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A B S T R A C T   

The statistics of our environment impact not only our behavior, but also the selectivity and connectivity of the 
early sensory cortices. Over the last fifty years, powerful theories such as efficient coding, sparse coding, and the 
infomax principle have been proposed to explain the nature of this influence. Numerous computational and 
theoretical studies have since demonstrated solid, testable evidence in support of these theories, especially in the 
visual domain. However, most such work has concentrated on monocular, luminance-field descriptions of nat
ural scenes, and studies that systematically focus on binocular processing of realistic visual input have only been 
conducted over the past two decades. In this review, we discuss the most recent of these binocular computational 
studies, with particular emphasis on disparity selectivity. We begin with a report of the relevant literature 
demonstrating concrete evidence for the relationship between natural disparity statistics, neural selectivity, and 
behavior. This is followed by a discussion of supervised and unsupervised computational studies. For each study, 
we include a description of the input data, theoretical principles employed in the models, and the contribution of 
the results in explaining biological data (neural and behavioral). In the discussion, we compare these models to 
the binocular energy model, and examine their application to the modelling of normal and abnormal devel
opment of vision. We conclude with a short description of what we believe are the most important limitations of 
the current state-of-the-art, and directions for future work which could address these shortcomings and enrich 
current and future models.   

1. Introduction 

More than half a century ago, Barlow (1961) postulated that the aim 
of the early visual cortex is to optimize information processing whilst 
using the fewest possible resources. Some of the most convincing sup
port for this information-theoretic optimization theory comes from 
computational studies which showed that the nature of neural activity 
in the primary visual cortex could be attributed to encoding schemes 
which extract useful features (luminance, color, contrast, orientation, 
spatial frequency) from natural visual inputs. These optimisations are 
based on criteria such as optimal energy consumption (Olshausen & 
Field, 1996, 2005; Olshausen, 2003), information representation (Atick, 
1992; Barlow & Földiák, 1989), bottom-up saliency-based signals 
(Zhaoping, 2000, 2006), and Bayesian optimisation of psychophysical 
and perceptual metrics (Knill & Richards, 1996). 

Over the last two decades, numerous studies have explored how 
these optimization processes might be reflected in neural responses in 
the visual cortex (Olshausen & Field, 1997; Simoncelli & Olshausen, 
2001), and how they might impact behavior (Burge & Jaini, 2017; 
Geisler, 2008). The overwhelming consensus is that natural statistics 

can, indeed, predict numerous properties of our visual system, from 
neural responses to behavior. However, a majority of these studies focus 
on monocular visual properties, whereas numerous species of the an
imal kingdom have two eyes and therefore experience their sur
rounding space through a binocular apparatus. In particular, species 
that have evolved in cluttered environments, like primates, are more 
likely to have developed a fronto-parallel ocular geometry with strong 
binocular overlap (Changizi & Shimojo, 2008; see also Langer & 
Mannan, 2012, for a computational analysis of binocular visibility 
under clutter). This visual geometry heightens their ability to sense 
binocular disparity – the small differences between the projections in 
the two retinae (Fig. 1). Binocular disparity processing is very im
portant for numerous sensory, perceptual, and motor functions. One of 
the direct consequences of having access to disparity is the ability to 
estimate the depth of objects and planes in a scene (see e.g. Parker, 
2007). In addition to depth estimation, binocular disparity is also 
known to drive vergence eye movements and accommodation (Masson 
et al., 1997), to play an important role in the execution of actions such 
as reaching, grasping and object manipulation (Melmoth & Grant, 2006; 
Servos & Goodale, 1994; Watt & Bradshaw, 2003), and to give 
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important cues for route-planning through a 3D environment (Hayhoe 
et al., 2009). 

Despite the obvious benefits of binocular vision, the relationships 
that exist between statistics in natural scenes and visual processing and 
perception are less well understood for binocular than for monocular 
vision. Nonetheless, over the past two decades, numerous computa
tional studies have tried to better characterize these relationships by 
proposing models that employ realistic biological constraints (en
ergetic, information-theoretic, perceptual and behavioral) on the ac
tivity of neural populations in response to natural binocular stimuli. 

The aim of this review is to describe and discuss the results of these 
studies. We place particular emphasis on computational studies that 
address binocular disparity, and try to position their results in the 
context of biological findings at various levels (neural, population 
coding, and behaviour). In order to do so, we first present properties of 
natural scenes when observed from a binocular visual system, and their 
relationship with neural selectivity and depth perception (part I). We 
then describe computational studies, supervised and unsupervised, 
which relate these properties to behavioural and neuroscientific mea
surements (part II). In the final section, we present a discussion which 
includes a comparison of these models with the binocular-energy 
model, their relevance and potential application to the study of the 
normal and abnormal development of vision, and a closer look at some 
of their limitations and how they can potentially be addressed in future 
studies (part III). 

2. Statistics of binocular disparity in natural scenes, relationship 
with neural selectivity and depth perception 

In this section, we describe how the distribution of binocular dis
parities in natural visual scenes has been estimated and how some 
parameters, in particular, are reflected in both cortical and behavioural 
measurements (2.1). We then describe how the statistics of binocular 
disparity show biases depending on where in the visual field they are 
sampled, and present studies which demonstrate a direct link between 
these biases, neural selectivity, and depth perception (2.2). Finally, we 
describe studies which have reported statistical relationships between 
disparity and numerous properties of natural scenes such as luminance, 
chromaticity or texture (2.3). 

2.1. Range of binocular disparities in natural scenes 

The first studies which considered the statistics of depth (3D) and 
binocular disparity in natural scenes were published about twenty years 
ago. Huang et al. (2000) analyzed depth statistics estimated from laser 
range data. They were able to show that 3D measures of a scene (such 
as range) offer a more informative description of its components, such 
as their structure or their spatial arrangement, as compared to '2D’ 
measures such as luminance intensity, colour and texture. Using a si
milar range-based approach, Yang and Purves (2003) measured the 
actual distances from the image plane of all non-occluded points in a 
series of natural scenes. They found that the distribution of distances 
between the observer and surfaces in the range-data peaked at around 
3 m, decaying exponentially at larger distances. They suggested that 
this distribution of physical distances in natural scenes could influence 
depth judgments under viewing conditions where little or no contextual 
information is available. Under these conditions, objects are typically 
perceived to be at a distance of 2–4 m, a phenomenon known as specific 
distance tendency (Gogel, 1965). 

Starting from the work of Yang and Purves (2003), Hibbard (2007) 
attempted to address a major limitation of their study: the failure to 
account for eye position and therefore oculomotor behaviour, which is 
necessary to compute binocular disparities. They derived an estimation 
of the distribution of binocular disparities based on range images and 
showed a clear effect of fixation. The distribution was found to be 
broader in the periphery than in a central fixation area. Following 
Hibbard’s study, Liu et al. (2008) further improved the computation of 
binocular disparities present in natural scenes by taking into account a 
known fixation behavior: during visual tasks, humans generally tend to 
fixate on objects relevant to the task. They found that the distribution of 
binocular disparity at eye level peaks at 0° (i.e., the left and right eye 
projections have the same retinal coordinates) and spans several de
grees. Importantly, this range of disparities corresponds to the mea
sured disparity tuning of neurons in macaque area MT (DeAngelis & 
Uka, 2003), and is fully within the operational range of human ste
reopsis determined psychophysically (Landers & Cormack, 1997; Prince 
& Rogers, 1998; Tyler, 1973). 

More recently, Sprague et al. (2015) simultaneously measured bi
nocular eye position and 3D scene geometry (from stereoscopic cam
eras) whilst observers performed various everyday tasks such as indoor 

Fig. 1. Binocular vision and stereoscopic datasets. A. Retinal disparity. The two eyes, horizontally separated by about 65 mm on average, converge at the point of 
fixation. This causes the retinal projections of the same object to differ in the two eyes. B. Stereoscopic datasets. Three sample images (one per row) from the Hunter- 
Hibbard dataset (Hunter & Hibbard, 2015). The dataset was captured using two cameras which mimic the human visual geometry. The first column shows a red-cyan 
anaglyph of the scene. The following columns are arranged such that the second and third columns allow for uncrossed fusion, while the third and fourth columns 
allow for crossed fusion. 
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and outdoor navigation, social interaction, and near-work (making a 
sandwich). They computed the disparity distribution in their data and 
found it to be similar to measurements in the macaque V1 (Prince, 
Cumming, et al., 2002) – centered around 0 and biased towards near 
ranges (i.e., closer to the observer than the fixation point). Inspired by 
this study, Gibaldi, Canessa, and Sabatini (2017) designed a more 
controlled setup to accurately investigate the role of fixation. They used 
naturalistic 3D virtual scenes displayed in the peripersonal space of 
observers and recorded their eye fixation. The measured disparity dis
tribution was then compared to the one obtained from random fixations 
of a virtual observer, and found to be closer to both neurophysiological 
data, and the range of disparity predicted by behavioural studies. This 
study also found the influence of an active fixation strategy to be more 
important at small eccentricities (central visual field) as compared to 
the periphery. This suggests that an accurate characterization of dis
parity statistics under natural viewing conditions should take the po
sition in the visual field into account. In the next subsection, we de
scribe studies that explored this relationship in more detail. 

2.2. Statistical relationship between binocular disparity and position within 
the visual field 

In this subsection, we first describe the relationship between bino
cular disparity distribution in natural scenes and elevation. Next, we 
explore the statistical properties of local change in disparity (i.e. dis
parity gradients). Finally, we examine its relationship with eccentricity. 
One of the first psychophysical studies to demonstrate the role of po
sition in the visual field on the distribution of binocular disparities was 
conducted by Hibbard and Bouzit (2005). Predicting an effect of ele
vation on horizontal binocular disparity distribution, they experimen
tally tested their model by presenting observers with ambiguous ste
reograms for which binocular matches could result in both crossed and 
uncrossed disparities (thus, these stimuli could be interpreted as either 
closer or farther than the fixation cross). They found perceptual biases 
that were in agreement with their prediction: stimuli were perceived as 
closer when presented below the fixation point and farther away when 
above (see Fig. 2C). This suggests that the distribution of horizontal 
binocular disparities in visual scenes directly influences binocular 
matching. 

A decade later, Sprague et al. (2015) showed that disparity tuning in 
the primary visual cortex reflects the relationship between horizontal 
binocular disparity and position within the receptive field. They con
ducted a meta-analysis encompassing five single-unit studies (820 
neurons from the macaque V1) and computed the correlation between 
preferred disparity and receptive field (RF) location. They found that 
the neurons with RFs in the upper visual field tended to prefer un
crossed disparities, whereas neurons with RFs in the lower visual field 
preferred crossed disparities (see Fig. 2B). This neural bias was in good 
agreement with their estimation of binocular disparity distributions 
under natural viewing, where median values showed a gradient going 
from crossed disparities in the lower visual field (low elevation) to 
uncrossed disparities in the upper visual field (high elevation) (see  
Fig. 2A). In a similar analysis, this result was also confirmed by Gibaldi, 
Canessa, and Sabatini (2017). Nasr and Tootell (2018) extended our 
knowledge of this neural selectivity bias to the extrastriate cortex. They 
scanned human participants at a very high resolution (7 T) whilst 
showing them random dot stereograms (RDS) that were either in front 
(near stimuli) or behind (far stimuli) the fixation plane. By localizing 
horizontal disparity selective columns in areas V2 and V3, and com
paring the upper (UVF) versus lower visual field (LVF) representations 
in these columns, they found that the fMRI signal (BOLD) was stronger 
for the near stimuli in the LVF representation, and for the far stimuli in 
the UVF representation. This suggests that disparity encoding in higher 
visual areas also reflects the biases in the natural statistics of binocular 
disparities. Interestingly, plausible evidence for a similar bias has been 
recently reported in the mouse cortex. La Chioma et al. (2019) used 

drifting vertical gratings and RDS stimuli to assess horizontal disparity 
tuning in three areas of the mouse cortex: primary visual area V1, 
rostrolateral area RL (mostly coding for the LVF), and lateromedial area 
LM (mostly coding for the UVF). They found that more neurons were 
tuned for crossed disparities in the RL compared to the two other re
gions. Their results also suggested an effect of elevation on disparity 
preference. In both V1 and RL, they found LVF-located cells to be, on 
average, more selective to crossed disparities than UVF-located cells. 

The relationship between horizontal disparity and elevation in the 
visual field can lead to a number of interesting predictions. Here, we 
outline two such cases which have been studied. First, the relation 
between horizontal disparity and elevation could affect the empirical 
horopter, the locus in space that projects on retinal corresponding 
points where stereoacuity is the finest. Numerous studies have shown 
that, in humans, the shape of the vertical component of the horopter 
has a backward tilt, instead of being a vertical plane (E. Cooper et al., 
2011; von Helmholtz, 1924; Tyler, 1991), and it has been suggested 
that this tilt could reflect the distribution of binocular disparities in 
natural scenes (Sprague et al., 2015). Cooper and Pettigrew (1979) 
indirectly estimated the tilt of the horopter in cat and owl by mapping 
the receptive field positions of binocular neurons at different elevations 
in the visual field. They showed that in these two species, where eye 
height is closer to the ground, the horopter was much more tilted than 
in humans, suggesting an adaptation of the visual system to the en
vironment. Second, this relationship between horizontal disparity and 
elevation can also affect vergence eye movements. For instance, Gibaldi 
and Banks (2019) suggested that rapid binocular eye movements reflect 
the distribution of binocular disparities. By having their participants 
make saccades to eccentric targets on a screen with a 3D setup, they 
demonstrated that the eyes converged more in the lower visual field 
and diverged more in the upper visual field, thus reflecting the pattern 
of crossed/uncrossed disparities in the two hemifields. 

The local variations of binocular disparity in natural scenes also 
have some interesting statistical properties and affect the perceived 
orientation of surfaces. In an analysis of the distribution of 3D or
ientations, Burge et al. (2016) found that tilts exhibit a strong cardinal 
bias: slants about the horizontal axes (tilt = 90°) are most probable, 
and slants about vertical axes (tilt = 0° and 180°) are the next most 
probable in the environment. Although they demonstrated that these 
biases strongly influence tilt estimates, however, the underlying neural 
mechanisms still remain to be revealed. For instance, single-cell re
cordings in the macaque caudal intraparietal area (CIP) showed that its 
neurons were selective to 3D orientations (slants and tilts) but had no 
biases toward specific values (Rosenberg et al., 2013). 

As mentioned briefly above, under naturalistic viewing conditions, 
there is a relationship between horizontal disparity statistics and ec
centricity in the visual field: binocular disparity distribution is broader 
in peripheral than in central vision (Hibbard, 2007). In addition, be
cause the two eyes are separated along a horizontal and not a vertical 
axis, the range of vertical disparities in the foveal field of view is ex
pected to be much smaller compared to horizontal disparities. Large 
vertical disparities are only projected on the retinae in the peripheral 
field of vision during oblique viewing (Read & Cumming, 2004). Re
latively few electrophysiological and behavioural studies have ad
dressed these predictions directly. Broader distributions of horizontal 
disparity in the periphery compared to the centre are in line with 
electrophysiological recordings in macaque V1 (Durand et al., 2007) 
and behavioral measurements of the upper disparity limit in humans 
(Ghahghaei et al., 2019). Durand et al. (2002, 2007) recorded disparity 
and orientation preference of V1 cells in macaque, both in the central 
and peripheral representation of the visual field. Their results revealed 
a reduced range of vertical disparity encoding in the central but not the 
peripheral visual field representation. Furthermore, they also found 
that horizontal and vertical disparities interact. Neurons with foveal 
receptive fields showed a preference for horizontal disparities, whereas 
neurons with peripheral receptive fields were found to respond robustly 
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to both horizontal and vertical disparities. This peripheral treatment of 
vertical disparities was also supported by the subsequent findings from  
Sprague et al. (2015) and Gibaldi, Canessa, and Sabatini (2017). Both 
studies showed that preferred vertical disparity is close to zero in the 
central visual field, and increases with eccentricity along oblique di
rections. Gibaldi, Canessa, and Sabatini (2017) also suggested that 
vertical disparities are much less affected by the structure of the en
vironment than horizontal disparities, as they found no significant 
difference between fixations made by human observers and random 
fixations. 

2.3. Joint statistics of binocular disparity and other visual properties 

In the environment, disparity is often correlated with other visual 
properties such as luminance, chromaticity, texture, orientation, and 
surface convexity. It is thus reasonable to assume that the joint pro
cessing of these visual features is likely to influence disparity estimation 

and depth perception. In this subsection, we present studies which 
describe these statistical correlations and their consequences at the 
neural and behavioural levels. 

Potetz and Lee (2003) reported the joint statistics between the range 
and light intensity of outdoor visual scenes. They showed that although 
the mean intensity of luminance images tends to be invariant, the same 
could not be said for range images, for which the average range patch is 
vertically slanted. Looking at the covariance between luminance and 
range, they found a negative correlation between both variables, sug
gesting that brighter pixels tend to be closer to the observer. In a sub
sequent study (Potetz & Lee, 2006), they showed that this negative 
correlation was the result of shadows that are present in natural scenes. 
This relationship between binocular disparities and luminance is also 
reflected in macaque V1 neuron responses. Samonds, Potetz, and Lee 
(2012) estimated the luminance and disparity preferences of macaque 
V1 neurons and found a negative correlation: neurons that preferred 
light contrast were mostly near-tuned, whereas far-tuned neurons 

Fig. 2. Horizontal disparity statistics in natural scenes covary with elevation. A. Natural statistics of binocular disparity during everyday tasks. Typical images from 
the recordings are shown on the left. The rightward disk provides the median horizontal disparity values (weighted across the considered tasks) at different positions 
of the visual field (disk radius corresponds to 10°). Red and blue values respectively correspond to crossed and uncrossed binocular disparities. Figureadapted from  
Sprague et al. (2015). B. Electrophysiological measurements. Probability density of horizontal disparity found in a meta-sample of ~800 neurons in the macaque 
primary visual cortex. Neurons with receptive-fields (RFs) in the lower/upper hemifield (respectively in red and blue) are more likely to be most selective to 
uncrossed/crossed disparities. Figure adapted from Sprague et al. (2015). C. Psychophysical measurements. Hibbard and Bouzit (2005) used ambiguous stimuli that 
could be interpreted as both in front of, and farther away from fixation. Here, we present the data for one observer (PH), which shows that the stimuli were more 
likely to be interpreted as being in front of the fixation plane (crossed disparity) when presented in the lower hemifield (black items), and away from fixation 
(uncrossed disparity) when presented in the upper hemifield (white items). Diamonds, circles and squares respectively correspond to elevations of ± 33.5, ± 50.3, 
and ± 67 arcmin. Data from Hibbard and Bouzit (2005). D. Computational model. A dataset of natural stereoscopic images was used to train two spike-timing 
dependent plasticity (STDP) models. The first model (blue) was trained only on the upper visual field, while the second model (red) was trained on the lower visual 
field. The two solid lines show the distribution of horizontal disparities in the two populations. Notice the similarity with electrophysiological data in B. Figure 
adapted from Chauhan et al. (2018). 
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tended to prefer dark contrast. Interestingly, by estimating the dis
tribution of binocular disparities in natural scenes separately for light 
increments and decrements, Cooper and Norcia (2014) found differ
ences that agree well with the negative correlation in V1 neuron pre
ferences reported by Samonds, Potetz, and Lee (2012). In the same 
study, they further designed a psychophysical experiment to test whe
ther human observers use this environmental prior (brighter is closer 
and darker is farther away). They manipulated luminance in natural 
images such that the stimuli either agreed (nearer is brighter) or dis
agreed (nearer is darker) with this prior. They found that observers 
judged images biased towards the environmental prior to have more 
depth, suggesting that humans exploit information about correlations 
between luminance and depth when estimating depth. This relationship 
between binocular disparity and luminance also holds for their varia
tion across the visual field. For instance, Su et al. (2013) used color 
images of natural scenes with corresponding ground-truth range maps 
at a high-definition resolution to demonstrate a covariation between 
local changes of disparity and luminance. 

In the same study (Su et al., 2013), the authors also found that bi
nocular disparity covaries with chromaticity in the environment. They 
modelled the prior and conditional distributions of luminance, chro
minance, and range with a Bayesian stereo algorithm and showed that 
the resulting binocular disparity maps were closer to the estimated 
distribution of binocular disparities when both luminance and chro
minance were implemented in the algorithm rather than luminance 
alone. This finding might explain why chromaticity information was 
found to influence the solving of the stereo correspondence problem in 
behavioural studies (Jordan et al., 1990; Simmons & Kingdom, 1994). 
At the neural level, a functional neuroimaging study in non-human 
primate (Verhoef et al., 2015) revealed the existence of a partial 
overlap between brain areas responding to binocular disparity and 
those responding to color in the macaque inferior temporal cortex. EEG 
measurements in humans have also suggested that the depth illusion 
obtained from contrast of colour (chromostereopsis) might involve 
cortical areas that also respond to binocular disparity (Séverac Cauquil 
et al., 2009). We believe these studies could suggest a joint coding of 
colour and disparity cues by common neural populations. However, to 
our knowledge, this joint coding has never been investigated system
atically at the neural level. 

We saw above that in natural scenes, local changes of disparity and 
luminance covary. For continuous surfaces, these local changes are also 
correlated with texture orientation. This relationship might be 
exploited by the visual system to judge 3D orientation (tilts and slants). 
Indeed, estimating Bayes optimal values of tilt using three visual cues 
(disparity, luminance and dominant texture-orientation), Burge et al. 
(2016) showed that if disparity is the most reliable cue, the precision of 
the optimal estimate is significantly increased when all three cues are 
combined in a congruent manner. Interestingly, their results also 
showed that a linear combination of cues weighted by their relative 
reliabilities results in tilt estimates which are close to Bayes optimal 
estimates. Approximate tilt estimation could therefore be achieved by 
simple linear computations. Several behavioural studies have suggested 
that the visual system exploits this strategy (Hillis et al., 2004; Knill & 
Saunders, 2003). At the neural level, fMRI (Murphy et al., 2013) and 
electrophysiological recordings (Rosenberg & Angelaki, 2014; Sanada 
et al., 2012) highlighted different visual areas that could be involved in 
the representation of 3D surface orientation from different cues in the 
primate brain. 

The ability of the visual system to take into account local variations 
in the relationship between different types of depth cues underlies an 
important feature of depth perception, namely, figure-ground segrega
tion. There are different figure-ground cues such as convexity, size, or 
contrast, and a very effective way to detach a figure from its back
ground is the combined use of disparity with a second figure-ground 

cue. Burge et al. (2010) showed that in a set of natural images, con
vexity and disparity are statistically correlated such that near regions 
are more likely to have convex contours. They further demonstrated 
that human observers exploit this correlation to judge depth separation 
between near and far regions. For a given disparity value, observers in 
their study tended to perceive more depth when nearer, occluding re
gions were convex than when they were concave. At the neural level, it 
has been shown that figure-ground relationships modulate responses 
from disparity selective neurons, with an increase in the response am
plitude when the figure is nearer than the surround for some brain areas 
in the human visual cortex (Cottereau et al., 2011, 2012). A similar 
result has been reported in the macaque where responses of disparity- 
selective V2 neurons were found to be stronger for the near region of a 
figure when both disparity and figure-ground cues (contrast borders) 
were congruent (Qiu & von der Heydt, 2005). Despite these promising 
results, the neural underpinnings of the joint coding of disparity and 
convexity remain to be revealed. 

3. Modelling population responses 

As demonstrated in the previous section, there is overwhelming 
evidence to suggest that biases in disparity statistics are reflected in 
the characteristics of both neural populations and behavior. This leads 
to an important question: whether there exist theoretical and com
putational principles which can explain the representations of these 
statistics found in biology (e.g., disparity tuning curves, estimates of 
horopter, discrimination thresholds etc.). In this section, we explore 
recent developments in computational modelling which offer a deeper 
insight into various aspects of this relationship. To varying degrees, 
these models address the problem of disparity computation in the 
early visual system, and more crucially, offer plausible hypotheses 
about why and how these computational systems may emerge in the 
first place. 

3.1. Theoretical background 

Most models of neural encoding are framed as generative problems, 
where the goal of neural representations is to encode various properties 
of the input with the highest possible benefit. The benefit, in most 
models, is a trade-off between fidelity and efficiency. While fidelity 
offers the advantage that the neural population is able to represent the 
input statistics to a high degree of accuracy, thereby offering maximum 
possibility for the selection of an appropriate behaviour, efficiency 
ensures that the incurred energetic costs are as low as possible. As we 
will see, the exact formulation of these goals depends on the philoso
phical standpoint of a given model. In doing so, each model emphasises 
specific constraints and computational goals of the neural population it 
seeks to describe. To begin, we offer a very general description of this 
set of models using a single equation. This equation, framed from a 
neural-networks perspective, is intended to serve as an anchor-point as 
we go through the various models in subsequent sections (see Fig. 3A 
for a schematic). Given an input set X , each model tries to address its 
fidelity-efficiency goals by identifying an optimal set of units with RFs 

, whose connectivity is described by a set of parameters . In most 
cases, this is achieved by solving a minimization problem: argmin , , 
where the objective function often takes the form: 

= +F X A X A S X A X A( , ( , , ), ) ( , ( , , ), )ext ext (1)  

Here, A is the activity of the network described by { , } in response 
to the given input X and an external signal Aext, F is the fidelity of the 
network with respect to the input, and S describes the efficiency con
straints imposed on the network. An excellent treatment of this fidelity- 
efficiency dichotomy is presented by Zhaoping (2006) to explain sal
iency-driven representations in the visual system. 
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Besides their position within the aforementioned fidelity-efficiency 
spectrum, various other schemes can be used to categorise models such 
as their computational architecture, their complexity, and their accu
racy. However, here we choose a simpler and more biologically in
tuitive criterion to categorise models - supervision. Models which do 
not require labelled examples or extrinsic intervention from the ex
perimenter during learning are classified as unsupervised, while models 
which require any form of external feedback are termed as supervised. 
Of course, there are some models which tend to employ both super
vision and unsupervised learning. For the purposes of this review such 
hybrid models will be included with the supervised models. 

3.2. Unsupervised models 

The first set of models we consider are unsupervised. In terms of Eq.  
(1), this means the term Aext is discounted. These models aim to show 
the direct impact of natural statistics on the selectivity of neural po
pulations in the early visual cortex, and draw crucial support from the 
observation that feedforward connections between the lateral genicu
late nucleus and the geniculo-recipient layers of the primary visual 
cortex are exclusively excitatory in nature. Specifically, we limit our
selves to models which describe disparity selectivity in populations of 
binocular neurons where the input signals originate from two, spatially 
proximal sensors (the two retinae). The spatial proximity of the sensors 
is crucial because it introduces correlations between the ocular signals 
which carry valuable information about the 3-D structure of the scene. 
The precise nature of these correlations is governed by the acquisition- 
geometry of the system (the interocular distance, the height of the 
ocular plane, the degree of orbital convergence etc.), and any given 
geometry emphasises some correlations over others. This phenomenon 
is not surprising and has already been described in the sections above 
using examples such as the cross/uncrossed disparity biases seen in the 
lower/upper hemifields in natural scenes (see Section 2.2). 

Following the seminal work by Barlow (1961, 2001) who proposed 

a direct link between natural statistics and observed neural selectivity, a 
plethora of models investigating these links have been proposed. These 
include models which explain the structure of ON/OFF LGN receptive 
fields and colour-opponency through decorrelation analyses (Atick 
et al., 1992; Barlow & Földiák, 1989; Buchsbaum & Gottschalk, 1983), 
models which show how oriented edges may be the most appropriate 
filters for neural encoding of natural images (Bell & Sejnowski, 1997; 
Olshausen & Field, 1996), and models which demonstrate that early 
visual computations may represent bottom-up, saliency-driven data 
compression (Zhaoping, 2000, 2006). However, most of these models 
have focussed on monocular image statistics. 

One of the first attempts to address how natural statistics shape 
binocular neural selectivity was made by Hoyer and Hyvärinen (2000). 
Their approach, similar in spirit to monocular studies by Bell and 
Sejnowski (1997) and van Hateren and van der Schaaf (1998), consisted 
of an initial linear decorrelation of the input, followed by an elimina
tion of higher order correlations through Independent Component 
Analysis (ICA). They employed a now widely used algorithm for ICA 
computation (fastICA) based on an iterative estimation of input ne
gentropy (Hyvärinen & Oja, 2000). In terms of Eq. (1), fastICA imposes 
no explicit constraints on the efficiency term S, and the fidelity F is 
implemented through a kurtotic optimisation on the individual filters to 
make their responses to elements of the input set X as statistically in
dependent as possible. They used patches from a stereo-dataset of 12 
natural images acquired using parallel cameras as input to their model. 
Upon convergence, all units in their studies showed oriented, edge-like 
RFs in either one or both eyes. Their ocular strength ratio (a measure of 
ocular dominance) ranged from highly monocular to highly binocular, 
peaking at an intermediate value. Interestingly, within binocular neu
rons, orientation and spatial frequency showed a close correspondence 
between the two eyes (only a qualitative report is provided). Using 
window-matching of the preferred stimuli for each binocular unit, they 
were able to identify disparity tuning curves which were tuned ex
citatory/inhibitory and near/far, similar to those reported in the 

Fig. 3. Optimisation of simple-cell like units. A. A typical feedforward model. Simple units accept binocularly generated inputs which are usually preprocessed using 
smoothing and blurring operations resembling the processing in the retinogeniculate pathway. Depending on the model, the output activity of simple units is 
modelled using linear or nonlinear transfer functions. Most procedures, directly or indirectly, employ a balance of fidelity metrics such as reconstruction of the 
original signal or detection accuracy, and efficiency measures such as sparsity or constraints on the distribution of activations. In addition, supervised and re
inforcement learning models also use supervisory signals which are either driven by the input (such as nominal disparity labels) or behaviour policies such as 
vergence minimization for fixation. The symbols used in the diagram correspond to Eq. (1) in the text. B. Receptive fields and disparity tuning curves. Receptive fields 
from three representative units (one unit per row) from an STDP-based feedforward model (Chauhan et al., 2018). The units show Gabor-like receptive fields in both 
eyes. The first neuron is tuned to zero disparity, the second neuron is tuned to small crossed (negative by convention) disparities, and the third neuron shows both 
position and phase tuning. The disparity tuning curves (DTCs) were estimated using binocular correlation (in red) and random-dot stereogram stimuli (grey). 
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monkey visual cortex (Poggio et al., 1985, 1988). 
Although highly informative, the study by Hoyer and Hyvärinen 

(2000) suffered from a crucial limitation - the sampling strategy em
ployed to generate left and right input patches only simulated sampling 
at fixation. Since disparity statistics in natural scenes show systematic 
variations with eccentricity (see Section 2.2) this meant that the ICA 
analysis was performed only on foveally centred patches. Furthermore, 
the size of the input was only available in pixel values, which made 
quantitative comparisons with biological data quite approximate.  
Hunter and Hibbard (2015) addressed this by introducing an extremely 
important element to the analysis - a well calibrated dataset of natural 
stereo-images (Hibbard, 2008). They used a custom rig which allowed 
two calibrated cameras to be arranged in realistic acquisition geome
tries. They were mounted around 65 mm apart to approximate human 
interocular distance, and were capable of symmetric vergence (albeit at 
zero elevation). Neglecting contributions from cyclovergence (which is 
almost negligible in a symmetric, zero-elevation vergence geometry), 
this geometry generates retinal projections which are much more rea
listic than one would acquire using parallel cameras. This allowed the 
authors to make a thorough comparison of disparity tuning between 
ICA units and neurons in the primary visual cortex. To do this, they 
analysed the parameters of Gabor functions fitted to the converged RFs 
in the two eyes. As expected, the RFs in the two eyes were closely 
matched, and showed narrowband frequency and orientation tuning. 
Unlike Hoyer and Hyvärinen (2000), however, their results showed a 
bimodal distribution of ocular dominance, with neurons either being 
strongly monocular (25%) or binocular (75%). Furthermore, using the 
fitted Gabor centres and phases, they were able to report the position 
and phase disparity distributions for the ICA ensemble. Both horizontal 
and vertical disparities peaked at zero, with the distribution for hor
izontal disparities being broader than vertical disparities – both these 
observations are extensively supported by studies in the macaque V1 
area (e.g. see Prince, Cumming, et al., 2002). Curiously, they also report 
a bimodal distribution of phase disparities with modes at zero and , 
i.e., the left and right receptive fields of most neurons in their popu
lation were either in-phase or out-of-phase - something that is not ob
served in real recordings where less than 20% of neurons are tuned 
inhibitory (see e.g. DeAngelis et al., 1991, or Prince, Cumming, et al., 
2002). In a later study (Hunter & Hibbard, 2016), they extended their 
approach to model representative complex cells by combining output 
from ICA units using the binocular energy model (BEM) – thus showing 
that the output of ICA units can drive disparity selective complex cells 
as well. However, in both studies they note that while ICA can indeed 
predict a realistic encoding of disparity, this encoding can only partially 
explain what is observed in real neuronal populations in the primary 
visual cortex. In a third study (Hunter & Hibbard, 2018), they explored 
how position in the receptive field can influence the distribution of 
disparity selectivity in ICA units. They found that ICA ensembles can 
reproduce many known biases such as an increase in disparity tuning 
with eccentricity, broader tuning for horizontal compared to vertical 
disparities, and a preference for crossed or uncrossed disparities de
pending on whether the receptive field was centred in the lower or 
upper hemifield (see Section 2.2). 

As noted earlier, one of the factors limiting how well ICA-based 
models explain biological data may be an emphasis on global over local 
correlations. In biological systems, plasticity is dominated by mechan
isms which operate over local synaptic topologies. Recently, Chauhan 
et al. (2018) proposed a rank-based binocular spiking model to explain 
how natural disparity statistics may drive the emergence of simple-cell 
like RFs (Fig. 3B). Their model consisted of an initial decorrelation 
stage using difference-of-Gaussian filters, followed by a neural network 
endowed with an abstract spike-timing dependent plasticity (STDP) 
rule and winner-take-all inhibition. The local rank-based plasticity rule 
tunes the network to detect the most frequently occurring features in 
the dataset, and the winner-take-all mechanism enforces sparseness in 
the converged ensemble. When trained on the same dataset as Hunter 

and Hibbard (2015) they were able to demonstrate that in addition to 
realistic binocular RFs, the model showed characteristic sub-optimal
ities associated with early visual neurons such as symmetrical, and 
consequently broadly tuned, RFs (Ringach, 2002). Contrary to the ICA 
model, the units in this model showed a bias for zero phase disparity, 
which concurs with reports in a number of species such as the macaque 
(Prince, Cumming, et al., 2002), cat (Anzai et al., 1999; DeAngelis et al., 
1991), and the barn-owl (Nieder & Wagner, 2000). Their model was 
also able to predict biases such as the broadening of population dis
parity tuning with eccentricity, and the correlation between elevation 
and disparity (see Fig. 2D and Section 2.2). Furthermore, using a second 
dataset which was collected using parallel cameras, they showed that 
learning of biases in naturalistic datasets is not sufficient to predict 
neural responses to disparity unless a realistic acquisition geometry is 
also taken into account. While closer to biological data, this model still 
suffered from a number of limitations such as the lack of retinotopy and 
inhibitory connections, and the inability to address the emergence of 
disparity selective complex cells. 

Together, these studies show how realistic constraints on data ac
quisition, information transfer and the formulation of learning rules can 
lead to units which can predict disparity responses in the early visual 
cortex. While they are able to address properties at a single-cell level 
such as disparity tuning curves of tuned excitatory/inhibitory and near/ 
far neurons, their main strength lies in the modelling of population- 
level characteristics such as the ocular dominance continuum (Prince, 
Cumming, et al., 2002) and the distributions of position and phase 
disparity (Anzai et al., 1999; DeAngelis et al., 1991; Nieder & Wagner, 
2000; Prince, Cumming, et al., 2002). Furthermore, units predicted by 
these models are closer to simple-cells. The highly nonlinear nature of 
excitatory and inhibitory interactions between retinogeniculate inputs, 
simple-cells, and complex-cells makes it difficult to formulate un
supervised models that can explain the emergence of complex-cells with 
similar elegance. 

Finally, any unsupervised approach is based on the inherent as
sumption that selectivity emerges primarily from the properties of the 
input. While this may be partially true for the first few geniculo-re
cipient synapses in layer IV-C, factors such as feedback from proximal 
layers and corticocortical inhibition make it less likely that this holds 
for most neurons beyond the very early sensory populations. Since any 
neural specialisation must, directly or indirectly, support evolutionarily 
meaningful behaviour (Barlow, 1961), it is likely that neural selectivity 
in these populations is also shaped by the affordances of behaviour. A 
second class of models which attempts to address this relationship be
tween encoding and behaviour is described in the next section. 

3.3. Supervised models 

Supervised models rely on labelled information to learn specific 
tasks such as detection and discrimination. The term Aext in Eq. (1) is no 
longer neglected, and during training, is usually a function of the input; 
i.e., =A A X( )ext ext . This allows the inclusion of signals which provide 
explicit feedback about the model’s response to stimulus features such 
as nominal class-labels, or more complicated functions such as corre
lates of oculomotor behaviour and grasping. In this section we will 
specifically concentrate on supervised models which investigate dis
parity selectivity through the use of natural and naturalistic binocular 
stimuli. 

One of the first models which attempted to make disparity estima
tions using natural stimuli was proposed by Gray et al. (1998). The 
model was based on a mixture-of-experts architecture (Jacobs et al., 
1991) consisting of separate local disparity, and global gating modules. 
The input to the network consisted of responses of disparity-energy 
filters applied to both synthetic (occluded shapes, RDS stimuli) and 
natural 1-D line-stimuli. The local disparity modules made local bino
cular energy calculations at various frequencies, while the gating 
module selected the appropriate combination of disparity modules for 
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any given stimulus. The model did not impose any direct efficiency 
constraints (S in Eq. (1)), and the weights were adjusted so as to op
timally classify the input disparity (i.e., A X( )ext signal represented an 
error in the prediction of the class label in the output layer). They 
showed that such a model can make reliable estimates of disparity even 
under conditions of transparency and occlusion, while displaying 
characteristic traits such as stereo-hyperacuity and the ability to predict 
the effects of low- and band-pass filtering of line targets on disparity 
discrimination thresholds (Westheimer & McKee, 1980). 

Okajima (2004) used an infomax network to investigate the pro
blem of phase versus position encoding of disparity. The model max
imised the mutual information between the input class and the network 
response under a low SNR assumption, and imposed no explicit con
straints on the efficiency term S. The network was trained on disparity- 
labelled Gaussian noise patterns and natural stimuli which were pre
processed using difference-of-Gaussian filters. Analysis of the para
meters of Gabor functions fitted to the converged RFs revealed that 
horizontal disparity was coded by both position and phase. In agree
ment with experimental observations, it was able to predict a decrease 
in phase disparity with spatial frequency (Anzai et al., 1999). However, 
it also predicted a decrease in position disparity with frequency which 
is not observed in the data. Okajima (2004) also proposed the inter
esting possibility that the ‘supervision’ in real neuronal assemblies 
could take the form of local temporal labelling where inputs within 
short time-windows are considered as belonging to the same class. 
Though quite approximate, we believe this is close to the temporal 
coding idiom of biologically observed mechanisms where locally pre
cise temporal coding modulates synaptic strengthening and, in some 
cases, weakening. 

The two aforementioned models exploited the disparity statistics of 
natural stimuli only to a limited extent. Burge and Geisler (2014) 
proposed a supervised scheme which used 1-D line-signals derived ex
clusively from binocular projections of monocular natural images. They 
used a Bayesian task-specific optimisation based on accuracy max
imization analysis (AMA) (Geisler et al., 2009), to construct a set of 
filters optimised for disparity detection. Although the sparsity S is not 
directly constrained, AMA optimisation also models scaled additive 
noise within individual filters (Burge & Jaini, 2017), which can affect 
encoding sparsity. The filters were found to possess properties which 
resemble simple-cells, such as similar preferred frequencies between the 
two eyes, and a spatial frequency bandwidth of ~1.5 octaves. Like the 
ICA-based unsupervised models, the final filter-bank also included RFs 
which consisted of anti-phase filters in the two eyes. Interestingly, since 
the co-occurrence of dark and bright edges at the same retinal co
ordinates in the two eyes is a relatively rare occurrence in natural 
scenes, these units were interpreted as providing information about the 
stimulus disparity by not responding (see Read & Cumming, 2007, for a 
discussion of how such neurons can account for responses to anti-cor
related random dot stereograms). Considering the goal of the AMA 
optimisation was to increase the accuracy of disparity-label classifica
tion, we believe this suggests that accurate disparity decoding ne
cessitates an encoding ensemble comprising binocular cells with both 
correlated and anti-correlated RFs. To show how the AMA responses 
could be used to decode disparity in novel inputs, the filtering was 
followed by a Bayesian optimal, maximum-a posteriori (MAP) decoder. 
The MAP decoder was found, to a qualitative agreement, to predict a 
number of psychophysical results such as the exponential decay in 
thresholds with an increase in disparity (McKee et al., 1990; Stevenson 
et al., 1992), and the patterns of sign-confusion for small disparities 
(Landers & Cormack, 1997). Notably, they were able to show that this 
decoder can be implemented by operations resembling the binocular 
energy model (see Section 4.1). 

In a more recent study, Goncalves and Welchman (2017) delved 
deeper into the question of the aforementioned non-responding units. 
They trained a binocular 3-layered CNN consisting of a convolutional 
ReLU layer (called simple units), followed by a max-pooling layer, and 

finally a softmax output layer (called complex units), by back
propagating errors in the classification of stimuli as near or far. The 
training stimuli were generated by projecting a dataset of luminance- 
field images of natural scenes (using the accompanying depth-map) on 
to various depth-planes and simulating disparity by horizontally 
shifting the projected image. By allowing both positive (excitatory) and 
negative (inhibitory) weights in their network, they were able to show 
that a complex unit trained to detect a given disparity developed 
stronger connections (both excitatory and inhibitory) with simple units 
which responded to similar disparities. Crucially, the connections were 
strongly excitatory when the left and right RFs of the simple unit were 
correlated, and strongly inhibitory when they were anti-correlated. 
Through this model, they were able to predict the attenuated responses 
for anti-correlated RDS stimuli (compared to correlated RDS) recorded 
in complex cells of the macaque (Cumming & Parker, 1997; Ohzawa 
et al., 1990; Samonds, Potetz, Tyler, & Lee, 2013). This suggests a more 
important role for corticocortical inhibition in disparity selectivity (e.g., 
see Read & Cumming, 2007, for an interesting phenomenological model 
of phase-disparity selective ‘lie detector’ neurons). 

The supervised models covered so far use categorical disparity la
bels under a strict classification paradigm. Under this paradigm, su
pervision is either interpreted as a task-specific feedback signal (Burge 
& Geisler, 2014) delivered at the end of each learning step, or a form of 
temporal, localised labelling (Okajima, 2004). However, another 
plausible source of such supervisory signals could simply be reactive 
cortical feedback pertaining to time-continuous sensorimotor demands. 
These demands, in turn, may either be goal-oriented (such as grasping, 
haptic affordances) or volitional (such as vergence eye-movements, 
accommodation). In these cases, the input to the model interacts con
tinuously with its output (active sequential learning), and supervisory 
signals are evaluative, as opposed to purely instructive – thus making 
them better suited to a reinforcement learning framework. In fact, hy
brid models which explicitly address this point of view by combining 
the learning of disparity with intrinsic supervisory feedback, are being 
increasingly used in robotics and computer vision (Gibaldi, Canessa, 
Solari, & Sabatini, 2015; Konda & Memisevic, 2014; Lelais et al., 2019). 
Although more directly applicable in the context of adaptive robotics, 
these models offer valuable insights into how motor behaviour can 
interact with disparity encoding. 

Here, we present one of the first such studies by Zhao et al. (2012) 
which specifically demonstrated how vergence control and efficient 
disparity encoding can be learnt simultaneously by combining efficient 
coding and reinforcement learning. They used translational shifts at 
various disparities (say dinput) to generate a binocular dataset from a 
database of natural monocular images. The input to the model was then 
generated by displaying patches from randomly selected stereo-images 
in blocks of 10 frames. For any given block (the image did not change 
within the 10-frame block), fixation was simulated by sampling patches 
from random locations within the image. The patches were not exactly 
centre-matched, and the distance between their centres was thus used 
as a measure of vergence (say v). In this scenario, the binocular fixation 
would be maintained when the retinal disparity ( =d d vretinal input ) 
would be zero. The model was divided into two stages. The first, un
supervised stage of the model computed a convolutional, sparse dic
tionary (simple units) using a two-stage process similar to Olshausen 
and Field (1996). The activity of the simple units was pooled using a 
squared nonlinearity to generate complex unit activations. This was 
followed by a second stage of reinforcement learning which used a 
modified natural actor-critic algorithm (Bhatnagar et al., 2009) to de
termine vergence behaviour policies. Running the first stage of the 
model resulted in Gabor-like simple units which were disparity selec
tive. Interestingly, the most active units were tuned excitatory, while 
the least active units were either tuned inhibitory or near/far tuned. 
Running the second stage of the model using converged simple units 
(from the first stage) resulted in the development of vergence behaviour 
which strongly reflected the past exposure of the simple units. 
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However, when both the first and second stage of the model were run 
simultaneously, both optimum realistic simple units, and optimum 
vergence behaviour were learnt such that when presented with an input 
at a given disparity dinput , the model robustly adjusted its vergence 
behaviour to maintain fixation (i.e., =d dretinal input). This study shows 
that not only is the joint learning of oculomotor and visual features 
highly effective, but that one may facilitate the other. In subsequent 
work, the robustness of this model was further verified and then de
monstrated using a robotic system (Lonini, Forestier, et al., 2013; 
Lonini, Zhao, et al., 2013). 

Together, supervised models demonstrate how the inclusion of 
feedback signals can enrich the interpretations of system level models. 
Contrary to what one might expect, these models do not diminish the 
role of fundamental information-theoretic principles such as the fidelity 
and efficiency of the resulting encoding which form the core of bottom- 
up, unsupervised models. Rather, through supervision, they add a be
havioural, top-down context to how the early visual system may extract 
useful features from natural stimuli. Certain testable predictions about 
disparity selective neural populations can already be made with the 
current models. The most notable amongst these is the inhibitory in
fluence of non-responding units with anti-correlated RFs in the two 
eyes, which have now been predicted by multiple studies (supervised 
models: Burge & Geisler, 2014; Goncalves & Welchman, 2017; un
supervised model: Hunter & Hibbard, 2016). Although such units have 
been reported in the literature, current reports estimate their popula
tion to be far below the model predictions. Indeed, tuned inhibitory 
cells represent about 15 percent of the disparity selective neurons re
corded in cats and macaques (DeAngelis et al., 1991; Poggio et al., 
1988; Prince, Pointon, et al., 2002) whereas the modeling studies 
mentioned above found around 35–40 percent of neurons to have anti- 
correlated receptive fields. Addressing this discrepancy is important 
(see Read & Cumming, 2017) and presents a real, and feasible challenge 
to both computational and experimental neuroscientists. 

4. Discussion 

4.1. Comparison with the binocular energy model 

A phenomenological model which has had considerable success in 
explaining numerous characteristics of complex-cells (most notably, 
their responses to random-dot stereograms) is the binocular energy 
model (BEM) (Fleet et al., 1996; Haefner & Cumming, 2008; Lippert & 
Wagner, 2001; Ohzawa et al., 1990; Read et al., 2003). BEM, proposed 
by Ohzawa et al. (1990), derives from a set of spatiotemporal energy 
models first proposed to explain motion detection (Adelson & Bergen, 
1985). It typically involves an initial linear filtering stage which models 
simple-cell responses, followed by a nonlinear combination. Outputs 
from quadrature sets of simple-cell filters are then summed to obtain 
complex-cell responses. 

Here, we draw attention to two studies which, within the framework 
of natural statistics-driven modelling, were able to draw interesting 
conclusions regarding the interactions between simple and complex 
cells predicted by BEM. Hibbard (2008) applied the BEM to natural 
stereoscopic images and found that while qualitative trends such as an 
increase in the range of encoded disparity with eccentricity can be 
predicted, BEM is not able to provide accurate quantitative predictions 
about neural tuning based on natural disparity statistics. Using a 
Bayesian inference paradigm, Burge and Geisler (2014) showed that if 
simple units are optimised for disparity detection, their responses show 
an approximately Gaussian distribution, thus allowing for the deriva
tion of a Bayesian-optimal decoder which has a quadratic form similar 
to a BEM unit. Both these studies suggest that BEM, while originally 
proposed as a purely mechanistic model to explain complex-cell re
sponses, remains, up to some degree, compatible with the natural sta
tistics of disparity. 

However, it must be noted that there are numerous known 

criticisms of the BEM which are also valid for models of disparity se
lective complex cells based on natural statistics. All these approaches 
are based on hierarchical cascades of computation and are therefore 
unable to satisfactorily explain the role of recurrent and inhibitory 
connections in real recordings. Indeed, in the cortex, synaptic connec
tions to disparity-selective complex cells are unlikely to be purely 
feedforward, and include lateral interactions between complex cells, 
intra- and interlaminar inhibition mediated by interneurons with vastly 
differing spatiotemporal properties, and direct thalamic inputs to some 
complex cells in L2/3, L5 and L6 (see, e.g., Bardy et al., 2006; Ferster & 
Lindström, 1983; Hoffmann & Stone, 1971; Livingstone & Tsao, 1999; 
Malpeli, 1983; McGuire et al., 1984; Tanaka, 1985, for an interesting 
overview of the debate over the years). Models based on recurrent 
connectivity and intradendritic activity have shown that it is important 
to consider the dynamics introduced by such non-hierarchical interac
tions (Archie & Mel, 2000; Chance et al., 1999; Samonds, Potetz, Tyler, 
& Lee, 2013; Tao et al., 2004), and a concrete theory about constraints 
which drive the structure and function of the complex-cell circuitry still 
remains elusive. 

4.2. Can current computational models explain binocular disparity 
selectivity development and/or refinement through visual experience? 

A very interesting, and perhaps also provocative claim that can be 
made by experience driven computational models of the early visual 
system is that in addition to neural selectivity, they may also be able to 
address plasticity during the critical period. Over the past decade, 
several studies (Hsu & Dayan, 2007; Hunt et al., 2013; Klimmasch et al., 
2018; Saxe et al., 2011) have shown that unsupervised models trained 
with modified inputs can reproduce what is observed in animal models 
trained under abnormal rearing conditions (Freeman & Pettigrew, 
1973; Wiesel & Hubel, 1963). For example, Hunt et al. (2013) used 
three different generative models and showed that all of them captured 
the changes of binocular selectivity observed in kittens reared under six 
different rearing conditions. Notably, they showed that asymmetries in 
inter-ocular correlation across orientations led to orientation-specific 
binocular receptive fields. More recently, Cloherty et al. (2016) used a 
computational approach based on Hebbian plasticity to predict how 
rearing animals with visual inputs biased towards vertical orientations 
in one eye and horizontal orientations in the other eye (cross-rearing) 
could change the spatial relationship between pinwheel and ocular 
dominance regions. These predictions were subsequently verified in 
cats reared under similar conditions. In one of our previous studies 
(Chauhan et al., 2018), we proposed that a model based on STDP could 
capture the progressive development of binocular disparity selectivity 
in early visual cortex (see e.g. movie 1 in this publication). 

Due to their ability to simulate abnormal viewing conditions, these 
computational approaches could also constitute an interesting tool to 
better understand developmental pathologies such as amblyopia which 
are associated with numerous deficits in binocular functions (see, e.g.,  
Levi et al., 2015, for a detailed amblyopia-specific review). Indeed, 
studies based on unsupervised learning have shown that neural en
sembles trained on visual inputs that are randomized between the two 
eyes do not develop selectivity to binocular inputs. Instead, such stimuli 
lead to mostly monocular RFs which do not respond well to binocular 
disparity (Chauhan et al., 2018; Hunter & Hibbard, 2015). 

Are the mechanisms described above enough to fully characterize 
the development and refinement of binocular disparity selectivity in 
early visual cortex? In numerous species, receptive fields at birth al
ready show some preliminary forms of responsiveness to visual features 
such as orientation and spatial frequency (see, e.g., Wiesel & Hubel, 
1974). For binocular disparity, despite the fact that selectivity under
goes some critical refinement during early life (Freeman & Pettigrew, 
1973; Norcia et al., 2017; Pettigrew et al., 1973; Pettigrew, 1974; Tao 
et al., 2014), it was shown that an initial form of binocular correlation 
exists in young macaque monkeys as early as the sixth postnatal day 
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(Chino et al., 1997). In humans, it was recently found that binocular 
disparity could be used to trigger vergence eye movements in 5- to 10- 
week old infants (Seemiller et al., 2018). Although such studies do not 
exclude the possibility that disparity selectivity is acquired through 
visual experience in the very first moments of life (see, e.g., Li et al., 
2006, who demonstrated that motion direction selectivity in the ferret 
is not present at eye opening but can develop within a few hours), they 
suggest that more comprehensive models of binocular disparity devel
opment should take into account prenatal processes such as those 
triggered by retinal waves (Ackman et al., 2012). Interestingly, pre
vious work has shown that unsupervised models such as those described 
in this review could also capture prenatal mechanisms of synaptic re
finement (Albert et al., 2008; Butts et al., 2007). We believe that 
combining such innate developmental mechanisms with experience 
driven learning could lead to models which better characterise both 
normal and abnormal development of binocular disparity selectivity. 

4.3. Perspectives for computational modelling of disparity selectivity 

In the preceding sections we have remarked on some of the lim
itations of current computational models which address disparity pro
cessing using natural statistics. Here, we briefly comment on two ad
ditional shortcomings, and how we believe they could be addressed. 
The first shortcoming is not related to computation, but the availability 
of datasets which realistically approximate retinal input. When one 
takes into account the various degrees of freedom of movement (orbital 
movement of the eyes within their sockets, and the movement of the 
head), and the curvature of the human retinae, the human visual geo
metry is indeed complicated. Consequently, ecologically valid datasets 
which closely replicate retinal input are very challenging to collect. 
Here, we note some of the more comprehensive datasets available in the 
public domain. 

Hibbard (2008) used two cameras with realistic fixations restricted 
to a straight-ahead, zero-elevation plane to collect a relatively large 
dataset of indoor and outdoor scenes (about 120 images in total). In an 
even more realistic acquisition, Sprague et al. (2015) used head- 
mounted cameras and an eye-tracking system to collect not only a bi
nocular video dataset, but also eye-fixation data. This was supple
mented by a projective model which translated the dataset to realistic 
retinal coordinates. While suitable for unsupervised learning of bino
cular disparity, both the aforementioned studies lacked distance-spe
cific labelling which may be required for ground truth labelling and 
supervised algorithms. Adams et al. (2016), in a very different ap
proach, collected LIDAR range-data and high dynamic range spherical 
imagery from locations sampling 25 indoor and outdoor categories. 
This dataset allowed for distance- labelling of pixels using a single 
centre-of-projection. In an even more accurate LIDAR dataset, Burge 
et al. (2016) co-registered LIDAR images with independent centres-of- 
projection for the two cameras – thus making it possible to accurately 
distance-label each pixel from each camera. However, both the LIDAR 
datasets lack eye-fixation data which could be useful for models which 
require precise retinal projections such as those exploring binocular 
saliency maps. 

Of these, only the first dataset has, as yet, been substantially 
exploited by binocular computational models. Most datasets used in 
current studies are either generated artificially by pixel shifting, or 
acquired using unrealistic camera geometries which do not reflect 
realistic retinal acquisition. While this allows the input data to be 
highly curated (which is especially useful for supervised learning) it 
also limits the comparative power of the models with respect to char
acterising real neuronal populations. Future work towards the collec
tion of realistic stereo-datasets using both traditional stereo-camera rigs 
and light-range and LIDAR imaging, and the development of realistic 
retinal projection models which can interpret these datasets, could 
greatly boost the quality of inputs used in the computational modelling 
of binocular vision (see, e.g., Ehinger et al., 2017; Iyer & Burge, 2018). 

Furthermore, it is important to make such resources available in the 
public domain so that they can be used to compare models on an equal 
footing. 

A second limitation of the current models is the lack of dynamics. 
Most of the approaches described in this review were based on natural 
stereoscopic images whereas our visual environment is dynamic – both 
because the objects in the surrounding space are moving, and because 
we are moving (our eyes, our head and our body). Thus, it seems very 
important for future computational models of stereoscopic vision to 
take this temporal aspect into account. Some of the motion properties in 
natural scenes are statistically correlated with binocular disparity, and 
therefore directly relevant for depth perception (see Section 2.3 for 
static visual properties that are correlated with binocular disparity in 
natural scenes). For example, motion parallax is a powerful depth cue 
(Rogers & Graham, 1979) based on velocity gradient that was proposed 
to be jointly coded with binocular disparity in macaque area MT in 
order to extract the 3D structure of the scene (Kim et al., 2015; Nadler 
et al., 2013). The same type of co-occurrence exists between binocular 
disparity and optic flow (Ito & Shibata, 2005), and could be used by our 
nervous system during navigation (Cardin & Smith, 2011). By training 
on monocular natural videos, unsupervised models based on ICA (van 
Hateren & Ruderman, 1998) and sparse coding (Olshausen, 2003) have 
reported converged, simple-cell like neural populations which show 
realistic spatiotemporal tuning and are selective to motion direction. 
Future studies should build on these approaches to derive models that 
are able to capture the statistical correlation that exist between bino
cular disparity and motion properties in dynamic natural scenes. In fact, 
joint-coding models spanning multiple domains (including luminance, 
contrast, colour) could perhaps provide a more realistic description of 
the early visual system, its relationship with behaviour, and the part 
that natural statistics play in shaping them both. 

5. Conclusions 

In this review, we described and discussed recent studies that 
characterise how binocular disparity statistics in natural scenes can 
influence neural responses in early visual cortex. We presented different 
computational approaches that permit to better understand how the 
underlying mechanisms emerge, possibly through visual experience 
during development. Finally, we compared these computational ap
proaches to more classical models of binocular disparity selectivity and 
proposed directions for future studies in this field of research. 
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