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Abstract9

Program semantics is traditionally concerned with program equivalence. However, in fields like10

approximate, incremental and probabilistic computation, it is often useful to describe to which11

extent two programs behave in a similar, although non equivalent way. This has motivated the12

study of program (pseudo)metrics, which have found widespread applications, e.g. in differential13

privacy. In this paper we show that the standard metric on real numbers can be lifted to higher-order14

types in a novel way, yielding a metric semantics of the simply typed lambda-calculus in which15

types are interpreted as quantale-valued partial metric spaces. Using such metrics we define a class16

of higher-order denotational models, called diameter space models, that provide a quantitative17

semantics of approximate program transformations. Noticeably, the distances between objects of18

higher-types are elements of functional, thus non-numerical, quantales. This allows us to model19

contextual reasoning about arbitrary functions, thus deviating from classic metric semantics.20
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1 Introduction27

In program semantics one is usually interested in capturing notions of behavioral equivalence28

between programs. However, in several fields like approximate [34], incremental [10, 2] and29

probabilistic [13] computation, it is often more useful to be able to describe to which extent30

two programs behave in a similar, although non equivalent way, so that one can measure the31

change in the result produced by replacing one program by the other one.32

This idea has motivated much literature on program (pseudo)metrics [4, 41, 5, 19, 6, 13, 11,33

14, 21], that is, on semantics in which types are endowed with a notion of distance measuring34

the differences in their behaviors. This approach has found widespread applications, for35

example in differential privacy [35, 3, 7], where one is interested in measuring the sensitivity of36

a program, i.e. its capacity to amplify changes in its inputs, and in the study of probabilistic37

processes [16, 43, 11, 42].38

Recent literature [44, 32] has highlighted the importance of contextuality to reason about39

program similarity: many common situations require to measure the error produced by a40

transformation of the form C[t]  C[u], which replaces a program t by u within a context41

C[ ], as a function of the mismatch between t and u and of the sensitivity of the context C[ ]42

itself. For instance, the error produced by replacing the program λx. sin(x) by the identity43

function λx.x in a given context C will be highly sensitive to how close to 0 these functions are44
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23:2 A Partial Metric Semantics of Higher-Order Programs

evaluated in C. Similar cases of contextual reasoning can be found in many areas of computer45

science: for example in techniques from numerical analysis (e.g. the Gauss-Newton method),46

in which a computationally intensive function is replaced by its Taylor’s expansion around47

some given point, or in approximate computing techniques like loop perforation [38], in which48

a compiler can be asked to skip a certain number of iterations of a loop in a program.49

The Problem of Coupling Program Metrics with Higher-Order Types While several50

frameworks for contextual reasoning have been developed in recent years [35, 20, 5, 44, 32],51

these approaches suggest that describing program similarity for a fully higher-order language52

in terms of program metrics still constitutes a major challenge.53

In particular, when considering higher-order languages with a type Real for real numbers,54

it is not clear how to lift the standard metric on Real to higher-order types, e.g. to Real→ Real,55

so that the distances between higher-order programs are measured in a contextual way.56

A standard solution is to take the sup-distance, that is, to let, for f, g : Real → Real,57

d(f, g) = sup{d(f(r), g(r)) | r ∈ Real}. This solution works well in models in which programs58

are interpreted as non-expansive or Lipschitz-continuous maps [25, 5]. However such models59

are not cartesian-closed1, so they do not account for the simply-typed lambda-calculus60

in its full generality, but only for linear or sub-exponential variations of it (such as Fuzz61

[35, 20, 5]). Also, it has been shown [13] that in a probabilistic setting the non-linearity of62

higher-order programs has the effect of trivialising metrics, that is, of forcing distances to be63

either 0 or 1, hence collapsing program distances onto usual notions of program equivalence.64

Most importantly, even if one restricts to a sub-exponential language, the sup-distance is65

inadequate to account for contextual transformations as the replacement of λx. sin(x) by66

λx.x around 0, as the sup-distance between these two programs is infinite (see Fig. 3).67

On the other side of the coin, other approaches like [44, 32] are fully contextual and68

higher-order, but provide, at best, only weak approximations of a standard notion of metric.69

Nonetheless, these approaches introduce the idea, which we retain here, that program70

differences must be taken as being themselves some kind of programs, relating errors in input71

with errors in output, and that accordingly, programs should be split in two different classes:72

exact programs, computing mappings from well-defined inputs to well-defined outputs, and73

approximate programs, mapping errors in the input to errors in the output.74

Diameter Spaces In this paper we introduce a new semantic framework to reason about75

program similarity and approximate program transformations based on a class of higher-order76

denotational models that we call diameter space models. Compared to existing higher-order77

frameworks, the main novelty of these models is that program similarities are measured by78

associating each simple type with a generalized partial metric space, yielding a lifting of the79

standard metric on Real to higher-order types.80

Generalized partial metric spaces are a well-investigated class of metric spaces that has81

been widely applied in program semantics [8, 9, 33, 37, 36, 26, 23]. Such spaces generalize82

standard metric spaces in that distances need not be real numbers, but can be functions or83

any other type of object that lives in a suitable quantale [25], and self-distances d(x, x) need84

not be 0 (which leads to a stronger triangular inequality: d(x, y) + d(z, z) ≤ d(x, z) + d(z, y)).85

In our models a higher-order type A is interpreted as a 4-tuple (|A|, JAK, LAM, δA) called86

a diameter space, where |A| is a set of exact values, JAK ⊂ P(|A|) is a complete lattice of87

1 In fact, cartesian closed categories of metric spaces and non-expansive functions do exist [19, 12], but,
to our knowledge, none of these categories contains the real numbers with the standard metric.
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xx− ε x+ ε

f(x)
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δ1

(a) In differential logical relations the dis-
tance between two functions f, g : R → R,
computed at (x, ε) is the maximum between
δ1 = max{d(f(x), g(y)); y ∈ [x−ε, x+ε]} and
δ2 = max{d(g(x), f(y)); y ∈ [x− ε, x+ ε]}.

xx− ε x+ ε

f(x)

g(x)
h(x)

f

g
h

d(f, g)

d(g, h)
δ = d(g, g)

d(f, h)

(b) The distance arising from differential log-
ical relations is not a partial metric: the ex-
ample above shows that d(f, h) > d(f, g) +
d(g, h)− d(g, g) (with all distances computed
at (x, ε)).

Figure 1 Differential logical relations do not yield partial metrics.

approximate values, LAM is a quantale, and δA : JAK → LAM is a function, called diameter,88

which provides a quantitative measure of approximate values. The map δA generalizes some89

properties of the diameter function of the standard metric on real numbers. In particular, just90

like the distance between two real numbers can be described as the diameter of the smallest91

interval containing them, the map δA yields a generalized partial metric dA : |A| × |A| → LAM92

in which the distance between two exact values of A is measured as the diameter of the93

smallest approximate value containing them, i.e. dA(x, y) = δA(x ∨ y).94

Measuring Distances between Programs of Functional Type A primary source of inspira-95

tion for our approach is the recent work by Dal Lago, Gavazzo and Yoshimizu on differential96

logical relations [32]. This is a semantical framework for higher-order languages in which97

a type is interpreted as a set X endowed with a kind of metric structure expressed by a98

ternary relation ρ ⊆ X ×Q×X, where Q is an arbitrary quantale. To our knowledge, this99

is the first place were the idea of varying the quantales in which distances are measured is100

introduced as a key ingredient to obtain a cartesian closed category.101

However, although such a relation ρ induces a distance function dρ(x, y) = sup{ε |102

ρ(x, ε, y)}, this function is not a (partial) metric. We can show this fact with a simple103

example: in this model the distance between two programs f, g : Real → Real is taken104

in the quantale of functions from R × R∞+ to R∞+ : intuitively, d(f, g) associates a closed105

interval [x− ε, x+ ε] (corresponding to the pair (x, ε)) with the smallest distance δ such that106

[f(x)− δ, f(x) + δ] and [g(x)− δ, g(x) + δ] both contain the images of [x− ε, x+ ε] through107

g and f respectively (see Fig. 1a). Then, as shown in Fig. 1b, by letting δ = d(g, g)(x, ε),108

we have that d(g, g) sends the interval I = [x− ε, x+ ε] onto the interval [g(x)− δ, g(x) + δ],109

which has diameter 2δ, while the image of I has diameter δ, making the triangular law of110

partial metrics fail.111

By contrast, in our model, the distance between two programs f, g : Real→ Real lives in112

the quantale of monotone maps from approximate values of Real (i.e. closed intervals) to113

positive reals. More precisely, this distance is the function that maps a closed interval a to114

the diameter of the smallest interval containing both f(a) and g(a). This notion of distance115

does satisfy all the axioms of a partial metric, as illustrated in Fig. 2. Observe that we no116

CVIT 2016
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x− ε x+ ε

f

g
h

d(f, g)

d(g, h) d(g, g)

d(f, h)

Figure 2 Our new metric is a partial met-
ric: in the example above it can be seen that
d(f, h) ≤ d(f, g) + d(g, h)− d(g, g) (with all dis-
tances computed in the interval [x− ε, x+ ε]).

−ε +ε

sin(x)

x

δ

δ′

Figure 3 The self-distances δ, δ′ of sin(x) and
x in a small interval [−ε, ε] of 0 are very close.

longer depict the “center” of the interval [x− ε, x+ ε], and that the triangular inequality117

works because in summing d(f, g) and d(g, h) the self-distance d(g, g) is counted twice.118

Note that the distance of f from itself, which needs not be (constantly) 0, provides a119

measure of the sensitivity of f , since it associates each interval a with the size of the interval120

f(a) spanned by f on a (a similar feature is present in differential logical relations).121

The use of partial metrics with functional distances yields a rich and expressive framework122

to reason about contextual transformations. For instance, we can express the closeness of123

λx. sin(x) and λx.x around 0 by the fact that their distance, applied to a small interval [−ε, ε]124

around 0, is very close to the self-distance of λx. sin(x) on the same interval (as illustrated125

in Fig. 3). Moreover, the triangular inequality of partial metrics can be used to infer new126

bounds from previously established ones in a compositional way.127

Diameter Space over a Cartesian Closed Category Our approach was devised primarily to128

account for transformations in higher-order languages designed for real analysis computation129

(like e.g. Real PCF [18]). However, diameter spaces can be constructed starting from any130

higher-order programming language with a reasonable denotational semantics. In fact, for any131

cartesian closed category C, we can construct a cartesian lax-closed category Diam(C), whose132

morphisms can be seen as approximate versions of the morphisms of C. The “lax” preservation133

of the cartesian closed structure reflects the fact that, by composing approximations in a134

higher-order setting, also their error rates compose (typically, approximating non β-normal135

λ-terms will lead to higher error-rates than approximating their β-normal forms).136

The generality of our construction shows in particular that our partial metric semantics137

requires no restrictions (e.g. Lipschitz-continuity) on morphisms, and adapts well to the138

model one starts with: for instance, the category Diam(Set) contains a partial metric on139

the set of all set-theoretic functions from R to R, while the categories Diam(Eff) (where Eff140

is the effective topos [27]) and Diam(Scott) show that our approach scales well to a more141

computability-minded setting.142

2 Generalized Partial Metric Spaces143

Partial metric spaces were introduced in the early nineties as a variant of metric spaces in144

which self-distances can be non-zero. Such spaces have attracted much attention in program145

semantics [8, 9, 33, 37, 36, 26, 23], due to their compatibility with standard constructions146

from both domain theory (since their topology is T0) and usual metric topology (e.g. Cauchy147

sequences, completeness, Banach-fixed point theorem) [8, 33]. Generalized partial metric148



G. Geoffroy and P. Pistone 23:5

spaces, i.e. partial metric spaces whose metric takes values over an arbitrary quantale [25],149

are well-investigated too [29, 28].150

In this paper we will only be concerned with partial metrics taking values over a commu-151

tative integral quantale [25], of which we recall the definition below.152

I Definition 1. A commutative integral quantale is a triple (Q,+,≤) where:153

(Q,≤) is a complete lattice,154

(Q,+) is a commutative monoid,155

+ commutes with arbitrary infs,156

the least element of Q is neutral for +.157

For readability, we have we have reversed the ordering with respect to the conventional158

definition, so that for example, ([0,∞],+,≤) is a commutative integral quantale whose least159

element is 0 (as opposed to “([0,∞],+,≥) is a commutative integral quantale whose largest160

element is 0”, which is what we would get with the usual definition). It is straightforward to161

check that for all commutative integral quantales Q,R, the product monoid Q×R equipped162

with the product ordering is also a commutative integral quantale. In addition, for all posets163

X, the set of monotone functions from X to Q, equipped with the pointwise monoid operation164

and the pointwise ordering, is also a commutative integral quantale. Another example of165

commutative integral quantale is given by the lattice of ideals of any commutative ring, with166

the product of ideals as the monoid operation.167

We recall now the definition of a generalized partial metric space:168

I Definition 2. A generalized partial metric space (in short, GPMS) is the data of a set X,169

a commutative integral quantale Q and a function d : X ×X → Q such that:170

for all x, y ∈ X, d(x, x) ≤ d(x, y),171

for all x, y ∈ X, if d(x, x) = d(x, y) = d(y, y), then x = y,172

for all x, y ∈ X, d(x, y) = d(y, x),173

for all x, y, z ∈ X, d(x, z) + d(y, y) ≤ d(x, y) + d(y, z).174

For every metric space (X, d), the structure (X, ([0,∞],+,≤), d) is a GPMS. As is175

well-known [8], any real-valued GPMS (X, [0,∞], d) induces a metric d∗ by letting176

d∗(x, y) = 2d(x, y)− d(x, x)− d(y, y) (?)177

For a more telling and somewhat archetypal example, take any set X and consider the set178

X≤ω of all sequences of elements of X indexed by an ordinal less than or equal to ω. For all179

such sequences s, t, let d(s, t) = 2−n ∈ [0,∞], where n is the length of the largest common180

prefix to s and t: one can check that (X≤ω, [0,∞], d) is indeed a generalized partial metric181

space. In fact, if we interpret the prefixes of a sequence as pieces of partial information,182

then we have d(s, s) = d(s, t) if and only if t is a refinement of s (i.e. if it contains more183

information), and d(s, s) = 0 if and only if s is total (i.e. if it cannot be refined).184

One can check that for all partial metric spaces (X,Q, dX) and (Y,R, dY ), (X ×185

Y,Q × R, dX×Y ) is a generalized partial metric space, where dX×Y ((x1, y1), (x2, y2)) =186

(dX(x1, x2), dY (y1, y2)). However, in general, it is not clear how one should define a partial187

metric on a function space. In Section 3.2 we introduce a construction to obtain partial188

metric spaces on function spaces by generalizing some properties of the standard diameter189

function on sets of real numbers.190

CVIT 2016
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3 Approximate Programs for the Simply-Typed λ-Calculus over Real191

To illustrate our construction, we start from a relatively concrete example: we consider a192

simply-typed lambda calculus with a base type Real and primitives for real numbers, and we193

follow the plan outlined in the introduction, which yields for each simple type a notion of194

approximate value, approximate function, diameter and distance between programs. Most195

definitions are straightforward and intuitive: the interesting, not immediately obvious point196

is that our construction does yield a partial metric on each type.197

Simple types are defined as follows: Real is a simple type; if A and B are simple198

types, then A → B and A × B are simple types. For all n > 0, we fix a set Fn of199

functions from Rn to R. We consider the usual Curry-style simply-typed λ-calculus over200

the types defined above (the left and right projection are denoted by πL : A×B → A and201

πR : A × B → B respectively, and the constructor for pairs by 〈−,−〉), enriched with the202

following constants: for all r ∈ R, a constant r : Real; for all n > 0 and all f ∈ Fn, a constant203

f : Real → . . . → Real → Real. We call this calculus STλC(Fn), and its terms are simply204

called terms. We write t[x1 := u1, . . . , xn := un] to denote the simultaneous substitution205

of u1, . . . , un for x1, . . . , xn in t. For all types A, we denote by ΛA the set of closed terms206

of type A. The relation of β-reduction is enriched with the following rule, extended to all207

contexts: for all n > 0, f ∈ Fn, and r1, . . . , rn ∈ R, fr1 . . . rn →β s, where s = f(r1, . . . , rn).208

By standard arguments [1], this calculus has the properties of subject reduction, confluence209

and strong normalisation.210

I Remark 3. The class of real-valued functions which can be computed in STλC(Fn) depends211

on the choice we make for Fn. With suitable choices (see for instance [40, 17, 18]) one can212

obtain that all programs of type Real→ Real compute continuous functions2, that all such213

programs are integrable over closed intervals, or that all such programs are continuously214

differentiable.215

In addition to the usual notion of β-equivalence between terms of STλC(Fn), we will216

exploit also a stronger equivalence: given two closed terms t, u of type A, we say that t and u217

are observationally equivalent and write t ≈A u if for all terms C such that x : A ` C : Real218

is derivable, C[x := t] is β-equivalent to C[x := u] (which amounts to saying that they both219

β-reduce to the same real number). It is clear that observational equivalence is a congruence220

and that two β-equivalent terms are always observationally equivalent.221

3.1 Approximate Values and Approximate Programs222

The first step of our construction for STλC(Fn) is to associate to each simple type A a set223

JAK whose elements are certain sets of programs of type A that we call approximate values of224

type A. A closed term t ∈ ΛA represents a program with return type A and no parameters,225

so an approximate value can be thought of as a specification of a program with return type226

A and no parameters up to a certain degree of error or approximation.227

For each simple type A, the set of approximate values JAK ⊆ P(ΛA) is defined inductively228

as follows:229

JRealK = {{t ∈ ΛReal | ∃r ∈ I, t→∗β r} | I ⊆ R is a compact interval or ∅ or R},230

JA×BK = {a× b | a ∈ JAK, b ∈ JBK}, where a× b = {t ∈ ΛA×B | πLt ∈ a and πRt ∈ b},231

JA→ BK = {{t ∈ ΛA→B | ∀u ∈ ΛA, tu ∈ I(u)} | I : ΛA → JBK}.232

2 Note that for this to be possible, Fn cannot contain the identity function over Real.
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sin(x) + 1

cos(x) − 1
sin(x + 1)

(a) λx. sin(x + 1) is in [λx. sin(x) +
1, λx. cos(x) + 1]Real→Real.

−1 1

−1

1 ε

δu[x]

t[x]

• •

•

•

• r

(b) ε = (∂(u) ◦ ∂(t))([−1, 1]) is bigger than δ =
∂(u ◦ t)([−1, 1]) = [r, r].

Figure 4 Examples of functional approximate values and of approximate programs.

The approximate values of type Real are sets of closed programs of type Real which233

essentially coincide with the compact intervals of R, plus the empty set and R itself. An234

approximate value in JA × BK is a “rectangle” a × b, with a ∈ JAK and b ∈ JBK, while an235

approximate value in JA → BK is uniquely determined by a function I from closed terms236

u ∈ ΛA to approximate values I(u) ∈ JBK.237

For example, any two terms t, u ∈ ΛReal with normal forms q, r ∈ R induce an approximate238

value [t, u]Real = {v ∈ ΛReal | v →∗β s ∧ (q ≤ s ≤ r ∨ q ≥ s ≥ r)} of type Real. Similarly, any239

two terms t, u ∈ ΛReal→Real induce an approximate value [t, u]Real→Real = {v ∈ ΛReal→Real |240

∀r ∈ ΛReal vr ∈ [tr, ur]Real}. For instance, if t = λx. sin(x) + 1 and u = λx. cos(x)− 1, then241

[t, u]Real→Real contains all closed terms corresponding to maps oscillating between sin(x) + 1242

and cos(x) + 1 (e.g. the program λx. sin(x+ 1), as illustrated in Fig. 4a).243

For all A, the set JAK is a a subset of P(ΛA) closed under arbitrary intersections. We244

deduce that JAK has arbitrary meets (given by intersections) and arbitrary joins
∨
i∈I ai =245 ⋂

{a ∈ JAK | ∀i ∈ I ai ⊆ a}, and thus JAK is a complete lattice. In particular, for all t ∈ ΛA,246

there is a least element of JAK that contains t, which will be denoted by t. One can check247

that t = u if and only if t ≈A u.248

Monotone functions from approximate values to approximate values represent approximate249

programs. They behave like a model of the simply-typed λ-calculus in a weak sense, namely:250

for all monotone functions ~α 7→ c[~α] : JA1K × . . . × JAnK → JB → CK and ~α 7→ b[~α] :251

JA1K× . . .× JAnK→ JBK, we can define a monotone function ~α 7→ (c[~α] b[~α]) = sup{vu |252

v ∈ c[~α], u ∈ b[~α]} : JA1K× . . .× JAnK→ JCK,253

for all monotone functions ~α 7→ c[~α] : JA1K × . . . × JAnK → JCK and all i ≤ n, we can254

define a monotone function (αj)j 6=i 7→ (λαi. c[~α]) = {v ∈ ΛAi→C | ∀ti ∈ ΛAi , vti ∈255

c[α1, . . . , ti, . . . , αn]} :
∏
j 6=iJAjK→ JAi → CK,256

and these two constructions are weakly compatible with β-reduction and η-expansion:257

I Proposition 4. For all monotone functions (~α, β) 7→ c[~α, β] : JA1K×. . .×JAnK×JBK→ JCK258

and ~α 7→ b[~α] : JA1K × . . . × JAnK → JBK, (~α 7→ (λβ. c[~α, β]) b[~α]) ≤ (~α 7→ c[~α, b[~α]]), and259

for all monotone functions ~α 7→ d[~α] : JA1K× . . .× JAnK → JB → CK, (~α 7→ λβ. d[~α] β) ≥260

(~α 7→ d[~α]), where functions are ordered by pointwise inclusion. In other words, on approxi-261

mate programs, β-reduction and η-expansion discard information, and conversely β-expansion262

and η-reduction recover some information.263

Proof. Without loss of generality, we can assume n = 0. Let v ∈ λβ. c[β] and u ∈ b. By264

definition, tu ∈ c[u], so tu ⊆ c[u] ⊆ c[b]. Therefore, (λβ. c[β]) b ⊆ b. Let v ∈ d. For all265

u ∈ ΛB , by definition, vu ∈ du. Therefore, v ∈ λβ. d β. J266

Beyond theoretical aspects (which will be made clearer in Section 5) Proposition 4 is also267

CVIT 2016



23:8 A Partial Metric Semantics of Higher-Order Programs

important in practice because it implies that if we compute an approximation of a program268

from approximations of its parts and then simplify the resulting approximate program using269

β-reduction and η-expansion, what we obtain is still a valid approximation of the original270

program.271

We can define a weak embedding from terms into approximate programs, by mapping272

each term to its tightest approximation: for all terms t such that α1 : A1, . . . , αn : An ` t : B,273

we define a monotone function ∂(t) : JA1K × · · · × JAnK → JBK by ∂(t)(a1, . . . , an) =274

sup{tu1 . . . un | u1 ∈ a1, . . . , un ∈ an}.275

I Remark 5. The map ∂ is constant on classes of observational equivalence, and one can276

check that it is is weakly compatible with the constructions of the λ-calculus, in particular:277

∂(αi)(a1, . . . , an) = ai,278

∂(tu)(a1, . . . , an) ⊆ ∂(t)(a1, . . . , an) ∂(u)(a1, . . . , an),279

∂(λβ.t)(a1, . . . , an) ⊆ λβ. ∂(t)(β, a1, . . . , an).280

This map ∂(t) can be taken as a measure of the sensitivity of t, as it maps an interval281

a, that is a quantifiably uncertain input, to a quantifiably uncertain output ∂(t)(a). For282

instance, if we take the term t[x] = sin(x) + 1 above, then ∂(t) : JRealK→ JRealK sends the283

interval [−π, π]Real into [0, 2]Real.284

I Remark 6. When composing two maps ∂(t) and ∂(u), we might obtain a worse approxima-285

tion than by computing ∂(t[u/x]) directly. For instance, let t[x] and u[x] be, respectively,286

the discontinuous and Gaussian functions illustrated in Fig. 4b. If a is the interval [−1,+1],287

then ∂(t)(a) = [−1, 1], and since u[x := −1] = u[x := 1] 'β r for some 0 < r < 1, we deduce288

that ∂(u)(∂(t)(a)) = [−1, 1] ) [r, r] = ∂(u[t/x])(a).289

3.2 A Partial Metric on Each Type290

So far, we have associated each type A of STλC(Fn) with a complete lattice JAK ⊆ P(ΛA)291

of approximate values of type A, and each typed program t : A→ B with an approximate292

program ∂(t) (in fact, a monotone function) from approximate values of type A to approximate293

values of type B. We will now exploit this structure to define, for each type A of STλC(Fn),294

a generalized partial metric on the closed (exact) programs of type A.295

The first step is to define, for every simple type A, a commutative integral quantale296

(LAM,≤A,+A) of distances of type A:297

(LRealM,≤Real,+Real) = ([0,∞],≤,+),298

LA×BM = LAM× LBM,299

LA→ BM = Poset(JAK, LBM).300

where, for two posets Q,R, Poset(Q,R) denotes the set of monotone functions from Q to R.301

Observe that the quantale LA→ BM is a set of functions over the approximate values of A.302

For all simple types A, we now define a distance function dA : ΛA × ΛA → LAM:303

dReal(t, u) = |r − s|, where r, s are the unique elements of R such that t→∗β r and u→∗β s,304

dA×B(t, u) = (dA(πLt, πLu), dB(πRt, πRu)),305

dA→B(t, u) = a 7→ sup {dB(rv, sw) | r, s ∈ {t, u}, v, w ∈ a}.306

It would be tempting to define dA→B(t, u)(a) simply as sup {dB(tv, uw) | v, w ∈ a}, but307

then the axiom “dA→B(t, t) ≤ dA→B(t, u)” of partial metric spaces would fail.308

The maps dA are clearly compatible with observational equivalence (i.e. if a ≈A a′ and309

b ≈A b′, then dA(a, b) = dA(a′, b′)).310

Our objective is now to prove that (ΛA/ ≈A, LAM, dA) is a generalized partial metric space.311

To this end, we define for all simple types A a monotone diameter function δA : JAK→ LAM312
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a b

δ(a ∪ b)

δ(a ∩ b)

δ(a)
δ(b)

Figure 5 The diameter function is modular over intersecting real intervals: diam(a∪ b) + diam(a∩
b) = diam(a) + diam(b) for all a, b ∈ [R] such that a ∩ b 6= ∅. This property is at the heart of our
generalization of diameters. Observe that this property fails when a ∩ b is empty.

by δA(a) = sup{dA(t, u) | t, u ∈ a}. The key to our objective will be to prove that δA is sub-313

modular on intersecting approximate values (henceforth, quasi-sub-modular – see Proposition314

7): this generalizes the fact that, on the (real-valued) metric space R, the diameter is modular315

over intersecting closed intervals (see Fig. 5).316

First, one can check that for all t, u ∈ ΛA, δA
(
t ∨ u

)
= dA(t, u), and that:317

δReal(a) = sup{s− r | s, r ∈ R such that s, r ∈ a},318

δA×B(p) =
(
δA
(
sup

{
πLt | t ∈ p

})
δB
(
sup

{
πRt | t ∈ p

}))
,319

δA→B(b) = a 7→ δB
(
sup

{
vt | t ∈ a, v ∈ b

})
.320

This leads then to the following:321

I Proposition 7 (δA is quasi-sub-modular). For all simple types A and all a, b ∈ JAK such322

that a ∧ b 6= ∅, δ(a ∧ b) + δ(a ∨ b) ≤ δ(a) + δ(b).323

Proof. We proceed by induction on types.324

Let a, b ∈ JRealK such that a ∧ b 6= ∅. Let I = {r ∈ R | r ∈ a} and J = {s ∈ R | s ∈ b}:325

then I (respectively, J , I ∩ J , I ∪ J) is either R or a non-empty compact interval of R,326

and its length in the usual sense is equal to δReal(a) (respectively, δReal(b), δReal(a ∧ b),327

δReal(a ∨ b)). Note that the only reason we know that I ∪ J is an interval is because328

a ∧ b 6= ∅ implies I ∩ J 6= ∅. The length of an interval of R is equal to its Lebesgue measure,329

therefore length(I ∩J) + length(I ∪J) = length(I) + length(J), so δReal(a∧ b) + δReal(a∨ b) =330

δReal(a) + δReal(b).331

Let a, b ∈ JAL×ARK such that a∧b 6= ∅. For all c ∈ JAL×ARK, let cL = sup{πLt | t ∈ c}332

and cR = sup{πRt | t ∈ c}. One can check that (a ∧ b)L = aL ∧ bL, (a ∧ b)R = aR ∧ bR,333

(a ∨ b)L = aL ∨ bL and (a ∨ b)R = aR ∨ bR, so δ(a ∧ b) + δ(a ∨ b) = (δ(aL ∧ bL) + δ(aL ∨334

bL), δ(aR ∧ bR) + δ(aR ∨ bR)) ≤ (δ(aL) + δ(bL), δ(aR) + δ(bR)) = δ(a) + δ(b).335

Let f, g ∈ JA → BK and a ∈ JAK. For all h ∈ JA → BK, let ha = sup{vt | v ∈ h, t ∈ a}.336

One can check that (f ∧ g)a ⊆ (fa) ∧ (ga) and (f ∨ g)a = (fa) ∨ (ga). As a result,337

(δ(f∧g)+δ(f∨g))(a) ≤ δ((fa)∧(ga))+δ((fa)∨(ga)) ≤ δ(fa)+δ(ga) = (δ(f)+δ(g))(a). J338

It is well-known [39] that any function δ : L → [0,∞] on a lattice L that is monotone339

and sub-modular induces a pseudo-metric d : L × L → [0,∞] by letting d∗(a, b) = 2δ(a ∨340

b) − δ(a) − δ(b). In fact, one can decompose this construction: first, one defines a partial341

pseudometric d on L by d(a, b) = δ(a∨ b), and then d∗ is just the distance given by equation342

(?): d∗(a, b) = 2d(a, b)− d(a, a)− d(b, b). We can use this way of reasoning to establish that343

the maps dA are indeed partial metrics:344

I Corollary 8. For all simple types A, (ΛA/ ≈A, LAM, dA) is a generalized partial metric345

space, that is to say:346

1. for all t, u ∈ ΛA, dA(t, t) ≤ dA(t, u),347

2. for all t, u ∈ ΛA, if dA(t, t) = dA(t, u) = dA(u, u), then t ≈A u,348
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3. for all t, u ∈ ΛA, dA(t, u) = dA(u, t),349

4. for all t, u, v ∈ ΛA, dA(t, v) + dA(u, u) ≤ dA(t, u) + dA(u, v).350

Proof. As mentioned above, for all t, u ∈ ΛA, dA(t, u) = δA(t ∨ u), which immediately gives351

point 3. Since δA is monotone and t ∨ t ≤ t ∨ u, we also get point 1.352

One can check (by induction on types) that the restriction of δA to the ideal generated353

by the t (for t ∈ ΛA) is strictly monotone. Therefore, if dA(t, t) = dA(t, u) = dA(u, u), i.e.354

δA(t) = δA(t ∨ u) = δA(u), then t = t ∨ u = u, so t ≈A u.355

The triangular inequality is an immediate consequence of the quasi-sub-modularity of δA:356

d(t, v)+d(u, u) = δ(t∨v)+δ(u) ≤ δ((t∨u)∨(u∨v))+δ((t∨u)∧(u∨v)) ≤ δ(t∨u)+δ(u∨v) =357

d(t, u) + d(u, v). J358

4 Computing Program Distances using Partial Metrics359

In the previous section we showed how to associate each simple type A with a partial metric360

dA over the closed terms of type A. We now illustrate through a few basic examples how361

the higher-order and metric features of this semantics can be used to formalize contextual362

reasoning about program differences.363

To make our examples more realistic, we will consider some natural extensions of364

STλC(Fn). It is not difficult to see that all constructions from Section 3 still work if365

we add to STλC(Fn) some new base types. For example, we can add to our language a type366

Nat for natural numbers, indicating for each n ∈ N, the corresponding normal forms of Nat367

as n. A natural choice is to let JNatK = {{t | ∃n ∈ a t n} | a finite subset of N or a = N},368

LNatM = [0,∞] and dNat(t, u) = |n−m|, where t→∗β n and u→∗β m.369

Moreover, our constructions scale well also to extensions of STλC(Fn) obtained by adding370

new program constructors, as soon as these do not compromise the existence and uniqueness371

of normal forms (since the fact that closed programs of type Real have a normal form plays372

an important role to define JRealK). For instance, if we suppose that all programs of type373

Real → Real in STλC(Fn) are either differentiable or integrable (see Remark 3), we can374

consider extension of STλC(Fn) with differential or integral operators, as in Real PCF [17, 18].375

We start with a classical example from approximate computing that we adapt from [44].376

I Example 9 (Loop perforation). We work in the extension of STλC(Fn) with a type Nat.377

We discuss a transformation that replaces a program t which performs n iterations by a378

program which only performs the iterations 0, k, 2k, 3k, . . . , each repeated k times.379

Suppose t : (A × A → A) → Nat → (A → A) → A, for n ≥ 1, is a term such that380

thnf computes the n-times iteration of h as follows: th0f = h〈f0, f0〉 and th(n + 1)f =381

h〈thnf, f(n + 1)〉. Let Perfk(t), the k-th perforation of t, be the program (Perfk(t))hnf =382

t(λx.(h(k)x))bnck(λx.f(x ∗ k), where bnck indicates the least m ≤ n such that m is divisible383

by k, and x ∗ k is the multiplication of x by k.384

To compute the distance dA(vn, wn) between vn = thnf and its perforation wn =385

Perfk(t)hnf we can reason as follows:386

i. vn performs n-iterations while wn performs kbnck ≤ n iterations, and we can compute387

dA(vn, v(kbnck)) as the diameter of ∂(t)∂(h)([kbnck, n]Nat)∂(f).388

ii. If n is divisible by k, then for i ≤ n, at the i-th iteration of vn the function f is applied389

to i, while at the i-th iteration of wn, f is applied to bick. Now, the error of replacing390

fi by fbjck, with i, j in some a ∈ JNatK, is accounted for by the approximate program391

c[y] = ∂(f)(y− k), where y− k = y ∨ {u− k | u ∈ y}. We deduce then that dA(vn, wn) is392

bounded by the diameter of ∂(t)∂(h)n(λy.c[y]).393
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iii. From the fact that wn = w(k·bnck) and the triangular inequality of the partial metric dA394

we deduce dA(vn, wn) = dA(vn, w(k·bnck)) ≤ dA(vn, v(k·bnck)) + dA(v(k·bnck), w(k·bnck))−395

dA(v(k·bnck), v(k·bnck))396

From facts i.-iii. we deduce an explicit bound for dA(vn, wn) in terms of ∂(t), ∂(f) and n:397

dA(vn, wn) ≤ δA(∂(t)∂(h)([kbnck, n]Nat)∂(f)) + δA(∂(t)∂(h)n(λy.∂(f)(y − k)))− δA(∂(t)∂(h)n∂(f)).398

We now show how the partial metric semantics can be used to reason about basic399

approximation techniques from numerical analysis.400

I Example 10 (Taylor approximation). We assume that all programs of type Real→ Real in401

STλC(Fn) are differentiable and that for all n, program t : Real→ Real and real number r,402

we can define a term Tn(t, r) : Real→ Real computing the n-th truncated Taylor polynomial403

of t at r. The distance dReal→Real(t, Tn(t, 0)) is the map associating an interval a with the404

diameter of the smallest interval containing the image of a under both t and Tn(t, 0). This405

value will approximately converge to the self-distance of t when a is a small interval of 0,406

and will tend to diverge when a contains points which are far enough from 0.407

For example, if t is the function t = λx. sin(x), and a is an interval of 0, then using408

standard analytic reasoning we can compute a bound dReal→Real(t, Tn(t, 0))(a) ≤ δReal(a)n+1

(n+1)! ,409

which tends to 0 as the diameter of a tends to 0.410

Observe that if, instead, we used the sup-distance dsup(t, u) = sup{dReal(tr, ur) | r ∈411

ΛReal}, then we could not reason as above, since the sup-distance between λx. sin(x) and its412

truncated Taylor polynomials is infinite.413

I Example 11 (Integral approximation). We now assume that all functions in Fn are integrable414

and that we have (see [18]) at our disposal a program λfx.I[0,x](f) : (Real→ Real)→ Real→415

Real such that I[0,r](t) computes (a precise enough approximation of) the definite integral416 ∫ |r|
0 tx dx. In many contexts we might prefer to replace the expensive computation of417

I[0,r](t) by the (more economical but less precise) computation of a finite Riemann sum418

Rn[0,r](t) =
∑n
i=1(txi) · |r|/n, where xi = i · |r|/n.419

Suppose now that, in order to approximate the integral of some computationally expensive420

program t on [0, r], we replace t by some more efficient program u which, over [0, r], is very421

close to t. Let εt(r) indicate the distance between the true integral of t over [0, r] and Rn[0,r](t),422

and moreover let ηt,u(r) be the diameter of ∂(t)([0, r]) ∨ ∂(u)([0, r]).423

Using the metric structure of Real we can then bound the error we incur in by replacing424

the true integral of t with the Riemann sum of u. In fact, by standard calculation we can425

compute the bound dReal(Rn[0,r](t),Rn[0,r](u)) ≤ dReal→Real(t, u)([0, r]) · |r| = ηt,u(r) · |r|. Then,426

using the triangular inequality of the standard metric on Real we deduce427

dReal(I[0,r](t),Rn[0,r](u)) ≤ dReal(I[0,r](t),Rn[0,r](t)) + dReal(R[0,r](t),Rn[0,r](u))428

≤ εt(r) + ηt,u(r) · |r|429
430

Using the partial metric on Real→ Real, we can also derive a bound expressing how much431

the error above is sensitive to changes of r. First, using standard analytic techniques (under432

suitable assumptions for t and its derivatives) one can find a program v : Real→ Real such433

that vr computes an upper bound for εt(r). Then, using the triangular inequality of the434
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partial metric on Real→ Real we deduce, for all interval a, the following bound:435

dReal→Real(λx.I[0,x](t), λx.Rn[0,x](u))(a)436

≤ dReal→Real(λx.I[0,x](t), λx.Rn[0,x](t))(a) + dReal→Real(λx.R[0,x](t), λx.Rn[0,x](u))(a)437

− dReal→Real(λx.R[0,x](t), λx.Rn0,x](t))(a)438

≤ dReal→Real(v, v)(a) +
(
dReal→Real(t, u)(a)− dReal→Real(t, t)(a)

)
· δReal(a)439

440

5 Diameter Space Models Over a Cartesian Closed Category441

The examples from the last section relied on the fact that our partial metric semantics scales442

well to extensions of STλC(Fn) with new base types and new program constructors. In this443

section we justify this fact in more general terms. In fact, we show that the constructions444

from Section 3 can be reproduced starting from any model of the simply-typed λ-calculus.445

First, we need a suitable notion of model of the simply-typed λ-calculus to start with.446

Traditionally, one uses cartesian closed categories: cartesian categories where, for all objects447

A, the functor A × − has a right adjoint (the exponential functor). However, since many448

usual examples are in fact poset-enriched categories (e.g. Scott domains and continuous449

functions, coherent spaces and stable functions), and since any (locally small) category can450

be poset-enriched by using equality as the ordering, we will consider instead cartesian closed451

poset-enriched categories. To give a counterpart to Proposition 4, we also need a notion of452

“weak” model of the simply-typed λ-calculus: since poset-enriched categories are a particular453

case of 2-categories (with a unique 2-arrow from f to g if and only if f ≤ g), we follow Hilken454

[24] and consider cartesian categories where, for all objects A, the functor A×− has a lax455

right adjoint (the lax-exponential functor).456

Products and exponentials, when they exist, are necessarily unique up to unique iso-457

morphism: thus, traditionally, a cartesian closed category is defined as a category in which458

all finite products and exponentials exist, rather than a category equipped with products459

and exponentials (i.e. it is a category with a given property, rather than a category with460

additional structure). However, this is not the case for lax-exponentials, so for consistency461

we will adopt the “structure” picture in both cases. Adapting Hilken’s definitions [24] to the462

simpler case of poset-enriched categories, we obtain:463

I Definition 12. Let (C,×, 1) be a cartesian poset-enriched category. An exponential464

(respectively, a lax-exponential) on C is the data of a map exp from Ob(C× C) to Ob(C)465

and two families of monotone maps (evW,X,Y : C(W, exp(X,Y )) → C(W × X,Y )) and466

(λW,X,Y : C(W ×X,Y )→ C(W, exp(X,Y ))) such that:467

evW,X,Y and λW,X,Y are natural with respect to W ,468

for all g ∈ C(W ×X,Y ), ev(λ(g)) = g (respectively, ev(λ(g)) ≤ g),469

for all f ∈ C(W, exp(X,Y )), f = λ(ev(f)) (respectively, f ≤ λ(ev(f))).470

One can check that this definition makes exp a functor (respectively, a lax-functor)471

from Ob(Cop × C) to Ob(C) (with exp(f, g) defined as λ(g ◦ ev(id) ◦ (id×f))). In addition,472

this definition implies that ev and λ are natural, in the sense that ev(exp(α, β) ◦ f ◦ γ) =473

β◦ev(f)◦(γ×α) and exp(α, β)◦λ(g)◦γ = λ(β◦g◦(γ×α)) (respectively, lax-natural [24], in the474

sense that ev(exp(α, β)◦f ◦γ) ≤ β◦ev(f)◦(γ×α) and exp(α, β)◦λ(g)◦γ ≤ λ(β◦g◦(γ×α))).475

For the rest of this section, we fix a cartesian poset-enriched category (C,×, 1) (we denote476

by 〈−,−〉 the pairing transformation and by πL and πR the projections) and an exponential477

(exp, ev, λ) on C. The morphisms of this category represent exact programs, so they play the478

role of the terms from Section 3.479
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I Definition 13. A C-diameter space A is the data of480

an object |A| of C. The poset C(1, |A|) will be denoted by ΛA;481

a set JAK of downwards-closed subsets of ΛA that is closed under arbitrary intersections.482

In particular, JAK is a complete lattice whose meet is given by intersection, and for all483

t ∈ ΛA, there is a least element of JAK that contains t, which will be denoted by t;484

a commutative integral quantale (LAM,+,≤);485

a monotone function δA : JAK→ LAM such that

∀a, b ∈ JAK s.t. a ∧ b 6= ∅, δ(a ∧ b) + δ(a ∨ b) ≤ δ(a) + δ(b),

and such that for all t, u ∈ ΛA, if δA(t) = δA(t ∨ u), then t = t ∨ u.486

The role of the condition a ∧ b 6= ∅ is illustrated by Fig. 5.487

I Example 14. If C is the category whose objects are the simple types from Section 3 and488

whose morphisms are the (open) terms modulo β-equivalence, then for all simple types A,489

(A, JAK, LAM, δA) defines a C-diameter space.490

Following Section 3, for all C-diameter spaces A and B, we define a C-diameter space A×B491

such that |A×B| = |A| × |B| and a C-diameter space exp(A,B) such that |exp(A,B)| =492

exp(|A| , |B|):493

JA × BK = {a × b | a ∈ JAK, b ∈ JBK}, where a × b = {t ∈ C(1, |A| × |B|) | πL ◦ t ∈494

a and πR ◦ t ∈ b},495

LA×BM = LAM× LBM,496

δA×B(c) = (δA({πL ◦ t | t ∈ c}), δB({πR ◦ t | t ∈ c})),497

Jexp(A,B)K = {{t ∈ C(1, exp(|A| , |B|)) | ∀u ∈ ΛA, ev(t)◦u ∈ I(u)} | I ∈ Poset(ΛA, JBK)},498

Lexp(A,B)M = Poset(JAK, LBM),499

δexp(A,B)(c) = a 7→ δB

(
sup

{
ev(v) ◦ t | t ∈ a, v ∈ c

})
.500

We need a counterpart to Proposition 4. As explained above, we obtain this by organizing501

the C-diameter spaces as a cartesian poset-enriched category with a lax-exponential. First,502

we need to define a notion of morphisms between two C-diameter spaces A and B (which503

represent approximate programs). By analogy with Section 3, these will be monotone functions504

from JAK to JBK; however, in order to actually obtain a cartesian category (which was not505

an issue in Section 3), we will need to add an extra condition:506

I Definition 15. We denote by Diam(C) the poset-enriched category defined as follows:507

the objects of Diam(C) are the C-diameter spaces,508

for all C-diameter spaces A and B, Diam(C)(A,B) is the set of all monotone functions509

ϕ : JAK→ JBK such that there exists f ∈ C(|A| , |B|) such that for all t ∈ ΛA, f ◦ t ∈ ϕ
(
t
)

510

(ordered by pointwise inclusion).511

One can check that the operation −×− defined above on C-diameter spaces is a cartesian512

product in Diam(C). In addition, one can check that there exists in Diam(C) a terminal513

object 1Diam(C) such that
∣∣1Diam(C)

∣∣ = 1C. In other words, Diam(C) is cartesian. Here too,514

we denote by 〈−,−〉 the pairing transformation and by πL and πR the projections.515

Now, following Section 3, we can complete the definition of the lax-exponential: let516

A,B,C be C-diameter spaces,517

for all ϕ ∈ Diam(C)(A, exp(B,C)), we define evA,B,C(ϕ) ∈ Diam(C)(A × B,C) by518

evA,B,C(ϕ)(p) = sup
{

ev(v) ◦ u | v ∈ ϕ(πL(p)), u ∈ πR(p)
}
,519
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for all ψ ∈ Diam(C)(A × B,C), we define λA,B,C(ψ) ∈ Diam(C)(A, exp(B,C)) by520

λA,B,C(ψ)(a) = {v ∈ Λexp(B,C) | ∀u ∈ ΛB , ev(v) ◦ u ∈ ψ(a× u)}.521

I Proposition 16. The triple (exp, ev, λ) is a lax-exponential on Diam(C).522

Proof. Naturality with respect to A is immediate.523

Let p = a × b ∈ JA × BK. For all v ∈ λ(ψ)(a) and and u ∈ b, by definition ev(u) ◦ u ∈524

ψ(a× u) ⊆ ψ(p). Therefore, ev(λ(ψ))(p) ⊆ p.525

Let a ∈ JAK and v ∈ ϕ(a). For all u ∈ ΛB, by definition, ev(v) ◦ u ∈ λ(ϕ)(a × u), so526

v ∈ λ(ev(ϕ))(a). J527

As in Section 3, we can find a kind of weak embedding from C to Diam(C). Namely, for528

all C-diameter spaces A and B, we define a monotone map ∂ : C(|A| , |B|)→ Diam(C)(A,B)529

by ∂(f)(a) = sup{f ◦ t | t ∈ a}. The following compatibility result is immediate and offers a530

counterpart to Remark 6:531

I Proposition 17. For all C-diameter spaces A,B,C, all f ∈ C(|A| , |B|) and all g ∈532

C(|B| , |C|), ∂(g ◦ f) ≤ ∂(g) ◦ ∂(f). In addition, ∂(id|A|) = idA.533

One way to reformulate this result is that ∂ induces an oplax-functor from the category534

with the same objects as Diam(C) and the same morphisms as C, to Diam(C).535

One can check that ∂ preserves products, in the sense that ∂(〈f, g〉) = 〈∂(f), ∂(g)〉,536

∂(πL) = πL and ∂(πR) = πR. In addition ∂ is weakly compatible with the exponential, which537

corresponds to Remark 5:538

I Proposition 18. Let A,B,C be C-diameter spaces,539

for all f ∈ C(|A| , exp(|B| , |C|)), ∂(ev(f)) ≤ ev(∂(f)),540

for all g ∈ C(|A| × |B| , |C|), ∂(λ(g)) ≤ λ(∂(g)).541

Finally, following Section 3, for all C-diameter spaces A and all t, u ∈ ΛA, we write t ≈A u542

if t = u. In addition, we define a function dA : ΛA×ΛA → LAM by dA(t, u) = δA(t∨u). Then543

the same arguments as in Corollary 8 show that:544

I Proposition 19. For all C-diameter spaces A, (ΛA/ ≈A, LAM, dA) is a generalized partial545

metric space.546

One can check that what is described in Section 3 is indeed an instance of this construction.547

Here are a couple more examples:548

I Example 20. We can take C = Set (with the morphisms ordered by equality): Diam(Set)549

contains an object RealSet that represents the real numbers with their standard metric550

and the compact intervals (plus ∅ and R) as approximate values, namely |RealSet| = R,551

JRealSetK = {the compact intervals, ∅,R}, LRealSetM = [0,∞] and δRealSet(I) = length(I).552

In this case, |exp(RealSet,RealSet)| is the set of all functions from R to R, so dRealSet defines553

a partial metric on all such functions.554

I Example 21. We can take C = Eff, the effective topos [27]: Eff contains an object REff555

of recursive reals, and we can define an object RealEff in Diam(Eff) by |RealEff | = REff ,556

JRealEffK = {I ∩ REff | I ∈ JRealSetK}, LRealEffM = [0,∞] and δRealEff (I) = length(I).557

In this case, |exp(RealEff ,RealEff)| is the set of all recursive functions from RealEff to558

RealEff , so dRealEff defines a partial metric on all such functions.559
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I Example 22. We can take C = Scott, the poset-enriched category of Scott domains and560

continuous functions. It contains an object representing the reals: RScott = (R ∪ {⊥},v),561

with r v s iff r = s or r = ⊥. Again, we can define in Diam(Scott) an object RealScott that562

represents the real numbers with their standard metric, and this defines a partial metric563

on |exp(RealScott,RealScott)|, the set of all Scott continuous functions from RScott to RScott,564

which are essentially the partial functions from R to R.565

6 Conclusions566

Related Work As stated in the introduction, differential logical relations [32] are a primary567

source of inspiration for our approach. A related, but more syntactic approach to approximate568

program transformations is that of Westbrook and Chauduri [44], who use a System F-based569

type system with a type of real numbers and an explicit distinction between exact and570

approximate programs. Most examples of contextual reasoning from [44] can be reformulated571

in our framework (as the case of loop perforation discussed in Section 4).572

The literature on program pseudo-metrics is vast. A major distinction can be made573

between those approaches in which metrics account for extensional aspects of programs (like574

ours), and approaches in which metrics are used to characterize more intensional aspects. To575

the first family belong all metric models developed for reasoning about differential privacy576

[35, 3, 7], probabilistic computation [13, 14] and co-inductive models [16, 43, 11, 42]. To the577

second class belong approaches like [19] which recovers the Scott model of PCF through a578

ultrametric semantics, and most models based on partial metric spaces [9, 33], which rely on579

a correspondence between continuous Scott domains and the T0 topology of partial metrics.580

From a more mathematical viewpoint, [12] discusses a characterization of exponentiable581

GPMS, showing that no such category can both be cartesian closed and contain the standard582

metric on R. This result seems to add further evidence of the necessity of considering583

metrics over varying quantales in order to model higher-order languages. Finally, the elegant584

categorical approach to GPMS based on quantaloid-enriched categories from [26] seems to585

provide the relevant structure to develop explicit typing rules for our approximate programs.586

Future Work The approach we presented lends itself to further extensions and general-587

izations. First, we would like to investigate the interpretation of more type constructions588

than those of STλC(Fn) (e.g. coproducts, recursive types, effects). Moreover, we would like589

to explore the possibility of exploiting the structure of the category Diam(C) to construct590

new and more refined notions of approximations. For example (we work in Diam(Set) for591

simplicity), starting from the “standard” set of approximate values I on RX×X (with elements592

of I being families of compact intervals Ux,x′ ⊆ R indexed by elements of X and X ′), one593

can define a new family ∆∗I of approximate values for RX by “pulling back” the exact map594

∆ : RX → RX×X defined by ∆f(x, x′) = f(x′)− f(x), i.e. letting ∆∗I = {∆−1(a) | a ∈ I}.595

The new approximate values then correspond to sets of functions f ∈ RX with a controlled596

variation, that is, such that f(x′)− f(x) is bounded by some family of intervals Ux,x′ ∈ I.597

Another interesting research direction concerns probabilistic extensions of STλC(Fn).598

Probabilistic metrics [15, 30, 13, 14] have been the object of much research in recent years, due599

to the relevance of metric reasoning in some areas of computer science in which probabilistic600

computation plays a key role (e.g. in cryptography [22] and machine learning [31]). A601

convenient starting point seems to be the recent generalization of probabilistic (generalized)602

metric spaces to the partial metric case [23].603
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