

Tracking subducted ridges through intermediate-depth seismicity in the Vanuatu subduction zone

Christian Baillard, Wayne C. Crawford, Valérie Ballu, Bernard Pelletier,

Esline Garaebiti

► To cite this version:

Christian Baillard, Wayne C. Crawford, Valérie Ballu, Bernard Pelletier, Esline Garaebiti. Tracking subducted ridges through intermediate-depth seismicity in the Vanuatu subduction zone. Geology, 2018, 46 (9), pp.767-770. 10.1130/G45010.1. hal-03009620

HAL Id: hal-03009620 https://hal.science/hal-03009620v1

Submitted on 29 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

E: geology@geosociety.org W: geosociety.org/gsa T: @geosociety

FOR PEER REVIEW - CONFIDENTIAL

Tracking subducted ridges through intermediate-depth seismicity in the Vanuatu subduction zone

Tracking no: G45010R

Authors:

Christian Baillard (University of Washington School of Oceanography), Wayne Crawford (Institut de Physique du Globe de Paris), Valérie Ballu (Littoral ENvironnement et Sociétés), Bernard Pelletier (Institut pour la Recherche et le Développement), and Esline Garaebiti (Geohazards Section, Vanuatu Meteorology and Geohazards Department)

Abstract:

The distribution of intermediate-depth seismicity beneath the Vanuatu archipelago includes several seismic clusters/alignments and gaps, including a remarkable 200×150 km gap beneath central Vanuatu. We show that a zone of enhanced seismicity beneath this gap corresponds to the most likely trace of the subducted D'Entrecasteaux Ridge (DER) and that another region of aligned seismicity to the south may correspond to another significant, now disappeared ridge. We suggest that regions of aligned intermediate-depth seismicity beneath Vanuatu are traces of subducted oceanic features on the downgoing plate, probably caused by enhanced hydration beneath them prior to subduction. The seismic gap above the DER trace, previously interpreted as a tear in the slab, may instead be a region of reduced hydration due to thick/unfractured input crust, low bending of this crust before subduction and/or greater slab residence time at shallower subducted depths, the latter two being directly related to DER collision. We propose that an uneven distribution of intermediate-depth seismicity at subduction zones may provide a window to the history and effects of subducted oceanic features.

- 1 Tracking subducted ridges through intermediate-depth seismicity in the Vanuatu
- 2 subduction zone

Christian Baillard¹, Wayne C. Crawford², Valérie Ballu³, Bernard Pelletier⁴ and Esline
 Garaebiti⁵

¹ School of Oceanography, University of Washington, 1503 NE Boat St, 98105 Seattle, WA, US,

6 baillard@uw.edu

- 7 ²Institut de Physique du Globe de Paris, CNRS UMR 7154, Université Paris Diderot, 1 rue Jussieu,
- 8 75238 Paris cedex 05, France, crawford@ipgp.fr
- 9 ³Littoral ENvironnement et Sociétés (LIENSs), CNRS UMR 7266, Université de La Rochelle, 2 rue
- 10 Olympe de Gouges, 17000 La Rochelle, France, valerie.ballu@univ-lr.fr
- ⁴Institut pour la Recherche et le Développement, Nouméa, New Caledonia, bernard.pelletier@ird.fr
- ⁵Geohazards Section, Vanuatu Meteorology and Geohazards Department, PMB 9054, Lini Highway,
- 13 Number 2, Port Vila, Vanuatu, gesline@vanuatu.gov.vu

14 ABSTRACT

15 The distribution of intermediate-depth seismicity beneath the Vanuatu archipelago includes 16 several seismic clusters/alignments and gaps, including a remarkable 200×150 km gap beneath 17 central Vanuatu. We show that a zone of enhanced seismicity beneath this gap corresponds to the 18 most likely trace of the subducted D'Entrecasteaux Ridge (DER) and that another region of aligned seismicity to the south may correspond to another significant, now disappeared ridge. We suggest that 19 20 regions of aligned intermediate-depth seismicity beneath Vanuatu are traces of subducted oceanic 21 features on the downgoing plate, probably caused by enhanced hydration beneath them prior to 22 subduction. The seismic gap above the DER trace, previously interpreted as a tear in the slab, may 23 instead be a region of reduced hydration due to thick/unfractured input crust, low bending of this crust 24 before subduction and/or greater slab residence time at shallower subducted depths, the latter two 25 being directly related to DER collision. We propose that an uneven distribution of intermediate-depth 26 seismicity at subduction zones may provide a window to the history and effects of subducted oceanic 27 features.

28

29 INTRODUCTION

30 The ~500 km long Vanuatu archipelago overlies one of world's most seismically active 31 subduction zones, with an average of one magnitude 7+ earthquake recorded per year since 1972 32 (National Earthquake Information Center). The present-day convergence rate between the Vanuatu 33 islands and the subducting Australian plate varies from 120 mm/yr in the south to 160 mm/yr in the 34 north, but slows to 35 mm/yr in the center (Fig. 1) (Calmant et al., 2003; Bergeot et al., 2009). This 35 slowing, and the existence of uplift sequences affecting part of the forearc islands (up to 6 mm/yr over 36 the past 150 Ka) (Taylor et al., 2005), can be linked to the subduction of a large and irregular 37 bathymetric feature: the D'Entrecasteaux Ridge (DER). The DER, which extends back along the 38 Australian Plate to New Caledonia, appears to have entered into subduction 2-3 Ma at the Epi 39 reentrant, ~160 km to the south (Fig. 1); (Greene et al., 1994; Meffre and Crawford, 2001).

40 Intermediate depth seismicity (50-300 km depth) in the Vanuatu region is mostly 41 constrained by the global seismic network. Shallow seismicity (< 50 km depth) is constrained by a 42 temporary network that focused on the central forearc in 2008-9 (Baillard et al., 2015). Intermediate-43 depth seismicity in the Vanuatu region falls on or near a Wadati-Benioff zone corresponding to the 44 subducting slab and is highly variable along-strike, with several clusters or alignments of intense 45 seismicity as well as several regions almost completely lacking seismicity (Fig. 2A). Most authors 46 associate variations in intermediate-depth seismicity with how much water is subducted and the depth 47 and temperatures at which dehydration embrittlement occurs (e.g., Hacker et al., 2003; Yamasaki and 48 Seno, 2003; Omori et al., 2004; Milsch and Scholz, 2005) and the maximum depth of this seismicity 49 is generally greater in colder subducting slabs than in warmer ones (Kirby et al., 1996; Omori et al., 50 2004; Abers et al., 2013). Most of these observations and models are derived from differences 51 between subduction zones, but variations are also observed within some subduction zones (e.g., 52 Eberhart-Phillips et al. (2013) for New Zealand and Shillington et al. (2015) for Alaska), where they 53 are generally explained as local differences in hydration prior to subduction associated with 54 differences in plate fabric orientation with respect to the trench axis.

55 In this study we show that a region of enhanced seismicity in Central Vanuatu (Area C in Fig. 2A) 56 corresponds to the most likely trace of the subducted DER. We suggest that the enhanced seismicity 57 results from dehydration processes of the oceanic crust and upper mantle beneath the DER and that 58 the aseismic region above it could be caused by lower hydration of surrounding slab. Other 59 alignments of intermediate-depth seismicity beneath Vanuatu could also correspond to subducted 60 bathymetric features, including one just north of the DER trace (Area N in Fig. 2A) and another 400 61 km to the south (Area S in Fig. 2A), in front of a possible subduction front reentrant (Figs. 1 and 2B). 62 The traces of these features could provide a means for determining the past geometry and effects of 63 subduction and collisions at the Vanuatu and other subduction zones.

64

65 SEISMICTY VARIATIONS AROUND THE DER

66 Regions of enhanced intermediate-depth seismicity are often associated with local 67 dehydration of minerals within the subducting slab as it descends (Eberhart-Phillips et al., 2013; 68 Shillington et al., 2015; Paulatto et al., 2017). The northern portion of the DER, composed of Eocene 69 magmas, can be described as a fossil transform fault or subduction zone that links up with the fossil 70 New-Caledonia subduction zone, which was mainly active during the Eocene. The southern portion of 71 the DER, including the Bougainville seamount (Fig. 4), can be considered as a Eocene volcanic arc 72 (Maillet et al., 1983; Collot et al., 1994; Schellart et al., 2006; Mortimer et al., 2014). The history and 73 nature of the DER indicate a highly fractured system, with deep faults allowing enhanced hydration to 74 oceanic mantle depths as has been observed at other subduction zones (e.g., Lefeldt & Grevemeyer, 75 2008; Lefeldt et al., 2009; Ivandic et al., 2010; Fujie et al., 2013; Shillington et al., 2015). The 76 relatively high thermal parameter of the Australian plate at intermediate depth (> 2400: Text T1 and 77 Baillard et al., 2015) allows hydrous minerals to be carried deep in the mantle before dehydration.

78 We estimated the position of the subducted DER under the Vanuatu arc by fitting a curve on 79 the descending slab between the current point of collision and the point of collision 2-3 Ma projected 80 along the slab (Fig. S1 and Text T2). The position and the termination of this projected ridge 81 correspond to a region of enhanced intermediate-depth seismicity beneath the slab's biggest seismic 82 gap (Figs. 2A, 3 and S2). The trace of this enhanced seismicity extends from 100 to 200 km depth, 83 indicating upper oceanic mantle deserpentinization: oceanic crust eclogitization is generally limited to 84 < 150 km depth (e.g., Hacker et al., 2003b; Maruyama and Okamoto, 2007) and the apex of this 85 process is estimated at 75 km depth in Vanuatu (Baillard et al., 2015), whereas the apex of oceanic 86 mantle deserpentinization is estimated at 170-220 km for Vanuatu (Syracuse et al., 2010). Most 87 intermediate-depth Vanuatu earthquakes have N-S (Trench-parallel) strike directions, suggesting that 88 they are driven by slab pull forces (Christova et al., 2004), but some events along the DER trace have 89 E-W orientations (Fig. S3), consistent with the orientation of the DER horsts and grabens (Maillet et 90 al., 1983).

A 200 km wide "gap" in intermediate-depth seismicity from 50-200 km depth lies just above
and south of the aforementioned seismicity alignment (Area C in Fig. 2). The gap was previously

93 interpreted to be the signature of the subducted DER itself (Marthelot et al., 1985) or a tear in the 94 subducting slab (Prévot et al., 1991; Chatelain et al., 1992) but, based on more recent understanding 95 of the controls on intermediate-depth seismicity, we propose that it is a low hydration region. This 96 low hydration could be pre-existing or driven by the DER collision. The pre-existing North Loyalty 97 Basin is composed of a ~15 km thick, relatively unfractured oceanic crust (Pontoise et al., 1980; 98 Maillet et al., 1983), which may be relatively un-hydrated. The DER collision tends to flatten the 99 entry of the adjacent plate into subduction and slow the convergence rate, reducing the bending force 100 on that plate before subduction and increasing the time that the plate would spend at shallow depths. 101 This reduced bending at shallow depths could limit the penetration of faults and therefore the 102 hydration of the oceanic lower crust and upper mantle, while the long time at shallow subduction 103 depths would allow more time for eclogitization reactions in the crust to run their course before the 104 slab descends to intermediate-earthquake depths. If these last two "active" processes are indeed 105 important in reducing slab hydration, then the shift of the gap to the south with increasing depth 106 suggests that the slowed convergence currently observed around south Santo island is a long-term 107 feature which has migrated north with the DER collision zone.

108

109

OTHER LINEATIONS OF INTERMEDIATE-DEPTH SEISMICITY

110 Other lineations of intermediate-depth seismicity beneath Vanuatu may also be linked to 111 subducted oceanic features (Fig. 2A). One such feature starts just north of the DER lineation at 112 approximately 100 km depth and extends northward to ~200 km depth (Area N in Fig. 2A). It is, like 113 the DER trace, oblique to the convergence direction. This feature could be linked to a subducted 114 portion of the West Torres Plateau (Fig. 1), which is currently colliding offshore north Santo island, 115 causing the uplift of the Torres islands (Taylor et al., 1985). Similar to the DER trace, there is a 116 secondary cluster of events with E-W strike, suggesting the possible reactivation of pre-existing faults 117 (Fig. S3). Intermediate-depth seismicity also appears to be slightly reduced above this lineation.

Another strong lineation of intermediate-depth earthquakes is observed near Tanna and Erromango islands (Area S in Fig. 2A). This feature does not correlate with any current seamounts or ridges on the subducting plate, but a morphologic feature on the trench just southwest of Tanna (Figs. 1 and 2B) could be a reentrant caused by an ancient collision front.

122 **DISCUSSION**

Lineations in intermediate-depth seismicity may reveal the subduction history at other subduction zones where strongly hydrated oceanic features enter into subduction. For example, Nakajima and Hasegawa (2006) observed a lineation of seismicity that could be linked to a subducted fracture zone. Other examples include a lineation of intermediate-depth earthquakes beneath Ecuador, which appears to correlate with the subducted prolongation of the Grijalva Fracture Zone (Fig. S4) and similar correlations beneath Peru with the Nazca fracture zone and beneath Tonga-Kermadec with the Louisville Ridge (Figs. S5-6).

Variations in intermediate-depth seismicity have been also observed to correlate with variations in surface volcanic rheology (Eberhart-Phillips et al., 2013). Vanuatu intermediate-depth earthquake lineations appear to correlate with along-arc variations in isotopic ratios (Fig. S7), high Ba/La and Pb/Nd ratios are observed directly above subducted features, indicating possible enrichment by slab derived fluids (Peate et al., 1997) released predominantly in the vicinity of the subducted features. Finer-scale isotope measurements are needed to validate this hypothesis.

Where intermediate depth earthquakes do not correlate with present-day topographic features on the subducting plate, they may help to identify subducted features with no remaining seafloor trace. Both the enhanced seismicity and any seismic gaps around them could be studied to determine if there was significant blocking or slowing of convergence when the feature subducted. Deducing the past history of oceanic features could help both kinematic constructions of local plate history and our understanding of the role of subducted oceanic features on arc magmatism.

142 CONCLUSION

143 Lineations and gaps in intermediate-depth seismicity beneath the Vanuatu arc appear to be associated 144 with deeply fractured subducted features. The clearest correlation is observed with the 145 D'Entrecasteaux ridge, whose most likely continuation beneath the Vanuatu arc corresponds to a 146 region of enhanced intermediate-depth seismicity within the subducted slab (Fig. 4). A large region 147 of reduced intermediate-depth seismicity above this zone may result from reduced oceanic/mantle 148 hydration there, either as an effect of pre-existing thick oceanic crust of the North Loyalty Basin or 149 because of processes related to reduced bending behind the DER collision zone: 1) reduced deep 150 hydration of pre-subducted slab through reduced bending and fault penetration and 2) increased 151 dehydration of subducted oceanic crust at shallow depths because of a longer residence there.

152 Other lineations that may be associated with subducted features include 1) an oblique zone just north 153 of the DER extension, which may correspond to the West Torres Plateau going back to a time when it 154 was closer to the location of the Torres forearc islands; 2) a dip-parallel zone beneath Tanna and 155 Erromango islands, which may be associated with a completely subducted hydrated ridge.

156 Such lineations may provide a picture of past shallow subduction zone features, which could be used157 to model and/or explain past changes in seismicity and plate motions.

158

159 ACKNOWLEDGMENTS

We thank the Vanuatu Government and the Vanuatu Geohazards Observatory for their aid and
support. We also thank IPGP and the French Government for their support through the Ph.D.
Scholarship.

163 **REFERENCES CITED**

- 164 Abers, G.A., Nakajima, J., van Keken, P.E., Kita, S., and Hacker, B.R., 2013, Thermal-petrological
- 165 controls on the location of earthquakes within subducting plates: Earth and Planetary Science

166 Letters, v. 369–370, p. 178–187, doi: 10.1016/j.epsl.2013.03.022.

- 167 Baillard, C., Crawford, W.C., Ballu, V., Régnier, M., Pelletier, B., and Garaebiti, E., 2015, Seismicity
- and shallow slab geometry in the central Vanuatu subduction zone: Journal of Geophysical

169 Research: Solid Earth, v. 120, no. 8, p. 5606–5623, doi: 10.1002/2014JB011853.

- 170 Bergeot, N., Bouin, M.N., Diament, M., Pelletier, B., Régnier, M., Calmant, S., and Ballu, V., 2009,
- 171 Horizontal and vertical interseismic velocity fields in the Vanuatu subduction zone from GPS
- 172 measurements: Evidence for a central Vanuatu locked zone: Journal of Geophysical Research, v.
- 173 114, no. B6, p. B06405, doi: 10.1029/2007JB005249.
- 174 Calmant, S., Pelletier, B., Lebellegard, P., Bevis, M., Taylor, F.W., and Phillips, D.A., 2003, New
 175 insights on the tectonics along the New Hebrides subduction zone based on GPS results: Journal
 176 of Geophysical Research, v. 108, no. B6, p. 2319, doi: 10.1029/2001JB000644.
- 177 Chatelain, J.-L., Molnar, P., Prévot, R., and Isacks, B., 1992, Detachment of part of the downgoing
 178 slab and uplift of the New Hebrides (Vanuatu) Islands: Geophysical Research Letters, v. 19, no.
- 179 14, p. 1507–1510, doi: 10.1029/92GL01389.
- 180 Christova, C., Scholz, C.H., and Kao, H., 2004, Stress field in the Vanuatu (New Hebrides) Wadati -
- 181 Benioff zone inferred by inversion of earthquake focal mechanisms: Journal of Geodynamics, v.
- 182 37, no. 2, p. 125–137, doi: 10.1016/j.jog.2003.11.001.
- 183 Collot, J., Greene, H., Fisher, M., and Geist, E.L., 1994, Tectonic accretion and deformation of the
- 184 accretionary wedge in the North d'Entrecasteaux ridge-New Hebrides Island arc collision zone:
- 185 evidence from multichannel seismic reflection profiles and leg 134 results: Proceedings of the
- 186 Ocean Drilling Program, Scientific Results, v. 134.
- 187 Eberhart-Phillips, D., Reyners, M., Faccenda, M., and Naliboff, J., 2013, Along-strike variation in

- subducting plate seismicity and mantle wedge attenuation related to fluid release beneath the
 North Island, New Zealand: Physics of the Earth and Planetary Interiors, v. 225, p. 12–27, doi:
 10.1016/j.pepi.2013.10.002.
- Fujie, G., Kodaira, S., Yamashita, M., Sato, T., Takahashi, T., and Takahashi, N., 2013, Systematic
 changes in the incoming plate structure at the Kuril trench: Geophysical Research Letters, v. 40,
- 193 no. 1, p. 88–93, doi: 10.1029/2012GL054340.
- Greene, H., Collot, J., Fisher, M.A., and Crawford, A., 1994, NEOGENE TECTONIC EVOLUTION
 OF THE NEW HEBRIDES ISLAND ARC : A REVIEW INCORPORATING ODP DRILLING
- 196 RESULTS: Proceedings of the Ocean Drilling Program, Scientific Results, v. 134.
- 197 Hacker, B.R., Peacock, S.M., Abers, G.A., and Holloway, S.D., 2003, Subduction factory 2. Are
- 198 intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration
- 199 reactions? Journal of Geophysical Research: Solid Earth, v. 108, no. B1, p. 2030, doi:
- 200 10.1029/2001JB001129.
- Ivandic, M., Grevemeyer, I., Bialas, J., and Petersen, C.J., 2010, Serpentinization in the trench-outer
 rise region offshore of Nicaragua: constraints from seismic refraction and wide-angle data:
- 203 Geophysical Journal International, v. 180, no. 3, p. 1253–1264, doi: 10.1111/j.1365-
- 204 246X.2009.04474.x.
- Kirby, S., Engdahl, R., and Denlinger, R., 1996, Intermediate-depth intraslab earthquakes and arc
 volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting
 slabs: Geophysical Monograph Series, p. 195–214, doi: 10.1029/GM096p0195.
- 208 Lefeldt, M., and Grevemeyer, I., 2008, Centroid depth and mechanism of trench-outer rise
- 209 earthquakes: Geophysical Journal International, v. 172, no. 1, p. 240–251, doi: 10.1111/j.1365210 246X.2007.03616.x.
- Lefeldt, M., Grevemeyer, I., and Goßler, J., 2009, Intraplate seismicity and related mantle hydration at
 the Nicaraguan trench outer rise: Geophysical Journal,.

- 213 Maillet, P., Monzier, M., Selo, M., and Storzer, D., 1983, The D'Entrecasteaux Zone (Southwest
- Pacific). A petrological and geochronological reappraisal: Marine Geology, v. 53, no. 3, p. 179–
 197, doi: 10.1016/0025-3227(83)90073-7.
- 216 Marthelot, J., Chatelain, J., Isacks, B., Cardwell, R., and Coudert, E., 1985, Seismicity and attenuation
- 217 in the central Vanuatu (New Hebrides) islands : a new interpretation of the effect of subduction
- of the D'Entrecasteaux fracture zone: Journal of Geophysical Research, v. 90, p. 8641–8650.
- Maruyama, S., and Okamoto, K., 2007, Water transportation from the subducting slab into the mantle
 transition zone: Gondwana Research, v. 11, no. 1–2, p. 148–165, doi: 10.1016/j.gr.2006.06.001.
- Meffre, S., and Crawford, A.J., 2001, Collision tectonics in the New Hebrides arc (Vanuatu): The
 Island Arc, v. 10, no. 1, p. 33–50, doi: 10.1046/j.1440-1738.2001.00292.x.
- 223 Milsch, H.H., and Scholz, C.H., 2005, Dehydration-induced weakening and fault slip in gypsum:
- Implications for the faulting process at intermediate depth in subduction zones: Journal of
 Geophysical Research: Solid Earth, v. 110, no. B4, p. 1–16, doi: 10.1029/2004JB003324.
- Mortimer, N., Gans, P.B., Palin, J.M., Herzer, R.H., Pelletier, B., and Monzier, M., 2014, Eocene and
 oligocene basins and ridges of the coral sea-new caledonia region: Tectonic link between
- 228 melanesia, fiji, and zealandia: Tectonics, v. 33, no. 7, p. 1386–1407, doi:
- 229 10.1002/2014TC003598.
- 230 Nakajima, J., and Hasegawa, A., 2006, Anomalous low-velocity zone and linear alignment of
- 231 seismicity along it in the subducted Pacific slab beneath Kanto, Japan: Reactivation of
- subducted fracture zone? Geophysical Research Letters, v. 33, no. 16, p. L16309, doi:
- 233 10.1029/2006GL026773.
- Omori, S., Komabayashi, T., and Maruyama, S., 2004, Dehydration and earthquakes in the subducting
 slab: empirical link in intermediate and deep seismic zones: Physics of the Earth and Planetary
 Interiors, v. 146, no. 1–2, p. 297–311, doi: 10.1016/j.pepi.2003.08.014.
- 237 Paulatto, M., Laigle, M., Galve, A., Charvis, P., Sapin, M., Bayrakci, G., Evain, M., and Kopp, H.,

238	2017, Dehydration of subducting slow-spread oceanic lithosphere in the Lesser Antilles: Nature
239	Communications, v. 8, no. May, p. 15980, doi: 10.1038/ncomms15980.
240	Peate, D.W., Pearce, J. a., Hawkesworth, C.J., Colley, H., Edwards, C.M.H., and Hirose, K., 1997,
241	Geochemical Variations in Vanuatu Arc Lavas: the Role of Subducted Material and a Variable
242	Mantle Wedge Composition: Journal of Petrology, v. 38, no. 10, p. 1331-1358, doi:
243	10.1093/petroj/38.10.1331.
244	Pontoise, B., Latham, G., Daniel, J., Dupont, J., and Ibrahim, B., 1980, Seismic refraction studies in
245	the New Hebrides and Tonga area: UN ESCAP, CCOP/SOPAC Tech. Bull, p. 47–58.
246	Prévot, R., Roecker, S.W., Isacks, B.L., and Chatelain, J.L., 1991, Mapping of low P wave velocity
247	structures in the subducting plate of the central New Hebrides, southwest Pacific: Journal of
248	Geophysical Research: Solid Earth, v. 96, no. B12, p. 19825–19842, doi: 10.1029/91JB01837.
249	Schellart, W.P., Lister, G.S., and Toy, V.G., 2006, A Late Cretaceous and Cenozoic reconstruction of
250	the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes:
251	Earth-Science Reviews, v. 76, no. 3-4, p. 191-233, doi: 10.1016/j.earscirev.2006.01.002.
252	Shillington, D.J., Bécel, A., Nedimović, M.R., Kuehn, H., Webb, S.C., Abers, G. a., Keranen, K.M.,
253	Li, J., Delescluse, M., and Mattei-Salicrup, G. a., 2015, Link between plate fabric, hydration and
254	subduction zone seismicity in Alaska: Nature Geoscience, v. 8, no. 12, p. 961–964, doi:
255	10.1038/ngeo2586.
256	Syracuse, E.M., van Keken, P.E., and Abers, G. a., 2010, The global range of subduction zone
257	thermal models: Physics of the Earth and Planetary Interiors, v. 183, no. 1–2, p. 73–90, doi:
258	10.1016/j.pepi.2010.02.004.
259	Taylor, F.W., Jouannic, C., and Bloom, A.L., 1985, Quaternary Uplift of the Torres Islands, Northern
260	New Hebrides Frontal Arc: Comparison with Santo and Malekula Islands, Central New
261	Hebrides Frontal Arc: The Journal of Geology, v. 93, no. 4, p. 419–438, doi: 10.1086/628964.
262	Taylor, F.W., Mann, P., Bevis, M.G., Edwards, R.L., Cheng, H., Cutler, K.B., Gray, S.C., Burr, G.S.,

- 263 Beck, J.W., Phillips, D. a., Cabioch, G., and Recy, J., 2005, Rapid forearc uplift and subsidence
- 264 caused by impinging bathymetric features: Examples from the New Hebrides and Solomon arcs:
- 265 Tectonics, v. 24, no. 6, p. n/a-n/a, doi: 10.1029/2004TC001650.
- 266 Yamasaki, T., and Seno, T., 2003, Double seismic zone and dehydration embrittlement of the
- 267 subducting slab: Journal of Geophysical Research: Solid Earth, v. 108, no. B4, p. 2212, doi:
- 268 10.1029/2002JB001918.
- 269
- 270

271 FIGURE CAPTIONS

277

Figure 1. The Vanuatu archipelago. Main islands with active volcanoes are filled in red. White arrows indicate the interseismic convergence rates along the subduction front (Calmant et al., 2003; Bergeot et al., 2009). Contour with triangles shows subduction front and solid black contour is the 3500 m depth contour on the island arc side of the subduction front. White rounded boxes surround the Epi and Tanna reentrants. The tilted black box shows the bounds used for the along-arc view in Fig 2. AP:

Australian Plate; NFB: North Fiji Basin; DER: D'Entrecasteaux Ridge; NLoB: North Loyalty Basin.

Figure 2. Along-arc view of Vanuatu seismicity and reentrants. Positions of active volcanoes are indicated by red triangles, other major islands by black bars. A) Earthquakes since 1972 (circles) as a function of depth. "Seismic gap" is outlined by polygons with dashed borders and seismicity clusters/alignments are outlined by rounded boxes. B) Distance between the subduction front and the 3500 m depth contour shown in Fig.1. The Tanna and Epi reentrants are labeled.

Figure 3. Seismicity from global and 2008-9 local networks and the projected subducted DER. Red line is the constant curvature model of the DER shown in Fig. S1. Dashed lines are the limits for different long-term convergence rates and DER shapes.

286 Figure 4. Conceptual figure showing how the distribution of intermediate-depth earthquakes (red 287 stars) relates to subducted topographic features. The dense fracture systems associated with these 288 features favor hydration of oceanic crust and upper mantle prior to subduction. Hydrous minerals are 289 then progressively dehydrated with increasing depth, triggering intermediate-depth earthquakes. 290 Dehydration progresses from the oceanic crust at lower depths (eclogitization) to the oceanic upper 291 mantle at greater depths (deserpentinization). The region of white rounded shapes indicates the 292 seismogenic zone. SB: Sabine Bank; BS: Bougainville Seamount; Gbr: Gabbro; Bsh: Blue Schist; 293 Prd: Peridotite; Srp: Serpentine

NNW

