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Abstract—The long term success of a human-robot interaction 
will depend on how comfortable and safe a human feels with it. 
But which feature of a robot’s movement determines human 
comfort? To address this question, here we considered four 
different models of human discomfort. We then designed an 
empirical human-robot co-worker task that enables us to both, 
quantify the discomfort experienced by the human co-worker 
by analyzing behavioral changes, and examine which model of 
discomfort explains the changes best. Using this task, we show 
that the perceived uncertainty in a robot’s movement is a key 
determinant of human discomfort, and we discuss how movement 
uncertainty can give a unified explanation for the modulation of 
human comfort with robots, and trust in them, as reported in 
several previous studies.

Keywords—human robot interaction; comfort; robot pre-
dictability; movement uncertainty; human perception

I. INTRODUCTION

Modern robots are required to work increasingly close to 
humans in co-worker scenarios where the robot has to often 
share the workspace with a human. To ensure the acceptance of 
robots in these scenarios, it is important to ensure safe human-
robot interactions. Several studies have addressed this issue 
from an engineering perspective by trying to see how a robot
should be designed [1] [2], controlled [3] [4] [5] or moved 
[6] [7] to ensure the safety of the human co-worker. However, 
fewer studies have looked at the human perspective during 
these interactions, to see what behaviors are perceived safe and 
comfortable by the humans. Human-robot interaction studies
have often tried to measure the ‘trust’ felt by the humans
towards robots [8] [9] [10] [11]. While the terminology of 
trust has been used broadly to explain various aspects of
human emotions during robot interactions [10], it is arguably a 
highly cognitive emotion, which is developed by an individual
towards an interacting partner, after explicit analysis of the
partner’s physical as well as task performance characteristics. 
In case of a robot, this can include how human it looks, its
performance reliability, performance ability and faults [12]
[13], sometime varying heavily with cultural factors [9]. On
the other hand, here we are interested in the more implicit
and automatic feeling that is induced by the presence of a
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robot near a human. By ‘comfort’ (or rather ‘discomfort’),
we refer to arousal with negative valence, related to anxiety
and fear, in a human when in the vicinity of a robot. An
example of this discomfort is the feeling that we have all
experienced in a crowded train when an unknown individual
stands too close to us. This discomfort makes us want to move
away from the person. The discomfort is stronger when the
person is not just standing nearby, but is dancing to the music
from his headphones, and would be arguably even stronger if
the moving human individual is replaced by a moving robot.
Here, first, we are interested in understanding what aspect of
the person’s (or robot’s) movement causes this discomfort.
Second, while previous studies have explored similar basic
emotions in the presence of robots [14] [15] utilizing cognitive
scoring methods to quantify the human emotions, we aim to
quantify the comfort by a behavioral measure- this we believe
is crucial for an automatic emotion, that we believe discomfort
is.

The discomfort mentioned in the example of the crowded
train is quite probably caused by the fear that the person or
robot may collide with us. It is thus obvious that discomfort is
perceived only when a robot is close enough to collide with us,
and correspondingly discomfort is minimal if the robot is very
far away. Thus here, we are interested in robot-human interac-
tion scenarios where a collision is possible. In such a scenario,
our main goal is to isolate the key aspect of robot behavior
that determines human discomfort. To answer this question,
we devised four qualitative models of human discomfort. Each
model is motivated by previous human behavioral studies and
our intuition, and considers one behavioral attribute (of the
robot) that may be a key determinant of human comfort. We
then designed an empirical industrial human-robot interaction
task and examined which of our model can explain the human
discomfort in the task best.

A. Discomfort Models

Before defining our comfort models, we start by defining the
undisturbed human trajectory (UHT) as the human movement
trajectory when performing his/her task without disturbance
from the robot co-worker -for example, when the robot is
sufficiently far away. Then, our first robot-proximity (RP)



model of discomfort assumes that the proximity of a robot
to a human’s undisturbed movement trajectory is the key
determinant of how comfortable the human is with it. This
model is inspired by the numerous human studies that have
shown that during movements, humans can isolate the key
features in their environment (usually edges of obstacles) that
are most likely to cause a collision during human movements
[16], and focus their visual attention on these points. In our
study, we hypothesized this key feature to be the location of
the tip of the robot end-effector (see our chosen task in the
methods section),every time it approached the human.

Let pt represent the closest distance of the robot end effector
to the UHT at any time t and let Pj represent the set of closest
distances of the robot end effector to the UHT over the jth

human trial. Then the discomfort of the human co-worker in
the trial k with the robot, represented by the variable δk, is
given in the RP model by:

δRP
k = γRP (1− 1

ρ
Ωk−1

j=1 [min(Pj)]) (1)

where Ωk2
k1[x] represents the statistical average of recordings

of the variable x in across the trials j = [k1, k2]. min()
represents the minimum value function and ρ corresponds to
the maximum value of the numerator and ensures that the
right hand side is constrained within [0,1]. γ is an unknown
proportionality constant between the variable on the right hand
side of the equation to the discomfort δk.

Second, the robot velocity (RV) model considers the robot
velocity to be the key determinant of human discomfort, and
that a human feels more discomfort when the average velocity
of a co-worker robot is faster. This model is motivated by
intuition and by visual studies that show that our attention
is attracted by large velocities of observed objects. The RV
model can thus be represented by:

δRV
k = γRV Ωk−1

j=1 [|Ṗj |]. (2)

Next, the robot range (RR) model considers that the discom-
fort is determined fundamentally by the range of the robot
movement. That is, if the movement range of the robot is
large, the discomfort is more. This model is motivated by
the intuition that, provided a robot is not very slow, larger
movements are scarier to humans than smaller movements.
The RR model thus assumes that

δRR
k = γRRΩk−1

j=1 [max(Pj)−min(Pj)]. (3)

Finally, the robot uncertainty (RU) model assumes that the
discomfort towards a robot is determined by how close the
robot comes to the UHT, but that the discomfort is modulated
by the perceived uncertainty in this value, and not its average
(like in the RP model). Implying, the discomfort of human
coworkers is increased when the uncertainty of how close the
robot will come to them increases. It is well know that interac-
tive human behaviors are guided by movement predictions of
their human [17] [18], as well as robot partners [19] [20] [14].
It can thus be considered that the behaviors are expected to be
influenced when the partner movements are less predictable,

and hence uncertain. Studies in social neuroscience show that
the trust we feel towards an interacting agent is determined by
our perceived uncertainty of their decision making behavior
during monetary and social transactions [21]. Uncertainty,
in regard to failures and errors by a robot has also shown
to influence the trust towards it [11] [22] [23]. The RU
model extends this idea to movement (rather than decision or
performance) uncertainty and in regard to comfort rather than
trust. The RU model assumes the standard deviation (STD)
of a movement as a measure of the perceived uncertainty and
can be represented as:

δRU
k = γRUSTDk−1

j=1 [min(Pj)]. (4)

Note that, as the values of γRP , γRV , γRR and γRU are not
known, these models do not allow us to analyze the discomfort
quantitatively. However, as we will show later, the models
still allow us to qualitatively determine the key behavioral
determinant of discomfort.

II. METHODS

We developed an empirical human-robot co-worker task and
utilized different robot behaviors in this task to evaluate which
of the four model can best explain the discomfort observed in
the human partners. Our task required human participants to
move their hand from a start, to a goal to a target line on a table
(explained in detail later). They move in the vicinity of a robot
that moves back and forth making its own reach movements
near the UHT of the participants. We chose an arm reaching
task as it is typical of experiments in motor neuroscience [24]
[25] [26] where multiple studies have shown that behaviors
and models isolated in reaching studies are representative of
whole body behaviors [24] [25], with applications in robot
human interaction, including rehabilitation [26] [27] [28] [29].

A. Participants

21 participants (15 males, 6 females of 14 nationalities, aged
20-43, mean 27.9± SD 6.32) participated in our experiment.
One of them was left-handed. They were recruited through on-
line advertisements, via SNS or mailing lists related to the city
where our institute is. They had several backgrounds such as
university students, homemakers, researchers, engineers, etc.
The experiments were approved by the local ethics committee
at the National Institute of Advanced Industrial Science and
Technology (AIST), Japan. All the participants gave informed
consent to participate in the study. All participants were naive
to the motive of the experiment. They were compensated up
U1500 JPY/hour for their time.

B. Experiment Setup

Our experiment setup is shown in Fig. 1 and Fig. 2(a). The
participants sat comfortably on a chair in front of a large table
(120 × 60 × 70 cm). A starting point and a goal line were
presented on the table. The start point, of 1.5 cm diameter,
was drawn 170 mm from the edge of the table, close to the
participant. The goal line, 630 mm long, 40 mm wide, had its
lower edge 150 mm away from the start point. Each participant



Figure 1. Photo of the setup with a participant: Due to the light reflection, 
the target line is not visible and thus has been highlighted with a black 

dotted line on the photo. Here, the participant is shown at the starting point.

was asked to wear an elbow support and a finger-less glove 
while holding a 40 mm diameter, 120 mm high stylus.

We used a 7 degrees of freedom robot (Franka Emika Panda) 
for our experiment. The robot was installed on a stand (715 
mm high) in the left-side corner of the table with respect to 
the human participant. We attached a 230 mm long and 35 
mm diameter padded cardboard stick to the robot gripper to 
ensure that any collision with the participant is safe and soft. 
We will refer to this stick as the robot end effector (EE).

We adopted a camera-based motion capture system to 
measure the human and robot motions. In total, seven passive 
reflective m arkers w ere p laced o n t he r ight f orearm, wrist, 
hand of a participant, on the tip of the robot stick, the human 
stylus, and on the gripper of the robot. These were tracked 
using seven kestrel infra-red cameras (Motion Analysis Co.) at 
200 Hz (for 5 participants the recordings were done at 100Hz 
due to a system error). We will focus our analysis on the 
markers on the human stylus, and the tip of the robot EE.

C. Task

Experiments were conducted by two experimenters, one
managing the experiment process and the other managing the
systems. Before the experiments, participants were provided
with a overview of the task and procedures with their consent
form. Then, they were asked to enter the experiment room
where the setup was. After they sat at the table, the experi-
menter explained the task to the participants. The experiment
was conducted with one participant at a time.

As mentioned before, our experiment required the partic-
ipants to make repeated reaching movements from a given
start point, holding a stylus, to a target (see Fig. 2(a)). We
performed two experiments, one in which the target was a
point, and one in which it as a line. Due to constraints in
the maximum speed of our robot (relative to the speed of

(a) Top view of the setup of the experiment

(b) Detailed timeline of the experiment

Figure 2. Experimental design: (a) Diagram of the experiment setup shows 
the relative position of the human and robot, the position of the motion 
tracking markers and the coordinate frame used in the data analysis. The 
movement performed by one participant, for the three different robot 
movement patterns (in different colours), have been shown superimposed 
on the figure. (b) Timeline of the experiment with an arbitrary order of robot 
movement patterns. The participants worked in four sessions. Each session 
was divided into three phases (of 10, 100 and 10 trials), and the robot 
movement in the robot phase was different between the four sessions. 
’SAM’ represents the questionnaire scored by the participants in between the 
sessions.

human reach), we found that the point reach experiment could
not induce sufficient discomfort in participants. We therefore 
concentrate on the line reach experiment here. The participants 
were asked to sit in front of the table such that the start point 
was in front of the center of their chest. They were instructed 
to always hold the stylus so that both their hand and the stylus 
were touching the table, and to “always slide the stylus on the
table and never lift the arm during the experiment”. They were
asked to make a ‘one shot’ reaching movement (without stops) 
to the target line while avoiding bumping into the robot. No
instructions were given about where to reach on the line and 
the participants chose and change their reach point (on the
target line) freely through the experiments.

A repetitive pattern of three high pitched beeps (first two 
beeps separated by 70 ms and the last separated by 200 ms)
were utilized to instruct the participants on when to start and
complete their reaches. The participants were instructed to
“get ready on the first beep, start moving on the second, and
move fast enough to reach the target line by the end of the
third beep; then return back to the start point before the next
first beep”. The first beep (hence the beep pattern) repeated
every one second. We designed the beep timings considering



two issues. First, to ensure that the participants make one-
shot and straight reaches (we used preliminary experiments to
converge to this beep time). Second, to synchronize the human
movement with the start of the robot movement, such that the
robot would sufficiently interfere and potentially cause them
discomfort. Participants were trained as long as they needed,
till they felt they could match the sound cues with ease. They
were specifically told to find a comfortable body posture for
the task and then keep it through the experiment. Before the
start of each session, the participants were again reminded to
focus on the sound cues while performing the task.

Fig.2(b) shows the timeline of our experiment. The par-
ticipants worked in four sessions, each 2.5 minutes long.
Each session consisted of three phases. In each session, the
participants started with 10 round-trip trials while the robot
remained stationary at a distance of 170 mm from the UHT
(before phase), followed by 100 round-trip trials with the robot
moving (robot-phase) along the X axis, at distance of 90 mm
along the Y axis from their start point (see Fig. 2(a) and later
explanation of robot movements), and finally by 10 round-trip
trials when the robot was again motionless (after robot phase).
A low pitch sound cue was used to inform the participants of
the change of phase. The robot movement in the robot-phase
was different among the four sessions and these differences
are explained below.

After each session, the participants were asked to answer the
Self-Assessment Manikin (SAM) [30] survey on the session.
The SAM picture-based test assess the participants emotional
state (specifically ‘happiness’, ‘anxiety’ and ‘feeling of con-
trol’) during the experiment. We later converted the chosen
pictures to a numerical scale going from -4 to 4, with +4
indicating high values of the state.

The participants were also given an open-ended question,
where they were allowed to report any concerns, thoughts and
feelings about the experiment session.

D. Robot Movement Patterns

As mentioned before, the robot movement was different in
the robot-phase of the four sessions.

The robot movements were restricted to the plane of the
table, and along the X axis (see coordinates in Fig. 2(a)) in
all the sessions. In each session, the robot performed to and
fro movement cycles defined by three parameters which are
the minimum distance of the robot EE from the UHT (dUHT

min )
in each movement, the maximum distance of the robot EE
from the UHT (dUHT

max ) in each movement, and the variation
(dvariation) in the values of dUHT

min and dUHT
max across the

session.
The first session served as a preliminary session to accustom

the participants in following the cues while working in the
proximity of the disturbing robot. The preliminary session thus
used the parameters of dUHT

min = 60 mm, dUHT
max = 140 mm and

dvariation = 0 mm. That is, the robot moved between 140 mm
and 60 mm of the UHT in every movement cycle.

Following the preliminary session, the participants worked
in three experimental sessions that we will analyze in detail

min

Figure 3.Robot patterns: Robot EE movements, in the X axis, for each of 
the three patterns, with respect to the UHT. Histograms show the distribution 
of the minimum distance of approach (dUHT ) in each pattern. The vertical
coloured lines on the patterns represent the mean value of dUHT

min .

next. The robot followed three movement patterns (pat-1,
pat-2 and pat-3), one each in a session. These movement
patterns were specifically designed to enable us to qualitative
distinguish the key determinant of discomfort utilizing our four
discomfort models. The order of sessions with pat-1, pat2 and
pat-3 was balanced across the participants.

Pat-1 is shown as a blue trace in Fig. 3. It utilized the
parameters of dUHT

min = 0 mm, dUHT
max = 140 mm and dvariation

= 0 mm. This indicates that the robot movements were
repetitive in pat-1, and the robot moved between 140 mm and
0 mm of the UHT in every movement cycle of this pattern.

Pat-2 is shown in green in Fig. 3. Pat-2 utilized the param-
eters of dUHT

min = 0 mm, dUHT
max = 140 mm and dvariation = 40

mm. In this movement pattern, while the robot stayed within
140 mm and 0 mm of the UHT, there were variations up until
40 mm of dUHT

min and dUHT
max across movement cycles. dUHT

min

varied between 0 and 40 mm, with the individual variations
chosen pseudo-randomly from a half-normal distribution (with
the fold at dUHT

min = 0 and standard deviation = 11.5 mm, see
distribution of dUHT

min shown in green above pat-2 in Fig. 3).
Similarly, dUHT

max varied between 140 mm and 100 mm, with
variations again chosen from a half-normal distribution (this
time with the fold at dUHT

max = 140 and standard deviation =
11.5 mm).

Finally, Pat-3 (see red trace in Fig. 3) utilized the parameters
of dUHT

min = 0 mm, dUHT
max = 140 mm and dvariation = 80 mm.

As well as for pat-2, while the robot stayed within 140 mm
and 0 mm of the UHT, in pat-3, there were variations up
until 80 mm across movement cycles in the values of dUHT

min



Figure 4. Discomfort model predictions: The predicted discomfort δ by our 
four models with the three robot patterns.

and dUHT
max . These variations were chosen from a half-normal

distribution, this time with the standard deviation = 23 mm
see the distribution of dUHT

min shown in red above pat-3 in Fig.
3).

E. Model Predictions

Given the three patterns of robot movement, we next utilized
the equations 1 to 4 and calculated the discomfort estimated
by each of our four model for the three patterns of robot
movement. These estimates are shown in Fig. 4. We assume
an appropriate value for γRP , γRV , γRR and γRU so as to
scale the model predictions in Fig. 4. Note again that these γ
values are not important, as we are interested in the qualitative
predictions by these models.

The lowest value of dUHT
min was zero in all the three patterns

showing that the robot approaches up till the UHT in all
the patterns. However, in pat-1, the robot reaches the UHT
in every movement cycle, whereas in pat-2 and pat-3, it
approaches the UHT in fewer cycles (compare blue, green and
red distributions in Fig. 3). The average minimal distance of
the robot from the UHT is thus the smallest (equal to zero, see
blue vertical line in Fig. 3) in pat-1. It is higher in pat-2 (at 13
mm, see green vertical line in Fig. 3), maximum in pat-3 (at 26
mm, see red vertical line in Fig. 3). Therefore, the RP model
predicts that the discomfort is highest for pat-1, less for pat-2
and the least for pat-3 (see diamond trace in Fig. 4). Even
though our robot moves with the same peak speed in all the
patterns, it remains at the peak speed for longer time intervals
in pat-1 (as it moves for longer distances). The mean speed
is thus highest for pat-1. The RV model thus also predicts
the highest discomfort for pat-1, less for pat-2 and the least
for pat-3 (see star trace in Fig. 4). In all the robot movement
patterns, the robot moves within the same movement range
across a session (of 140 mm, see Fig. 3). The RR model thus
predicts that the discomfort will not change across the three
robot patterns (see square trace in Fig. 4). Finally, considering
again the minimal distance of the robot from the UHT, this
value is same (and equal to zero) for every cycle in pat-

Figure 5. Questionnaire vs trajectory deviation: We observed a 
significant correlation between the median trajectory deviation by 
participants in the robot phase, and the anxiety level expressed by them in 
the SAM picture-based questionnaire (anxiety level increases from -4 to 
4). The black trace represents the regression line.

1, making it very predictable. The variation in the minimal 
distance is more in pat-2 (with a standard deviation, or std, = 
11.5 mm, green distribution in Fig. 3), and maximum in pat-3 
(std = 23 mm, red distribution in Fig. 3) making the robot to 
be perceived as most uncertain in pat-3. The RU model, which 
looks at the STD of the minimal distance, thus predicts that 
the discomfort is minimal for pat-1, and progressively more 
for pat-2 and maximal for pat-3 (see circle trace in Fig. 4).

Overall, the four models provide different qualitative pre-
dictions (though the predictions are bit similar for the RP and 
RV models) of the human discomfort across our three sessions 
where the robot movement follows pat-1, pat-2 and pat-3.

F. Quantifying the Human Discomfort and Data Processing

Previous studies have shown that the distance chosen by a
human from a robot is a good measure of the discomfort when
the human perceives near the robot [31] [32] [33] [34]. We
observed that a similar distance measure could be utilized in
our experiment to quantify discomfort. In the absence of the
robot movement, participants performed a straight line reach
in our task (ie. their UHT was straight). However, in the robot-
phase, when the robot moved close to them, the participant’s
reach deviated away from the robot. The inset plot in Fig. 2(a)
shows a sample participant trajectory in the robot-phase when
the robot movement patterns are pat-1 (blue traces), pat-2
(green traces) and pat-3 (red traces). We thus hypothesized that
the ‘trajectory deviation’ exhibited by a participant, defined by
the difference of the abscissa of the trial’s ending point and
the starting point, can serve as a behavioral measure of the
discomfort perceived by the participant. We found a strong
correlation between the trajectory deviation and reported anx-
iety by the participants in the SAM questionnaire (see results
and Fig. 5), corroborating this hypothesis.



Figure 6. Trajectory deviation: The plot shows the across participant 
average (solid lines) and standard error (shaded regions) of the trajectory 
deviations across the three phases,when the robot performs pat-1 (blue data), 
pat-2 (green data) and pat-3(red data). Note that all the plotted data groups 
are not normal across participant, and have been accordingly treated with 
the appropriate statistics (described in the text). However, we choose to 
still show the data with a mean and standard error here for the purpose of 
visual clarity.

 We also recorded electromyography (EMG) and photo-
plethysmography (PPG) from the participants in our study
expecting to measure the physiological arousal felt by the 
participants due to their discomfort with the robot. EMG was 
recorded using non-invasive wireless sensors (Del-sys Trigno 
Wireless EMG System) from the participant’s right and left 
biceps. PPG was recorded for 15 participants from the middle
finger of the participant’s left hand. PPG measures the blood 
flow and is known to show a decrease in amplitude, as well 
as increasing in pulse frequency when a person is aroused. 
However, we could not find any significant trend in 
either of these measurement across participants and 
through our experiment, and hence will not detail them in 
this manuscript
hereafter.

III. RESULTS

A. Trajectories Deviation vs Discomfort

We start by checking that our trajectory deviation measure
represents discomfort. Across our four sessions, we found a
significant correlation (r=0.24, p=0.042) between the anxiety
indicated by the participants in the SAM questionnaire in a
session and the average deviation they exhibited in that session
(Fig 5), suggesting that the trajectory deviation is a measure
of participant discomfort.

B. Trajectories Deviations

Fig. 6 shows the trajectory deviation exhibited by 18 (of
the 21) participants with the robot movement patterns after
the subtraction of their individual median trajectory deviation

Figure 7. Model validation: Discomfort of the participants during our 
experi-ment, measured as the mean (solid line) and standard error (errorbars) 
in their trajectory deviation (in mm) is plotted for the three robot patterns 
(different colours). The data plot has been superimposed on the model 
predictions from Fig. 4 to show that only the RU model can explain the 
human behavior in our experiment.

from the before robot phase. 3 participants were omitted from 
the data analysis due to a malfunction with the robot pattern 
(with 1 participant), and due to the inability to follow the 
sound cues (2 participants). Fig. 6 thus effectively plots the 
changes in trajectory deviation by the participants relative to 
their trajectory in their before robot phase.

We observe that all participants exhibit a significant increase 
in trajectory deviation when the robot starts moving in the 
robot-phase. In order to analyze the effect of the patterns 
and trials on their trajectory deviation, we performed a 2-way 
ANOVA (with first f actor a s p attern, a nd s econd a s t rials) on 
the trajectory deviations between the 11th and 100th trials in 
robot-phase. We omitted the first 1 0 t rials t o a llow f or the 
stabilization of the trajectories. We observed that the across 
participant distribution of the trajectory deviation did not 
follow a normal distribution (Shapiro-Wilk test of normality 
p < 0.02) for certain trials and hence we used the Aligned 
Rank Transform (ART) [35] as a preprocessing step before 
applying the ANOVA. The ANOVA revealed a significant main 
effect of patterns (F(2, 4050) > 169, zp < 0.001), but not of 
trials (F(89, 4050) = 0.24, p > 0.9) and showed no significant 
interaction between the two factors (F(178, 4050) = 0.2, 
p > 0.9). The ANOVA result shows that after the initial 10 
trials, participants maintain similar trajectory deviations for 
the rest of the robot-phase. This allowed us to quantify the 
trajectory deviations for the three robot patterns by the median 
trajectory deviation within the 11th and 100th trials of the 
robot-phase.

C. Comparison with Model Predictions

The across participant median trajectory deviation change is
shown in Fig. 7. The deviation is superimposed over the model
plot from Fig. 4. The trajectory deviation changes with each
pattern were observed to be normal (p > 0.56, Shapiro-Wilk
test) across the participants, with a value of 41.46±10.8SE mm



(SE standing for standard error) with pat-1, 53.4650±9.9SE
mm with pat-2 and 59.5400±9.8SE mm with pat-3. A 1-
way repeated measures ANOVA showed significant effect of
robot pattern on the participants trajectory deviation change
(F(2, 17) = 4.12, p = 0.020). A post-hoc T-test revealed a
significant higher trajectory deviation for pat-3, compared to
pat-1 (p = 0.04, Bonferonni corrected).

Comparing the trajectory deviation with our models in Fig.
7, we find that only our RU model can explain this data. The
results thus show that the uncertainty in the robot movement
was the fundamental determinant of human discomfort in our
experiment.

D. Questionnaire

We asked participants to score three emotions in our ses-
sions. As the scores were non-normal across participants in
almost all the sessions, we considered a Kruskal Wallis test to
look for a trend across the sessions. We observed no changes
in feeling of ’control’, ’anxiety’ or ’happiness’ across the
movement patterns (chi-s q < 1.57, p > 0.46).

However, a closer look at the values showed that, only the
anxiety score showed a tendency of modulation across the
sessions. The across participant anxiety score was less for pat-
1, compared to the average scores reported for pat-2 and pat-
3 (p=0.06, Wilcoxon Signed Rank test) by the participants.
Furthermore, the anxiety scores correlated with the trajectory
deviations exhibited by the participants (Fig. 5).

IV. DISCUSSION

In this study, we examined the behaviors of humans work-
ing near a robot, to examine how different features of the
robot movement influenced the discomfort felt by the human.
Motivated by previous studies, we considered four models
of discomfort. Our results show that the RU model, which
considers human discomfort to increase with the movement
uncertainty of the robot, best explains the human behaviors in
our study.

This result is not completely unexpected given that previous
studies in social neuroscience [21] as well as robot trust [11]
[22] [23] have observed that the ‘trust’ felt by a human towards
interacting agents is influenced by the predictability of the
agent’s behaviors, in regard to their decision making, task
failures and errors. Here we show, probably for the first time
using behavioral measures, that uncertainty is also critical at
the level of robot movement trajectories, and influences the
comfort felt with robots.

It is important to note that the human discomfort we observe
here is modulated not by the robot movement uncertainty per
se, but rather by the perceived robot movement uncertainty by
the human. In our study, the two are similar but this may not
always be the case. The perceived movement uncertainty is a
consequence of both the robot movement uncertainty as well
as the uncertainty in the perception of the robot movements
by a human. For example, even a robot performing a regular
movement pattern (with minimal movement uncertainty) may
be considered uncomfortable inside a dark room, or when

behind the human, or if the human is without her/his eye
glasses, because in all these cases, the perception of the
robot motion is limited, making them uncertain to the human.
Corresponding to this, previous robot approach studies have
popularly found that humans prefer that robot do not approach
them from behind [15] [6].

Human perception is also constrained by the neural process-
ing delays, thus making movements prediction more difficult
(and hence more uncertain) when the time available for
processing an observed robot is less. This is typically the
case when a robot is moving fast. Movement uncertainty can
therefore explain why you would be more uncomfortable with
a fast moving robot, than a slow moving one even if they
are making the same movements [14] [36]. In our experiment
however, this was not the case because the faster (in terms of
average speed) robot was more regular in movements than the
slower one.

Finally, it is well known that humans can learn and develop
models to explain the behaviors of partners they interact with
[17] [21], a skill that is probably fundamental to our social
interactions. It is thus expected that perceived uncertainty can
change with time as the human starts to slowly understand
the movements made by the robot. The perceived uncertainty
related partner models can explain why a robot, that does not
perform a task well, may still be regarded as trustworthy if
the errors it makes are predictable [8], and how the physical
appearance of robot can influence the trust felt towards it. For
example, several studies have reported that humans are more
accepting towards a humanoid robot than a non-humanoid
one [8] [11]. This is probably because humans have a good
understanding of the movement abilities and movement lim-
itations of the human form (making the humanoid behaviors
less uncertain), and hence more trustworthy. Furthermore, the
ease of understanding the uncertainty in robot movements can
explain observations where human participants have found to
be more comfortable with a passive following robot (that is
easier to understand) than an active robot that is helping them
in the task [37] [38].

To conclude, we show using an empirical experiment that
the perceived uncertainty in a robot’s movement is a key
determinant of how much humans are comfortable with them.
While there are arguably other environmental, appearance
and task related factors, we believe that many factors being
currently considered to affect comfort and/or trust with robots
can in fact be explained as being caused by the perceived
uncertainty in the movements (or decisions, and errors) ex-
hibited by a robot. We gave examples of some of these cases
above. However, further in-depth analysis, of how movement
uncertainties in a robot behavior are perceived and learnt by
humans, is required to clarify this issue further.
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