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ABSTRACT

The effect of drought on maize yield is of particular concern in the context of climate change and 

human population growth. However, the complexity of drought-response mechanisms make the 

design of new drought-tolerant varieties a difficult task that would greatly benefit from a better 

understanding of the genotype-phenotype relationship. To provide novel insight into this 

relationship, we applied a systems genetics approach integrating high-throughput phenotypic, 

proteomic and genomic data acquired from 254 maize hybrids grown under two watering 

conditions. Using association genetics and protein co-expression analysis, we detected more than 

22,000 pQTLs across the two conditions and confidently identified fifteen loci with potential 

pleiotropic effects on the proteome. We showed that even mild water deficit induced a profound 

remodeling of the proteome, which affected the structure of the protein co-expression network, and 

a reprogramming of the genetic control of the abundance of many proteins, including those 

involved in stress response. Co-localizations between pQTLs and QTLs for ecophysiological traits, 

found mostly in the water deficit condition, indicated that this reprogramming may also affect the 

phenotypic level. Finally, we identified several candidate genes that are potentially responsible for 

both the co-expression of stress response proteins and the variations of ecophysiological traits under

water deficit. Taken together, our findings provide novel insights into the molecular mechanisms of 

drought tolerance and suggest some pathways for further research and breeding. 
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INTRODUCTION

Maize is the world's leading crop (Shiferaw et al. 2011) in terms of production. Having a C4 

metabolism, it exhibits high water use efficiency (WUE). However, it is also highly susceptible to 

water deficit. For example, maize is more affected by drought than either its close relative sorghum 

(above‐ground dry biomass reduced by 47-51 % and 37-38 %, respectively; Zegada-Lizarazu et al. 

2012, Schittenhelm and Schroetter 2014) or wheat, which is a C3 plant (yield reduction associated 

with a 40% water reduction of 40% and 20.6%, respectively; Daryanto et al. 2016). Improving 

maize yield under drought has been an important aim of breeding programs for decades (Campos et 

al. 2004, 2006; Cooper et al. 2014). However, despite the overall genetic improvement of maize, 

increases in drought sensitivity have been reported in several regions (Lobell et al. 2014; Zipper et 

al. 2016; Meng et al. 2016). In addition, severe episodes of drought are projected to become more 

frequent in the near future due to climate change (Harrison et al. 2014). Therefore, maize 

productivity under water deficit is of particular concern and large efforts are still required to design 

varieties that are able to maintain high yields in drought conditions. 

One lever to accelerate crop improvement is to better understand the genetic and molecular 

bases of drought tolerance. This highly complex trait is associated with a series of mechanisms 

occurring at different spatial and temporal scales to (i) stabilize the plant's water and carbon status, 

(ii) control the side effects of water deficit including oxidative stress, mineral deficiencies and 

reduced photosynthesis and (iii) maintain plant yield (Chaves et al. 2003). At the physiological 

level, short-term responses include stomata closure, adjustment of osmotic and hydraulic 

conductance, leaf growth inhibition and root growth promotion (Tardieu et al. 2018). At the 

molecular level, complex signaling and regulatory events occur, involving several hormones, of 

which abscisic acid (ABA) is a key player, and a broad range of transcription factors (Golldack et 

al. 2014; Osakabe et al. 2014; Tripathi et al. 2014). Molecular responses also include the 

accumulation of metabolites involved in osmotic adjustment, membrane and protein protection, as 
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well as scavenging of reactive oxygen species, and the expression of drought-responsive proteins 

such as dehydrins, late embryogenesis abundant (LEA) and heat shock proteins (HSP) (Valliyodan 

and Nguyen 2006; Seki et al. 2007). All these responses will depend on the drought scenario, the 

phenological stage, the genetic makeup and the general environmental conditions (Tardieu et al. 

2018). Taken together, the multiplicity and versatility of the mechanisms involved explain the 

difficulty in selecting for drought tolerance.

A better understanding of the genotype-phenotype relationship will help guide the 

development of new drought-tolerant varieties. Systems genetics is a recent approach providing 

improved insight into this relationship by deciphering the biological networks and molecular 

pathways underlying complex traits and by investigating how these traits are regulated at the 

genetic and epigenetic levels (Nadeau and Dudley 2011; Civelek and Lusis 2014; Feltus 2014; van 

der Sijde et al. 2014; Markowetz and Boutros 2015). This approach compares the position of 

quantitative trait loci (QTLs) underlying phenotypic traits variation to that of QTLs underlying the 

variation of upstream molecular traits such as transcript expression (eQTLs) or protein abundance 

(pQTLs). Until recently, this approach had been mostly applied in human and mice (Moreno-Moral 

and Petretto 2016) In plants, systems genetics studies have been carried out in a few species 

including wheat (Munkvold et al. 2013), rapeseed (Basnet et al. 2016), eucalyptus (Mizrachi et al. 

2017) and maize (Christie et al. 2017; Jiang et al. 2019). 

The first studies comparing QTLs and pQTLs used 2D gel proteomics to quantify proteins 

(Bourgeois et al. 2011; de Vienne et al. 1999). Since then, proteome coverage and data reliability 

have been widely improved by the use of mass spectrometry (MS)-based proteomics (Wasinger et 

al. 2013). Despite these technical advancements, the systems genetics studies published so far have 

preferentially used transcripts rather than proteins as the intermediate level between the genome and

phenotypic traits. One reason is that large-scale proteomics experiments remain challenging (Blein-

Nicolas et al. 2015) due to technical constraints (Balliau et al. 2018) and the trade-off between 

depth of coverage and sample throughput (Keshishian et al. 2017). However, proteins are 

4

68

70

72

74

76

78

80

82

84

86

88

90

92



particularly relevant molecular components for linking genotype to phenotype. Indeed, proteins 

abundance is expected to be more highly related to phenotype than transcript expression due to the 

buffering of transcriptional variations and the role of post-translational regulations in phenotype 

construction (Foss et al. 2011; Battle et al. 2015; Chick et al. 2016; Albertin et al. 2013; Vogel and 

Marcotte 2012). 

Here, we aimed to better understand the molecular mechanisms associated with the genetic 

polymorphisms underlying the variations of ecophysiological traits related to drought tolerance. To 

this end, we performed a novel systems genetics study where MS-based proteomics data acquired 

from 254 maize genotypes grown in two watering conditions were integrated with high-throughput 

genomic and phenotypic data. First, protein abundance was analyzed using a genome wide 

association study (GWAS) and co-expression networks. Then, these data were integrated with 

ecophysiological phenotypic data from the same experiment (Prado et al. 2018) using a correlation 

analysis and by searching for QTL/pQTL co-localizations. 
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RESULTS

Mild water deficit has extensively remodeled the proteome

Using MS-based proteomics, we analyzed more than 1,000 leaf samples taken from 254 

genotypes representing the genetic diversity within dent maize and grown in well-watered (WW) 

and water deficit (WD) conditions. After data filtering, the peptide intensity dataset included 977 

samples corresponding to 251 genotypes from which we quantified 2,055 proteins described in 

Supplemental Table S1. Among these, 973 were quantified by integration of peptide intensities 

(XIC-based quantification). The remaining 1,082, whose peptides had more than 10% of missing 

intensity values, were quantified by spectral counting (SC-based quantification). Note that the latter 

proteins were less abundant (Supplemental Fig. S1A) and less precisely quantified (Supplemental 

Fig. S1B) than those that could be quantified by XIC. 

Heatmap representations of protein abundance showed that two large separate protein clusters 

were associated with the two watering conditions (Fig. 1A). This indicates that, although moderate, 

water deficit had extensively remodeled the proteome of most genotypes. Accordingly, 82.4% and 

74,5% of proteins from the XIC-based and SC-based sets, respectively, responded significantly to 

water deficit (Supplemental Table S1, Supplemental Fig. S2A). These included several proteins 

known to be involved in responses to drought or stress (Shinozaki & Yamaguchi-Shinozaki 2007; 

Wang et al. 2016) such as the dehydrins DHN1 (also known as RAB17, GRMZM2G079440) and 

DHN3 (GRMZM2G373522), an ABA-responsive protein (GRMZM2G106622), the LEA protein 

MAGI2594 (GRMZM2G352415), the HSPs HSP101 (GRMZM2G360681), HSP8 

(GRMZM2G080724) and PZA03529 (GRMZM2G112165), the phospholipase D PLD2 

(GRMZM2G061969), the glyoxalase I GLX1 (GRMZM2G181192) and the gluthathione-S-

transferase PCO124824 (GRMZM2G043291). Induced and repressed proteins constituted two 

highly differentiated populations in terms of function (Fig. 1B). In particular, transcription, 

translation, energy metabolism and metabolism of cofactors and vitamins were better represented 

6

106

108

110

112

114

116

118

120

122

124

126

128

130

https://www.maizegdb.org/gene_center/gene/pco124824


within repressed proteins, while carbohydrate and amino acid metabolism and environmental 

adaptation were better represented within induced proteins. 

The global impact of genotypic change on the proteome was less extensive than that of water 

deficit, since the proteomes of two different genotypes grown in the same watering condition were 

more similar than the proteomes of a same genotype grown in different conditions (Fig. 1A). 

However, the maximum amplitudes of abundance variations were similar (Supplemental Fig. S2B). 

In addition, 94.9% of proteins from the XIC-based set exhibited significant variation in abundance 

attributable to genetic variation (Supplemental Table S1). This was confirmed by broad sense 

heritability, the median of which was 0.47 and 0.46 for WW and WD conditions, respectively 

(Supplemental Fig. S3A). By contrast, in the SC-based set, only 34.4% of the proteins showed 

significant variation in abundance attributable to genetic variation with a median broad sense 

heritability of 0.08 and 0.10 for WW and WD conditions, respectively (Supplemental Fig. S3B). 

Significant GxE interactions were detected for only four and 12 proteins from the SC-based 

and XIC-based set, respectively, probably due to a lack of statistical power. These proteins included 

the LEA protein MAGI 2594 (GRMZM2G352415), HSP18f (GRMZM2G083810) and a COR410 

dehydrin (GRMZM2G147014). Although the GxE interaction was not statistically significant for 

the dehydrin DHN1 (GRMZM2G079440), this protein was undetectable in the WW condition and 

more or less expressed, depending on genotype, in the WD condition (Fig. 1C, Supplemental Table 

S2).

The strength of the genetic control of protein abundance is related to protein function

We performed GWAS for 2,501 combinations of protein abundance x watering condition 

showing a heritability > 0.2. In total, we detected 514,270 significant associations for 2,466 (98.6%)

combinations of protein abundance x watering condition involving 1,367 proteins. When 

summarizing associated SNPs into pQTLs using classical methods based on genetic distance or 

linkage disequilibrium (LD), we observed a positive relationship between the number of pQTLs per

7

132

134

136

138

140

142

144

146

148

150

152

154

156



chromosome and the P-value of the most strongly associated pQTL from the corresponding 

chromosome (Supplemental Fig. S4A-B). To get rid of this artefactual relationship, which could 

lead to the detection of more than 250 pQTLs on one chromosome, we developed a geometric 

method based on the P-value signal of SNPs (Supplemental Fig. S4C). This method produced the 

lowest number of pQTLs per combination of protein abundance x watering condition (median = 8 

vs 13 for the two other methods) and the lowest maximum number of pQTLs per chromosome (18 

vs 272 and 209 for the methods based on genetic distance and LD, respectively). Using this 

geometric method and considering only pQTLs accounting for more than 3% of the total variance, 

we thus detected 22,664 pQTLs accounting for 3 to 77.1% of the variance (Supplemental Table S3).

Of these, 1,113 were local, i.e. located less than 106 bp from the protein encoding gene, of which 

339 were located within the genes. Among distant pQTLs, 80.9% were located on a different 

chromosome from that of the protein encoding gene. Local pQTLs had stronger effects than distant 

pQTLs (average R2=15.3% and 5.2%, respectively; Supplemental Fig. S5). For 485 proteins, no 

local pQTL was detected in either condition. This set of proteins was significantly enriched in 

proteins involved in translation (15.3% vs 3.8%, adjusted P-value = 2.3E-10) and energy 

metabolism (17.3% vs 8.5%, adjusted P-value = 8.2E-5) and depleted in proteins involved in 

carbohydrate metabolism (9.9% vs 19.5%, adjusted P-value = 8.2E-5) compared to the 662 proteins

showing a local pQTL in at least one condition. They also exhibited fewer distant pQTLs and were 

much less heritable (Supplemental Fig. S6A-B). These results indicate that the strength of the 

genetic control over protein abundance depends on protein function. This observation is supported 

by the positive correlation between the mean number of pQTLs and the mean heritability per 

functional category (Fig. 2).

Identification of loci with potential pleiotropic effects on the proteome

pQTLs were not uniformly distributed in the genome (Fig. 3A-B). Instead, there were 

genomic regions enriched with pQTLs. We detected 26 and 31 such hotspots that contained at least 
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19 pQTLs in the WW and WD conditions, respectively (Supplemental Table S4). These hotspots 

may represent loci with pleiotropic effects on the proteome, i.e. loci associated with the abundance 

variation of several proteins. To refine the detection of such loci, we used a second independent 

approach based on the search for co-expression QTLs (coQTLs), i.e., QTLs associated to the 

abundance variations of several co-expressed proteins. To do so, we first performed a weighted 

gene co-expression network analysis (WGCNA) of protein co-expression across the 251 genotypes 

in the two watering conditions separately (Supplemental Table S5). The two resulting networks 

differed in the presence of condition-specific modules indicating that water deficit has altered the 

structure of the protein co-expression network (Fig. 4, Supplemental Fig. S7A-C, Supplemental File

S1). For each co-expression module, we then submitted the representative variable, called 

eigengene according to the WGCNA terminology, to GWAS in order to identify coQTLs. In total, 

we detected 176 coQTLs (96 for the 8 WW modules and 80 for the 8 WD modules, Supplemental 

Table S3). Fifteen of them co-localized with pQTL hotspots (Supplemental Table S4). Thus by 

crossing these results, we confidently identified four loci in the WW condition and eleven loci in the

WD condition as having potential pleiotropic effects on the proteome. Of note, the proteins that 

were associated with hotspots Hs22d and Hs21d and that were also in the modules having coQTLs 

co-localising with these hotspots were mainly ribosomal proteins (Supplemental Table S6). This 

suggests that Hs22d and Hs21d may contain loci involved in ribosome biogenesis.

The genetic architecture of protein abundances depends on the environment

Of the 11,034 pQTLs detected in the WW condition, only 1,124 (10.2%) had a co-localizing 

pQTL in the WD condition. These pQTLs were generally of strong effect (Supplemental Fig. S8A) 

and were enriched in local pQTLs (32.6% vs 4.9% over the entire dataset). While most of the 

pQTLs that were common to the two conditions had similar effects in both conditions, 75 (6.7%) of 

them exhibited contrasted effects (Supplemental Fig. S8B). Half of these pQTLs were local, 

suggesting that gene promoters may be involved in the GxE interaction or that the pQTLs that were 
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detected in each condition corresponded to different polymorphic sequences with different effects 

on protein abundance. These pQTLs were associated with 70 proteins, several of which were stress-

responsive like the LEA protein PCO134925a (GRMZM2G045664) or HSPs GRMZM5G813217 

and GRMZM2G536644 (Supplemental Table S7). Altogether, these results show that water deficit 

has altered the genetic architecture of protein abundance. 

Identification of loci associated with trait variation at multiple scales

To gain insight into the molecular mechanisms associated with drought tolerance, we searched

for co-localizations between the pQTLs, coQTLs and hotspots detected in our study and the 160 

QTLs identified by Prado et al. (2018) on the same plant material. These QTLs were associated 

with eight ecophysiological traits related to growth and transpiration rate: early leaf area (i.e. before

water deficit; LAe), late leaf area (LAl), early biomass (Be), late biomass (Bl), water use (WU), 

water use efficiency (WUE), stomatal conductance (gs) and transpiration rate (Trate). Robust co-

localizations were determined by taking into account the correlation between each trait and protein 

values.  

In total, we identified 68 pairs of SNPs corresponding to QTL/pQTL co-localizations (Fig. 5, 

Supplemental Table S8). Only one involved a local pQTL. The QTL/pQTL distance was generally 

less than 100 kb, with, in 25.7% of cases, the same SNP representing the QTL and the pQTL (Fig. 

6A). Most QTL/pQTL co-localizations (98%) were detected in the WD condition, where they 

corresponded to 39 of the 91 QTLs reported in this condition (Prado et al. 2018). They involved six 

ecophysiological phenotypic traits (Bl, LAl, WU, WUE, Trate and gs) and 47 proteins, many of 

which were stress-responsive (Supplemental Table S9 ). Twenty-three proteins exhibited multiple 

QTL/pQTL co-localizations (Supplemental Table S9). 

We further identified 11 pairs of SNPs corresponding to QTL/coQTL co-localizations, all in 

the WD condition (Supplemental Table S10). They involved three phenotypic traits (WU, Bl, LAl) 

and two co-expression modules including the WD-specific module (Fig. 5). These two modules 
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were significantly enriched in stress-response proteins and in proteins involved in hormone 

metabolism and in reactive oxygen species detoxification (Supplemental Table S11). Ten of the 11 

QTLs co-localizing with coQTLs also co-localized with pQTLs. The remaining QTL actually also 

co-localized with pQTLs, but with a low correlation between the phenotypic trait values and the 

protein abundance levels (|r
corrected

| < 0.23; Supplemental Table S10). By contrast, the correlation

between trait values and eigengene was much higher (|r
corrected

| = 0.51), which indicates that 

proteins were more strongly related to ecophysiological traits when taken collectively through a co-

expression module rather than taken individually. 

Taken together, these results highlight the presence of loci associated with traits at different 

biological scales. In the WD condition, several of these loci showed multiple associations both at 

the proteome and the phenotype level (Fig. 5). On Chromosome 1, a locus spanning 33 kbp 

contained a QTL for LAl determined by SNP S1_5382845 as well as a coQTL for the green module 

and seven pQTLs, all determined by SNP AX-91427638. On Chromosome 5, a locus spanning 1.8 

Mb between SNPs AX-91657926 and AX-91658235, contained three QTLs for LAl, Bl and WU, 

one coQTLs for the WD-specific module and six pQTLs. This region also contained hotspot Hs52d.

On Chromosome 7, a single SNP (S7_162671160) determined the positions of two QTLs for LAl 

and WU, two coQTLs and seven pQTLs. On Chromosome 10, a locus spanning 1.3 Mb between 

SNPs S10_122802154 and S10_124095144, contained one QTL for LAl, one coQTL and eight 

pQTLs. This region also contained hotspot Hs103d. Note that in the WD condition, leaf area (LAl) 

was repeatedly associated with the green module (on Chromosomes 1, 7, 9, 10) and to proteins 

belonging to this module. Several of them were detoxification enzymes (i.e., a putative polyphenol 

oxydase, PPO1 GRMZM5G851266; two peroxydases, PRX39 GRMZM2G085967 and 

GRMZM2G108153; a superoxide dismutase GRMZM2G025992; a glyoxalase 

GRMZM2G704005). 
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Identification of candidate genes potentially involved in drought tolerance

Assuming that the genetic polymorphisms associated with protein abundance variations are 

within genes, we retrieved a list of one to 49 candidate genes for each of the 69 pairs of SNPs 

corresponding to a QTL/pQTL or QTL/coQTL co-localization (Supplemental Table S12). Based on 

gene annotation and the literature, we identified two particularly interesting cases.

First, on Chromosome 7, the SNP S7_162671160 was located in aas8 (also known as gh3.8, 

GRMZM2G053338), which was the only candidate gene. aas8 is involved in indole-3-acetyl-amide

conjugate biosynthesis. In agreement with the role of this gene in drought response (Feng et al. 

2015), S7_162671160 was associated with the WD-specific module, WU and LAl and five stress-

response proteins: endochitinase CTA1 (GRMZM2G051943), beta-D-glucanase ENG1 

(GRMZM2G073079), peroxidase PRX39 (GRMZM2G085967), polyphenol oxydase PPO1 

(GRMZM5G851266) and phospholipase D PLD2 (GRMZM2G061969). 

Second, 14 candidate genes were identified in the region of Chromosome 5 covered by 

hotspot Hs52d, of which two could be associated with the expression variation of a high number of 

genes. One is a squamosa promoter-binding gene (sbp1, GRMZM2G111136) that is inducible by 

various abiotic stresses including drought (Mao et al. 2016). The other, a C2C2-CO-like 

transcription factor (col18, GRMZM2G148772), was found to be significantly induced by drought 

and salinity stress in B73 leaves (Forestan et al. 2016). Hotspot Hs52d covered a region of ca 4 Mb 

in which we detected 26 pQTLs (many of which were located between sbp1 and col18), two 

coQTLs and four QTLs (Fig. 6B). A single SNP, AX-91658235 located only one kbp from col18, 

determined the position of two QTLs, two pQTLs and one coQTL. Furthermore, SNP 

S5_88793314, located within the coding sequence of sbp1, determined the position of a QTL and a 

pQTL. Based on these results, we can hypothesize that hotspot Hs52d may correspond to two trans-

acting factors for which sbp1 and col18 represent good candidates. 
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DISCUSSION

To better understand the molecular mechanisms associated with the genetic polymorphisms 

underlying the variations in ecophysiological traits related to drought tolerance, we used a 

proteomics-based systems genetics approach which allowed us to map 22,664 pQTLs at high-

resolution. By relating pQTLs to protein functions and heritability, we showed that the level of 

genetic control over protein abundances depends on protein function. For instance, proteins 

involved in translation and energy metabolism exhibited few pQTLs, with a lack of local pQTLs 

and low heritability. As these two functional categories mainly contain ancient and evolutionarily 

conserved proteins (Goldman et al. 2010; Nelson and Junge 2015), our results suggest that 

evolutionarily ancient proteins have more constrained expressions and fewer associated pQTLs 

(Mähler et al. 2017; Popadin et al. 2014; Zhang and Yang 2015). They also support the recent 

hypothesis of Mähler et al. (2017) that, for genes experiencing reduced rates of molecular evolution,

purifying selection on individual SNPs is associated with stabilizing selection on gene expression. 

pQTLs were found throughout the genome but some of them clustered into hotspots, 

suggesting the presence of loci with pleiotropic effects on the proteome. The detection of QTL 

hotspots is highly dependent on the number of traits studied, the mapping resolution and the method

used to cluster QTLs. This may explain why previous studies have reported hotspots ranging from 

hundreds of eQTLs (Munkvold et al. 2013; Christie et al. 2017; Orozco et al. 2012) to only a few 

tens of eQTL or pQTLs (Foss et al. 2011; Ghazalpour et al. 2011; Albert et al. 2014) or even no 

hotspot at all (Mähler et al. 2017). In our study, false hotspot detection was limited by having a high

mapping resolution and by using a pQTL clustering method that takes into account LD variations 

across the genome (Negro et al. 2019). Based on co-localization with coQTLs, we ultimately cross-

validated 15 condition-specific hotspots, suggesting that loci with pleiotropic effects on the 

proteome can interact with the environment. 
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By analyzing a diversity panel of 254 genotypes, we showed that many small changes in 

protein abundance, detected as significant because they occurred in a high number of genotypes, 

contributed to extensively remodel the proteome in water deficit conditions. In total, approximately 

75% of quantified proteins responded significantly to environmental change. Up- and down 

regulated proteins were well differentiated in terms of function, and indicated that the 

photosynthetic, transcriptional and translational machineries were slowed down while stress 

responses and signalization mechanisms were activated. All these changes showed that plants 

clearly perceived a lack of water and presented a coordinated proteome response to water deficit. 

Changes in abundance occurring in response to water deficit were associated with changes in 

the structure of the co-expression network. Indeed, we identified condition-specific modules, one of

which, in the WD condition, was significantly enriched for stress-response proteins. Similarly, 

Munkvold et al. (2013) observed condition-specific modules related to biological processes in 

response to particular environmental conditions. Such modules suggest that, under environmental 

perturbation, sets of genes or proteins are collectively mobilized by condition-specific factors 

allowing plant cells to adapt. The WD-specific module was associated with several QTL/coQTL 

colocalizations and its eigengene was highly correlated with biomass, water use and leaf area. 

Although the approach used here is correlative, these results suggest that, under water deficit, 

stress-response proteins contribute to phenotypic responses, which is consistent with the fact that 

many QTL/pQTL co-localizations involved these types of proteins. One coQTL for the WD-specific

module was located in a region of Chromosome 5 that also cumulated several QTLs, pQTLs and the

hotspot Hs52d. This indicates that the co-expression observed for stress response proteins may be 

driven by condition-specific factors, the pleiotropic effects of which resonate across all layers of 

biological complexity up to phenotype. Altogether, these results suggest that an eigengene may be 

considered a more integrated molecular trait than protein abundance, and can help decipher the 

genotype-phenotype relationship by bridging the gap between the proteomic and phenotypic level.
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Linking phenotypic variation to proteome variation revealed many QTL/pQTL co-

localizations for which, using high mapping resolution, we identified a limited number of candidate 

genes. 

Only two of the 69 QTLs detected in the WW condition, vs 39 of the 91 in the WD condition, 

co-localized with pQTLs. This difference could be explained by the hypothesis that under non-

stress conditions, phenotypic variations are driven by many low contribution proteins, whose 

abundance is probably controlled by low effect genetic polymorphisms, whereas under water stress,

phenotypic variations are mainly driven by stress response proteins under the genetic control of 

condition-specific factors. In agreement with this hypothesis, we robustly identified two genomic 

regions that could correspond to such factors. The first is located on Chromosome 7, where we 

identified aas8 as the sole candidate gene underlying two QTLs (for leaf area and water use), seven 

pQTLs, of which five were associated with proteins involved in stress responses, and two coQTLs, 

one of which was associated with the WD-specific module. In maize shoots, Feng et al. (2015) 

showed that the expression of aas8 was induced by auxin and reduced under polyethylene glycol 

treatment. The second region is located on Chromosome 5, in the region of the Hs52d hotspot, 

where we identified sbp1 (GRMZM2G111136) and col18 (GRMZM2G148772) as candidate genes 

underlying four QTLs, six pQTLs and one coQTLs. These two transcription factors have been 

previously shown to be induced by drought in maize (Mao et al. 2016; Forestan et al. 2016). In 

addition, SBP genes constitute a functionally diverse family of transcription factors involved in 

plant growth and development (Preston and Hileman 2013). Due to their potential implication in 

GxE interactions and because of their roles both in plant growth and development and in drought 

response, aas8, sbp1 and col18 represent promising candidates for drought tolerance breeding.

To conclude, our systems genetics approach which incorporates MS-based proteomics data 

has yielded several new results regarding the drought response in maize. First, we point out that the 

strength of the genetic control over protein abundance is related to protein function and also 

probably to the evolutionary constraints on protein expression. Then, we show that even mild water 
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deficit strongly remodels the proteome and induces a reprogramming of the genetic control of the 

abundance of many proteins including those involved in stress responses. QTL/pQTL co-

localizations are mostly found in the WD condition indicating that this reprogramming also affects 

the phenotypic level. Finally, we identify candidate genes that are potentially responsible for both 

the co-expression of stress-response proteins and the variation of ecophysiological traits under 

water deficit. Taken together, our findings provide novel insights into the molecular mechanisms of 

drought tolerance and suggest some pathways for further research and breeding. Our study also 

demonstrates that proteomics has now reached enough maturity to be fully exploited in systems 

studies necessitating large-scale experiments.
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METHODS

Plant material and experiment

Plant material and growth conditions are described in full details in Prado et al. (2018) and in 

the Supplemental Methods. In brief, a diversity panel of maize hybrids was obtained by crossing a 

common flint parent (UH007, paternal parent) with 254 dent lines. Two levels of soil water content 

were applied: well-watered (soil water potential of -0.05 MPa) and water deficit (soil water 

potential of -0.45 MPa). Hybrids were replicated three times in each watering condition. Leaf 

sampling was performed at the pre-flowering stage in two replicates per hybrid and water condition.

Protein extraction and digestion

Protein extraction and digestion procedures are described in full detail in the Supplemental 

Methods. In brief, proteins were extracted from frozen ground leaf samples using a standard 

protocol for protein precipitation with trichloroacetic acid and acetone solution. Tryptic digestion 

was performed after solubilization, reduction and alkylation of the proteins. The resulting peptides 

were desalted by solid phase extraction using polymeric C18 columns. 

LC-MS/MS analyses

Samples were analyzed by LC-MS/MS in batches of 96. Analyses were performed using a 

NanoLC-Ultra System (nano2DUltra, Eksigent, Les Ulis, France) connected to a Q-Exactive mass 

spectrometer (Thermo Electron, Waltham, MA, USA). A 400 ng protein digest was loaded at 

7.5 μl.min–1 on a Biosphere C18 pre-column (0.3 × 5 mm, 100 Å, 5 μm; Nanoseparation, 

Nieuwkoop, Netherlands) and desalted with 0.1% formic acid and 2% ACN. After 3 min, the pre-

column was connected to a Biosphere C18 nanocolumn (0.075 × 150 mm, 100 Å, 3 μm, 

Nanoseparation). Buffers were 0.1% formic acid in water (A) and 0.1% formic acid and 100% ACN

(B). Peptides were separated using a linear gradient from 5 to 35% buffer B for 40 min at 300 
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nl.min–1. One run took 60 min, including the regeneration step at 95% buffer B and the equilibration

step at 95% buffer A. Ionization was performed with a 1.4-kV spray voltage applied to an uncoated 

capillary probe (10 μm tip inner diameter; New Objective, Woburn, MA, USA). Peptide ions were 

analyzed using Xcalibur 2.2 (Thermo Electron) in a data-dependent acquisition mode as described 

in the Supplemental Methods. 

Peptide and protein identification

Peptide identification was performed using the MaizeSequence genome database (Release 5a, 

136,770 entries, https://ftp.maizegdb.org/MaizeGDB/FTP/) supplemented with 1,821 French maize 

inbred line F2 sequences with present/absent variants (PAVs) (Darracq et al. 2018) and a custom 

database containing standard contaminants. Database searches were performed using X!Tandem 

(Craig and Beavis 2004) (version 2015.04.01.1) and protein inference was performed using a 

homemade C++ version of X!TandemPipeline (Langella et al. 2017) specifically designed to handle

hundreds of MS run files (source code available at 

https://sourcesup.renater.fr/frs/download.php/latestfile/1271/groupingprotein-0.3.2.tar.gz). 

Parameters for peptide identification and protein inference are described in the Supplemental 

Methods. The false discovery rate (FDR) was estimated at 0.06% for peptides and 0.04% for 

proteins.

Functional annotation of proteins was based on MapMan mapping (Thimm et al. 2004; Usadel

et al. 2009) (Zm_B73_5b_FGS_cds_2012 available at https://mapman.gabipd.org/) and on a custom

KEGG classification built by manually attributing the MapMan bins to KEGG pathways (Dillmann,

pers. com.).

Peptide and protein quantification

Peptide quantification was performed using MassChroQ version 2.1.0 (Valot et al. 2011) based

on extracted ion chromatograms (XIC) with the parameters described in the Supplemental Methods.
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Peptide quantification data were filtered to remove genotypes represented by only one or two 

samples instead of the expected four, as well as outlier samples for which we suspected technical 

problems during sample preparation or MS analysis. In the end, the MS dataset included 977 

samples. 

Proteins were quantified from peptides using two complementary methods. i. XIC-based 

quantification: Proteins were quantified based on peptide intensity data filtered and normalized as 

described in the Supplemental Methods. R script for filtering and normalizing peptide intensity data

are available in Supplemental Material. We excluded proteins that were quantified by only one 

peptide. As samples were analyzed by LC-MS/MS in batches over a period of several months, we 

observed a strong batch effect on normalized peptide intensities. To correct this batch effect, we 

fitted a linear model to log-transformed intensity data and subtracted the component due to batch 

effects. Then, for each protein, we modeled the peptide data using a mixed-effects model derived 

from Blein-Nicolas et al. (2012) and described in the Supplemental Methods. Protein abundance 

was subsequently computed as adjusted means from the model's estimates. ii. Spectral counting 

(SC)-based quantification: Proteins that could not be quantified with XIC because their peptides 

had too many missing intensity values were quantified based on their number of assigned spectra.  

Proteins with a spectral count < 2 in any of the samples were discarded. Normalization was then 

performed as described in the Supplemental Methods. As in XIC-based quantification, we corrected

the batch effect by fitting a linear model to square-root transformed and normalized protein 

abundances. Analysis of variance (ANOVA) was subsequently performed using the mixed-effects 

model described in the Supplemental Methods. 

Genome wide association study

GWAS was performed on protein abundances estimated in each watering condition using the 

single locus mixed model described in Yu et al. (2006). The variance-covariance matrix was 

determined as described in Rincent et al. (2014) by a kinship matrix derived from all SNPs except 
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those on the Chromosome containing the SNP being tested. SNP effects  were estimated by 

generalized least squares and their significance was tested with an F-statistic. An SNP was 

considered significantly associated when -log10(P-value) > 5. A set of 961,971 SNPs obtained from 

line genotyping using a 50 K Infinium HD Illumina array (Ganal et al. 2011), a 600 K Axiom 

Affymetrix array (Unterseer et al. 2014) and a set of 500 K SNPs obtained by genotyping-by-

sequencing (Negro et al. 2019) were tested. Analyses were performed with FaST-LMM (Lippert et 

al. 2011) v2.07. Only SNPs with minor allele frequencies > 5% were considered.

Inflation factors were computed as the slopes of the linear regressions on the QQplots between

observed -log10(P-value) and expected -log10(P-value). Inflation factors were close to 1 (median of 

1.08 and 1.06 in the XIC-based and SC-based sets, respectively), indicating low inflation of P-

values. 

Detection of QTLs from significantly associated SNPs

Three different methods implemented in R (R core team 2013) version 3.3.3 were used to 

summarize significantly associated SNPs into pQTLs. i. The genetic method: two contiguous SNPs 

were considered to belong to a same QTL when the genetic distance separating them was less than 

0.1 cM. ii. The LD-based method: two contiguous SNPs were considered to belong to a same QTL 

when their LD-based windows (Negro et al. 2019) overlapped. iii. The geometric method: for each 

chromosome, we ordered the SNPs according to their physical position. Then, we smoothed the -

log10(P-value) signal by computing the maximum of the -log10(P-values) in a sliding window 

containing N consecutive SNPs. An association peak was detected when the smoothed -log10(P-

value) signal exceeded a max threshold M. Two consecutive peaks were considered to be two 

different QTLs when the -log10(P-value) signal separating them dropped below a min threshold m. 

The parameters for QTL detection were fixed empirically at N=500, M=5 and m=4. For the three 

methods described above, the position of a QTL was determined by the SNP exhibiting the highest -
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log10(P-value). A pQTL was considered local if it was within 1 Mb upstream or downstream of the 

coding sequence of the gene encoding the corresponding protein. 

Complementary data analyses

The following complementary data analyses were performed with R (R core team 2013) 

version 3.3.3. i. Broad sense heritability of protein abundance: For each protein, the broad sense 

heritability of abundance was computed for each of the two watering conditions from a mixed-

effects model as described in the Supplemental Methods. ii. detection of pQTL hotspots: for each 

SNP position, we counted the number of pQTLs (N) located within its LD-based window (Negro et 

al. 2019). The threshold used to detect a hotspot was set at the 97% quantile of the distribution of N.

iii. Protein co-expression analysis: Protein co-expression analysis was performed using the 

WGCNA R package (Langfelder and Horvath 2008) with the parameters described in the 

Supplemental Methods. Using a procedure developed to correct the bias due to population structure 

and/or relatedness in the LD measure  and implemented in the LDcorSV R package (Mangin et al. 

2012), we computed pair-wise Pearson's correlations corrected by structure and kinship (|r
corrected

|) 

and used them as the input similarity matrix. Graphical representations of the resulting networks 

were performed with Cytoscape (Shannon et al. 2003) v3.5.1 using an unweighted spring embedded

layout. iv. QTL co-localization: We considered QTLs to co-localize when they meet the following 

two criteria. First, the LD-based windows around the QTLs (Negro et al. 2019) should overlap. 

Second, the absolute value of the Pearson's correlation of coefficient corrected by structure and 

kinship (the |r
corrected

| mentioned above) between the values of the ecophysiological traits associated 

with the QTLs should be greater than 0.3. We determined this value empirically, in the absence of a 

statistical test to test the significance of the corrected correlation. v. Candidate gene identification: 

For each QTL/pQTL co-localization, gene accessions found within the interval defined by the 

intersection between the LD-based windows around the QTL and the pQTL were retrieved from the
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MaizeSequence genome database (Release 5a). Low confidence gene models and transposable 

elements were not considered.  
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DATA ACCESS

The raw MS output files were deposited online using PROTICdb (Langella et al. 2007; Ferry‐

Dumazet et al. 2005; Langella et al. 2013) at the following URL: 

http://moulon.inra.fr/protic/amaizing (DOI 10.15454/1.5736519296148652E12) and at MassIVE at 

the following URL: ftp://massive.ucsd.edu/MSV000085594/ (doi:10.25345/C57D8V, 

proteomeXchange accession PXD019804). Detailed information on all peptides and proteins 

identified in the LC-MS/MS runs as well as peptide intensities and protein abundances obtained for 

each sample are also freely available on PROTICdb at the same URL. 

Phenotypic data are available online using the PHIS information system (Neveu et al. 2019) at 

the following URL: http://www.phis.inra.fr/openphis/web/index.php?r=project

%2Fview&id=Systems+genetics+for+maize+drought+tolerance+%28Amaizing+project%29. 

Earlyeaf area (LAe) was defined at the seven leaves stage, representing 24 d
20°C

 (thermal time in 

equivalent days at 20°C). Late leaf area (LAl) was defined at the 12 leaves stage, representing 45 

d
20°C

.

Genotyping data are available at the following URL: https://doi.org/10.15454/GAHEU0. They

were also made available to download on the European Variation Archive (EVA) at the following 

URL: https://www.ebi.ac.uk/eva/?eva-study=PRJEB40124. 
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FIGURE LEGENDS

Figure 1. Effect of mild water deficit on the proteome. (A) Heatmap representations of protein 

abundances estimated for the XIC-based protein set (left) and the SC-based protein set (right). Each 

line corresponds to a protein and each column to a genotype x watering condition combination. For 

each protein, abundance values were scaled and represented by a color code as indicated by the 

color-key bar. Hierarchical clustering of the genotype x watering condition combinations (top) and 

of the proteins (left) was built using the 1- Pearson correlation coefficient as the distance and the 

unweighted pair group method with arithmetic mean (UPGMA) as the aggregation method. (B) 

Functions of the induced and repressed proteins under water deficit. (C) Abundance profiles of the 

DHN1 dehydrin (GRMZM2G079440 quantified based on the number of spectra) and of the 

MAGI2594 protein (GRMZM2G352415, a LEA protein quantified based on peptide intensity) in 

the two watering conditions. Genotypes on the x axis were ordered according to the WD/WW 

abundance ratio. The lists of genotypes in this order are available in Supplemental Table S2. 

Figure 2. Relationship between the mean number of pQTLs per KEGG category and the 

mean heritability per KEGG category.

Figure 3. Distribution of pQTLs across the genome. (A) In the well-watered condition. (B) In the

water deficit condition. Each point indicates the number of proteins associated with a pQTL located 

within a given genomic region defined by the linkage disequilibrium interval around an SNP. 

Dashed horizontal lines indicate the threshold used to detect pQTL hotspots. Names and positions 

of the pQTL hotspots are indicated above each graph. Asterisks indicate the pQTL hotspots 

confidently detected as loci with potential pleiotropic effects (details given in Supplemental Table 

S4). 
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Figure 4. Graphical representation of the co-expression networks resulting from the WGCNA 

analysis. Only proteins with an adjacency > 0.02 are shown. The two views were created by 

Cytoscape v3.5.1 using an unweighted, spring-embedded layout (cytoscape files are available in 

Supplementary File S1). The colors displayed on each network represent the different modules 

identified by WGCNA. Functional enrichments of modules are indicated with corresponding colors.

Condition-specific modules are circled. Each module contains 35 to 471 proteins. 

Figure 5. Genomic position of the co-localizing pQTLs, coQTLs and QTLs. The positions of the

fifteen pQTL hotspots confidently identified as loci with potential pleiotropic effects are indicated, 

as well as the positions of the most promising candidate genes. Chromosomes are segmented into 

10 Mb bins. Grey dots represent the centromeres and blue dots indicate the position of genomic 

regions showing evidences for pleiotropy at both the proteome and phenotype level. Blue lines 

indicate co-localizations with QTLs that are determined by a same SNP. 

° WD-specific module, * co-localization found in the WW condition 

Figure 6. Identification of genomic regions associated with trait variations at multiple scales. 

(A) Distribution of the distances between co-localizing QTLs and pQTLs. (B) Detailed view of the 

QTL, pQTL, coQTL detected in the region covered by the Hs52d hotspot on Chromosome 5. Dots 

represent the SNPs determining the position of the QTLs and horizontal bars represent the linkage 

disequilibrium-based window around each SNP. Black circles indicate the pQTLs that co-localize 

with QTLs or coQTLs with a high correlation between protein abundance and the phenotypic trait 

value or the module eigengene. The position of two transcription factors, sbp1 (GRMZM2G111136)

and col18 (GRMZM2G148772) that represent promising candidate genes, are indicated.
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