditions. This is mainly due to their model of 

ROS production by complex III [69] as emphasized in sev-

eral complex III models aimed to simulate this phenomenon 

[16–18, 21].

Conclusion and future prospective

We have analysed in this review the three models currently 

available for ROS production by the whole respiratory chain. 

Two of them focused on ROS production in heart [50, 53, 

68] in which ROS production during ischemia–reperfusion 

is a medical concern. The third one by Markevich and Hoek 

[64] estimated parameters from liver mitochondria but is in 

fact rather general. It is diicult to compare these models 

because their aims were diferent. The models of Aon and 

Cortassa and of Bazil and Vinnakota tried to simulate in the 

simplest way possible the experimental results in the heart. 

Furthermore, Aon and Cortassa studied the physiological 

interplay of the scavenging mechanisms with ROS produc-

tion. On the contrary, the Markevich and Hoek model [64] 

aimed at understanding the intimate mechanisms of ROS 

production in diferent conditions. Their model is more 

detailed than the two others and analysing the consequences 

of diferent scenarios for the complex reaction of complex 

III, proposed a mechanism of the controversial mode of 

bifurcation of electrons in the Qo site of  bc1 complex. This 

illustrates two purposes of modelling, either to derive a phe-

nomenological simple model which can be used to study 

physiological question such as the balance between ROS 

production and scavenging in diferent redox situations or 

to test diferent mechanistic hypotheses of ROS production 

as done by Markevich and Hoek [64]. However, even in this 

latter case some simpliications were made. For instance, 

they bring together almost all FeS centres redox reactions 

of complex I in one reaction and concerning complex III, 

they assume the release of reduced ISP from Qo in the same 

time as the second electron transfer on  bL, which is far from 

acknowledged.

Another hypothesis, made in all models, is the localiza-

tion of ROS production. A general consensus is emerging 

that  IF,  IQ,  IIF and  IIIQo are the main sites of ROS produc-

tion in the respiratory chain and there are good evalua-

tions of their maximal capacities [10]. All models take 

these sites as ROS production sites, excluding site  IIF. 

In addition, some indications exist of the possibility of 

ROS production at other sites. In principle, any reduced 

redox centre with midpoint potential close to that of the 

 O2/O2
·− couple (− 160 mV), should be able to produce 

O2
·− when  O2 is (spatially) close enough to accept an elec-

tron. The respiratory chain complexes contain iron–sul-

phur centres and hemes which are, in principle, able to 

transfer their electrons to  O2. The limiting factor will be 

the distance, the  O2 molecule being at the closest at the 

surface of the protein. This is perhaps the reason why the 

binding sites, opened on the external medium and allow-

ing  O2 to difuse near the redox active site, are favoured 

for ROS generation. Although left aside by a number of 

experimenters, there have been published experiments pro-

posing such redox centres as producing superoxide. For 

complex I, the iron–sulphur centre  N2 which is close to the 

quinone binding site has been proposed in [75], as well as 

the iron–sulphur centre N1a which is not very far from the 

FMN in [76]. The  Fe3S4 iron–sulphur centre of complex 

II which is close to the quinone binding site was proposed 

as a superoxide producing site [22]. Similarly, it has been 

proposed that reduced heme  bL is able to generate ROS in 

complex III [77]. One way of approaching this problem 

without any a priori would be to calculate the probability 

of reacting with the oxygen of all the redox centres of the 

respiratory complexes by using the equations developed 

by Moser and Dutton [78], that considers the distance and 

the diference in redox potential between the redox centres. 

Such a stochastic treatment takes into account all possible 

reactions (i.e. the reactions with a reasonable probability) 

and all the diferent oxidized/reduced species, but only 

when they are produced contrary to what occurs using 

diferential equations (see for instance [79, 80]).

Of note, all models listed above are studied at steady-

state. Let us also emphasize that experimental studies of 

transient phases of ROS production might be more inform-

ative on the intimate mechanisms than the simple consid-

eration of steady-states.

To sum up, it appears that a complete model of ROS 

production by the respiratory chain still remains to be 

developed by incorporating at least the generation of ROS 

by the dehydrogenases of the Krebs cycle (including the 

 IIF site of the succinate dehydrogenase) in a deterministic 

(diferential equations) or/and a stochastic approach.
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