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ABSTRACT

SITELLE is a novel integral field unit spectroscopy instrument that has an impressive spatial (11

by 11 arcmin), spectral coverage, and spectral resolution (R∼1-20000). SIGNALS is anticipated to

obtain deep observations (down to 3.6 × 10−17ergs s−1cm−2) of 40 galaxies, each needing complex

and substantial time to extract spectral information. We present a method that uses Convolution

Neural Networks (CNN) for estimating emission line parameters in optical spectra obtained with

SITELLE as part of the SIGNALS large program. Our algorithm is trained and tested on synthetic

data representing typical emission spectra for HII regions based on Mexican Million Models database

(3MdB) BOND simulations. The network’s activation map demonstrates its ability to extract the

dynamical (broadening and velocity) parameters from a set of 5 emission lines (e.g. Hα, N[II] doublet,

and S[II] doublet) in the SN3 (651-685 nm) filter of SITELLE. Once trained, the algorithm was

tested on real SITELLE observations in the SIGNALS program of one of the South West fields of

M33. The CNN recovers the dynamical parameters with an accuracy better than 5 km s−1 in regions

with a signal-to-noise ratio greater than 15 over the Hα line. More importantly, our CNN method

reduces calculation time by over an order of magnitude on the spectral cube with native spatial

resolution when compared with standard fitting procedures. These results clearly illustrate the power

of machine learning algorithms for the use in future IFU-based missions. Subsequent work will explore

the applicability of the methodology to other spectral parameters such as the flux of key emission lines.

1. INTRODUCTION

HII regions lay the foundation of many studies from

star-formation in galaxies, to galactic evolution and cos-

mology, and are one of the main drivers of observational

extra-galactic astronomy (e.g. French 1980; Weedman

et al. 1981; Veilleux & Osterbrock 1987). HII regions

form when the gaseous clumps are irradiated by an inte-

rior young and hot star or cluster of stars causing the gas

to become partially or completely ionized (e.g. Oster-

brock & Ferland 1989; Shields 1990; Franco et al. 2000).

They are primarily composed of Hydrogen and Helium,

but contain non-negligible amounts of metals and their
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ionized counterparts (e.g. Shields & Tinsley 1976; Oey

& Kennicutt 1993; Kennicutt & Oey 1993; Garnett &

Shields 1987). The characteristic bright emission lines

coming from recombination and collision between the

free electrons and the different atoms/ions in the nebu-

lae are observed at large distances and allow the study

of interstellar matter and its primary constituents (e.g.

Kewley et al. 2006; Crawford et al. 1999; Baldwin et al.

1981). Additionally, the omnipresence of the HII regions

in some galaxies allow for the study of galactic disk dy-

namics (e.g. Epinat et al. 2008), magnetic fields and

turbulence at large and small-scales (e.g. Odell 1986;

Haverkorn et al. 2015; Beck et al. 1996; Quireza et al.

2006; Pavel & Clemens 2012), and the importance of

various feedback mechanisms that inject energy into the

ISM, i.e. stellar winds, supernovae and radiation pres-
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sure (e.g. McLeod et al. 2020; Ramachandran et al.

2018, 2019).

More recently, the use of integral field spectroscopy on

nearby galactic and extragalactic HII regions has offered

a more complete view of their physical properties (e.g.

Leroy et al. 2016; Snchez et al. 2012; Bundy et al. 2014).

Also, increasing spectral and spatial resolution has al-

lowed for the study of the complex dynamical structures

of the HII regions and pushed the limit of previous anal-

ysis methods meant for integrated/unresolved spectra of

HII regions (e.g. Martins et al. 2010; Snchez et al. 2012;

Drissen et al. 2014). Typical fitting procedures used to

extract the dynamics and emission lines flux measure-

ments from HII regions spectra require a good prior es-

timate of the velocity as well as the number of velocity

components to be fitted (e.g. Zeidler et al. 2019; Bittner

et al. 2019; Snchez et al. 2007). Defining the range of

those priors is usually not a problem when the ensem-

ble of spectra shows similar characteristics. While the

typical range of velocity seen in galactic disks can easily

vary by a few hundreds of km s−1 (e.g. Dressler et al.

1983; Bregman 1980; Sancisi et al. 2008), and the inter-

nal dynamics of HII regions can add thermal/turbulent

broadening and expansion velocity to the galactic con-

tribution (e.g. SOFUE 1995; Arsenault 1986), the typ-

ical velocity prior for a given spectral data cube can be

very broad and is often not precise enough to ensure

a proper fit of the entire data set. We are additionally

facing new challenges in the dynamical analysis, because

the spatially resolved HII regions spectra often contain

emission from different phases of the ISM (along the line

of sight) and can be composed of multiple dynamically

distinct components (e.g. expanding shells, Rozas et al.

2007; Relao & Beckman 2005) having each a different

thermal/turbulent broadening. Of course, fitting two or

more components with the proper velocity and broad-

ening priors is the best approach in such case, but only

when such components are actually present in the spec-

tra (e.g. Relao et al. 2005; Le Coarer, E. et al. 1993).

Ultimately, extracting the information in a consistent

manner from high spectral and spatial resolution data

cubes requires a dedicated method to estimate the priors

on the different spectral parameters, taking into account

the variation of the observed spectral features across the

field-of-view.

SITELLE, the Imaging Fourier Transform Spectro-

graph (IFTS) of the Canada-France-Hawaii Telescope

(CHFT), produces spectral data cubes containing over

4 million pixels with adjustable resolving power (up to

10,000) and has an instrumental line shape described

by a sine cardinal function (Martin & Drissen 2017;

Baril et al. 2016; Drissen et al. 2019). Its 11′× 11′ field-

of-view (FOV) contains more than 4 million pixels for

which the spectral sampling and resolution varies as a

function of their relative position angle with the mobile

mirror. Moreover, emission lines intensities (and there-

fore line intensity ratios) may vary significantly across

the parameter space of the physical properties observed

in HII regions.

All together, these characteristics make a typical tem-

plate fitting strategy (e.g. cross-correlation function

maximization) very difficult to implement since the sine

cardinal function side lobes affect neighbouring line in-

tensity and shape, and the position of the lobes with

respect to the central position of the line varies with

spectral resolution (changes across the FOV). In addi-

tion, the variation of line intensity ratios between dif-

ferent emission regions can lead to gross errors on the

velocity estimates when a single template spectrum is

used. Therefore, an adapted approach is developed here

to solve these issues while still fitting entire data cubes,

using the same uniform and reproducible method and

including the dynamical and spectral complex nature of

the resolved HII regions.

This paper explores the use of a Convolution Neu-

ral Network to resolve deficiencies in the existing fitting

software ORCS – Outils de Réduction de Cubes Spectraux.

Although the ORCS fitting routines are robust, they re-

quire a human-generated prior for all fits; this paper

demonstrates the use of machine learning to estimate

the priors with no human input. In § 2, we outline the

Convolution Neural Network and the synthetic data set

used to train the network. We explore the success of our

CNN to the synthetic data in § 3. In § 4, we discuss the

applicability of our methodology to low resolution spec-

tra. Additionally, we apply the CNN to a field of M33 in

order to test its efficacy in real observations. Finally, in

§ 5, we recap the main successes and outline our future

work.

2. METHODOLOGY

2.1. Convolutional Neural Networks

Neural Networks have been used extensively in astron-

omy to classify galaxies (Storrie-Lombardi et al. 1992),

separate galaxies from stars (Bertin 1994), categorize

dynamic parameters of galaxy clusters (e.g. Ntampaka

et al. 2016; Ntampaka et al. 2019), explore astrophys-

ical morphologies at differing scales (e.g. Sadaghiani

et al. 2019; Iwasaki et al. 2019), derive galaxy redshift

from wide band images (Pasquet et al. 2019), and ex-

tract emission-line parameters from spectra (e.g. Olney

et al. 2020; Ucci et al. 2019; Baron 2019). A recent ef-

fort to calculate the parameters of HII regions from their
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Figure 1. A cartoon of the convolutional neural network used in this work. As described in the text, it is an adaptation of
the STARNET topology (Fabbro et al. 2018). The input spectra is first convolved in two separate layers before being condensed
in a pooling layer. Once flattened, the vector is passed to two hidden layers. Finally, the velocity and broadening parameters
are estimated using two separate output nodes denoted by the blue-green bar.

spectra, GAME1, employs a combination of Decision Trees

and AdaBoost in order to predict physical parameters

(Ucci et al. 2017; Ucci et al. 2018). In lieu of this, our

method uses a Convolutional Neural Network (CNN) ar-

chitecture designed by Fabbro et al. (2018), monikered

STARNET, which has already demonstrated success in es-

timating emission-line parameters from stellar spectra.

During the course of this work, we became aware of

the work of Keown et al. (2019), which uses an approach

similar to ours to estimate the velocity and broaden-

ing of high resolution radio emission lines, taking into

account possible multiple velocity components. While

their work focuses on high resolution, isolated emission

lines, ours focuses on lower resolution spectra observed

on a wide field of view, hence often with a wide veloc-

ity distribution. In addition, the SITELLE ILS extended

structure prevents us in any case from considering the

different emission lines separately.

Our convolutional neural network is graphically de-

picted in figure 1 and laid out as follows:

1. 8x8 convolution with 4 filters

2. 4x4 convolution with 8 filters

3. Global max pooling with 4 filters

4. 20% dropout

5. 256 fully-connected nodes

6. 128 fully-connected nodes

7. 2 output neurons

The CNN takes the normalized SITELLE emission

spectra obtained with the SN3 filter (651-685 nm) and

returns an estimate on the velocity (km s−1 ) of the

lines and their broadening (km s−1 ), assuming they are

1 https://game.sns.it/

consistent over the five major emission lines in SN3.

We tested several scaling functions (RobustScaler, Stan-

dardScaler, and MinMaxScaler); although we obtained

the tightest constraints with the MinMaxScaler, the ac-

tivation map revealed fitting nonphysical features and

noise. We therefore normalize the spectrum to have a

maximum value equal to unity.

In order to ensure the appropriate hyper-parameters,

we explored their spaces extensively using the random

search algorithm, as implemented by sklearn, embed-

ded in a 10-fold cross correlataion. Throughout our

training, we saw no significant deviation from the re-

sults reported by Fabbro et al. (2018). Therefore, we

adopted the same hyper-parameter values as used in

the standard STARNET procedure. Structural hyper-

parameters can be readily seen in figure 1. In order

to view the other parameters (i.e. learning rates, decay

rates, etc.), we suggest the reader view our github page:

https://github.com/sitelle-signals/Pomplemousse. We

report a maximum number of 10 epochs and an initial

batch size of 8 spectra.

2.2. Synthetic Data

In order to demonstrate the feasibility of using a

CNN to identify the correct spectral parameters, we

construct a set of synthetic data on which to train

and test the network. The synthetic data set used

in this study was created using the ORB software de-

veloped to reduce data from SITELLE (Martin et al.

2016). To generate synthetic spectra, We use the

ORB create cm1 lines model function which requires a

number of parameters that will be defined in this section.

Since our tool was developed primarily for SITELLE’s

programs and the SIGNALS collaboration, we focused

on the SN3-filter which covers a band pass between 647

and 685 nm. In accordance with the SIGNALS sur-

vey, we select a primary spectral resolving power of

5000, an exposure time of 13.3s per step, and 842 steps

(Rousseau-Nepton et al. 2019). In order to replicate

https://game.sns.it/
https://github.com/sitelle-signals/Pomplemousse
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the change of spectral resolution across the cube, we al-

low the resolving power to randomly vary between 4800

and 5000 since the resolution will vary between these

values in any given SN3 observation which is a part of

the SIGNALS program. We will model the following

lines: [NII]λ6548, Hα(6563)Å, [NII]λ6583, [SII]λ6716,

and S[II]λ6731. Furthermore, we use the sincgauss

function as described in Martin et al. (2016) to include

line broadening. We randomly varied the velocity be-

tween -200 and 200 km s−1 , while the broadening was

randomly varied between 0 and 50 km s−1 . These ranges

were selected from our prior knowledge of the distribu-

tion of velocities in M33 (Epinat et al. 2008) and the

typical broadening in SITELLE data cubes at this spa-

tial resolution. Note that we randomly selected the res-

olution, broadening, and velocity parameters with re-

placement for each synthetic spectrum. The final input

required to construct the synthetic spectra is the ampli-

tude of each emission line.

In order to calculate reasonable relative fluxes for the

five lines while ensuring we are sampling the desired

physical parameter space, we used the 3MdB2 – Mexi-

can Million Models Database (Morisset et al. 2015). The

3Mdb contains models created using the CLOUDY v17.01

photoionization code based on a pre-selected set of emis-

sion region parameters and underlying ioinizing stellar

spectra (Ferland et al. 2017). We use the BOND dataset

described in Asari et al. (2016) which contains spectra

from HII regions similar to those expected to be found

in SIGNALS. The BOND data-set contains 63000 spec-

tra. Though the data set covers the physical parameter

space of the emission nebulae we wish to study, it also

contains a number of models that are outside the scope

of our study. We describe varying parameters used in

table 1. While the BOND simulations have two simulation

geometries, completely filled and thin shell, we remove

all thin shell (fraction=0.03) simulations from our sam-

ple. This leaves us with filled spheres with a density of

approximately 100 cm3 and represents a younger pop-

ulation of HII regions (e.g. Asari et al. 2016; Stasiska

et al. 2015; Cedrs et al. 2013).

We further constrained the ionization parameter,

U, and metallicity proxy, 12+log(O/H), to focus on

SIGNALS-type HII regions (e.g. Rousseau-Nepton et al.

2019; Prez-Montero et al. 2019; Kashino & Inoue 2019;

Zinchenko et al. 2019). With these constraints, we ex-

tracted the amplitudes of the five emission lines present

in SN3, first randomly selecting a model which passed

our selection criteria. We then normalized the ampli-

2 https://sites.google.com/site/mexicanmillionmodels/

Parameter Lower Limit Upper Limit Step Size

log(U) -3.5 -2.5 0.5

Age (Myr) 1 6 1

12+log(O/H) 7.4 9.0 0.2

log(N/O) -2 0 0.5

Table 1. HII region parameter selection used during
the M3db runs of the BOND simulations. The initial run-
parameters were cut further in order to focus on the emission
expected in the SIGNALS program. The step sizes were set
by the 3Mdb runs (see Morisset et al. (2015) for more infor-
mation)

tudes with respect to Hα. After combining the five lines

(with the appropriate instrumental line shape) and the

simulated continuum emission, we add a noise compo-

nent. The SNR is sampled from a uniform distribution

between 5 and 30. Below a SNR of 5, the lines are nearly

indistinguishable and the sidelobes of the ILS are com-

pletely obstructed. We expect a nominal high (> 20)

SNR for Hα in the SIGNALS program. SNR effects will

be investigated later in the article. Figure 2 shows a

sample spectrum. At this stage, we create 50,000 mock

spectra in the form of FITS files which contain the emis-

sion parameter information (e.g. velocity, broadening,

resolution).

Figure 2. Example spectrum simulated using the process
described in §2.2. As our population statistics suggest, this
is not the only expected spectral shape. However, it is rep-
resentative of the sample and clearly demonstrates the five
emission line peaks. This is the SN3 spectral coverage of
SITELLE.

2.3. SITELLE Data

2.3.1. Calibration and Data Reduction

Observations of M33 were taken during the Queued

Service Observing period 18B (Program 18BP41, P.I.

Laurie Rousseau-Nepton) at the Canada France Hawaii

Telescope on the summit of Mauna Kea, Hawaii, using

https://sites.google.com/site/mexicanmillionmodels/
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Figure 3. Kernel Density Estimation (KDE) plots for the test set. Left: True vs Predicted Velocity values in km s−1 . Right:
True vs Predicted Broadening values in km s−1 . In both plots we can see that the predicted values accurately mimic the true
values. Note the change in scales between the two plots.

Figure 4. Left: Velocity Residual as a function of the true velocity. Although there exists a background substructure, it
only affects a fraction of a percent of the total test set and is thus negligible. Right:Broadening residual as a function of the
true broadening. The pattern demonstrates a bias for low broadening values that is likely caused by the networks inability to
distinguish a low amount of broadening. Moreover, the broadening naturally segregates itself into two physical peaks typical of
HII regions and supernovae remnants, respectively (e.g. Veilleux & Osterbrock 1987; Vasiliev et al. 2015).

SITELLE. These exposures were taken with the SN3 fil-

ter which covers a range from 651-685 nm for a total

of 4h with a spectral resolving power of R∼5000. The

pointing was centered on a single field in M33 and is part

of a larger observation of M33 in its entirety. This ob-

servation also forms a basis for the SIGNALS program,

lead by Laurie Rousseau-Nepton, which aims to further

categorize HII and star-forming regions in nearby galax-

ies. We note that the authors of this paper are members

of the SIGNALS collaboration.

The raw data were reduced and calibrated us-

ing SITELLE’s personalized software, ORBS (ver-

sion 3.1.2 Martin et al. 2016). We are able to re-

solve five spectral emission lines from our observations:

[SII]λ6713, [SII]λ6731, [NII]λ6548, Hα, [NII]λ6584. Us-

ing the function SpectralCube.Map Sky Velocity(),

we fit the OH sky line velocities, assumed at rest

w.r.t. the observer, with a geometric model of

the interferometer; afterwards, we used the func-

tion SpectralCube.Correct Wavelength() to refine

the wavelength calibration of our data cube using the

OH-lines fit.

3. RESULTS

In this section we apply our convolutional neural net-

work outlined in §2.1 to our synthetic spectra with a

resolution R∼5000. We retained 70% (35,000) of the
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Figure 5. Left: Density plot of the velocity residuals in km s−1 along with the standard deviation. Right: Density plot of the
broadening residuals in km s−1 in addition to the standard deviation. The asymmetry is likely due to the diversity of resolving
power introduced in the training set.

Figure 6. Activation or Saliency Map of our convolutional
neural network applied to an example spectrum. The colored
points represent the exact locations of the nodes in the input
spectrum. Their color indicates their relative weight in the
network. Weights under 0.25 are not shown for clarity.

spectra as our training set, 20% (10,000) as our vali-

dation set, and the remaining 10% (5,000) as the test

set (e.g. Tetko & Villa 1997). Training and validat-

ing our algorithm results in over 95% accuracy for both

predicted parameters: the velocity and the broadening.

Accuracy is defined as the ratio of correct parameter

estimations to the total number of estimates. An esti-

mate is considered correct if it agrees with the ground

truth value up to two digits after the decimal (i.e. to the

hundredth place). The combined mean absolute error,

another common metric for regression tasks, is 5kms−1.

Figures 3, 4, and 5 visually depict the accuracy of the

CNN on the test set and the associated residuals, re-

spectively. As the figures depict, the algorithm was well

trained and is able to accurately predict both the veloc-

ity and the spectral broadening. As evidenced in figures

3 and 4, the predicted values are close to the ground

truth values. The KDE plots in figure 3 demonstrate

that the parameter space is being well sampled for both

the velocity and broadening. Figure 5 demonstrates the

Gaussian distribution of errors about zero; although the

right panel reveals the slightly skewed error distribu-

tion of the broadening parameter, the shape is globally

Gaussian and any distortion is believed to be caused by

asymmetries within the training set. We report a stan-

dard deviation of ∼ 5 km s−1 for the velocity parameter.

This is well within the required limits as described in

Martin et al. (2016) and Rousseau-Nepton et al. (2019)

for an initial guess to be supplied to the ORCS software.

The velocity error is required to be less than the channel

width with corresponds to approximately 40 km s−1 for a

resolution of 5000. The standard deviation of the broad-

ening parameter is ∼ 5.5 km s−1 . Since SITELLE re-

solves the broadening parameter down to approximately

3 km s−1 for high SNR regions (∼1000), our broadening

errors are near SITELLE’s resolving power.

In order to compare the network results to those re-

covered by the ORB/ORCS software, we fit the test set

using the fit lines in spectrum routine. The veloc-

ity and broadening parameters were initialized as the

precise velocity and broadening parameters used to con-

struct the spectra. Although this is improbable to occur

during a standard fitting procedure, hence the need for

an accurate estimate, this demonstrates the best pos-

sible case for the fitting algorithm. All other param-

eters were also set to those used to simulate the spec-

tra. The fitting procedure recovers the true velocity with

a standard deviation of ∼ 3km s−1 and the broadening

with a standard deviation of ∼ 4km s−1 . Comparing

these standard deviations with those from the CNN, we

note that the ORB/ORCS recover the true parameters with

marginally better accuracy.

Although the spread of errors shown in the figures 5

and 4 do not reveal overt overfitting, we applied a stan-

dard k-fold cross-validation algorithm on ten partitions

of the training, validation, and test data (e.g. Picard
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& Cook 1984; Bengio & Grandvalet 2004). Overfitting

occurs when the neural network learns the training set

too well and is unable to generalize to other data sets

such as the test set. Overfitting would manifest itself

in these figures if they demonstrated a large spread of

residuals (i.e. large errors). We also implemented a

modified k-fold cross-validation algorithm in which we

varied only the training and validation data while re-

taining the same test set. We report approximately the

same accuracy values (within 5%) regardless of the fold

and cross-validation technique. This further indicates

the absence of overfitting (e.g. Cawley & Talbot 2010;

Molinaro et al. 2005).

Additionally, we created an saliency map of our ex-

ample spectrum from figure 2 which can be seen with

the filled circles in figure 6. The saliency map delineates

the regions of the input (in this case the spectrum) used

by the convolutional neural network to learn (e.g. Si-

monyan et al. 2014) by calculating the gradient of the

output with respect to the input. More precisely, the

map is created by varying one input variable at a time

and calculating the change in the loss function. In this

manner the algorithm highlights the most important in-

put nodes. We can clearly see by the clustering of data

points in the image around the Hα and [NII]λ6548 lines

that the network considers these lines to be the most

important components for determining the velocity and

broadening. This is consistent with our expectations

since these two lines, unlike the others, are consistently

above the continuum in HII regions. It is sensible that

the network does not weigh the [SII] doublet heavily

since they are often unobservable due to noise. More-

over, the network does not focus only on the peaks of

the Hα and [NII]λ6548 lines, but also on their base.

This indicates that the widening of the lines – which is

directly affected by the velocity and broadening compo-

nents – plays a crucial role in parameter estimation, as

expected.

4. DISCUSSION

While in Section 3, we demonstrated that the CNN

algorithm is capable of extracting the correct spectral

parameters (velocity and broadening) of the Hα, N[II],

S[II] lines for synthetic SITELLE observations, in this

Section, we examine the versatility of the model and its

robustness when applied to real SITELLE observations.

We also discuss the novelty of using such CNN algo-

rithms for IFU observations in general (i.e. from other

telescopes, especially in context of upcoming 30 and 40

-m class telescopes.

4.1. Versatility of the Model

While this technique is developed for the SIGNALS

collaboration science case, aiming to obtain IFU obser-

vations of dozens of nearby galaxies, and thus R∼5000,

we demonstrate its applicability to other studies of HII

regions using SITELLE at various spectral resolutions.

Since there exists a number of other SN3 observations

which are not a part of the SIGNALS program that

were taken with an average spectral resolving power near

R∼2000, we wished to directly test our existing network

and weights against synthetic data created with R∼2000

(e.g. Puertas et al. 2019; Gendron-Marsolais et al. 2018;

Rousseau-Nepton et al. 2018). However, since the reso-

lution sets the number of steps (i.e. data points) in our

spectrum, a reduction of the resolution affects the length

of the input data. In order to feed lower resolution spec-

tra into our CNN, we would be required to smooth or

interpolate the data so that we would have an input of an

equivalent length – a requisite for use in a CNN. In doing

so, we would be assuming a form of the interpolation (i.e.

linear, a higher-order polynomial, spline, etc.) which

might inject non-physical and potentially biased infor-

mation into the spectra (Horowitz 1974; Scargle 1982;

Schulz & Stattegger 1997). We therefore do not mod-

ify the spectra, but instead we create an entirely new

set of training, validation, and test data using the same

routines employed to create our high spectral resolution

synthetic dataset with a resolution set to R∼2000.

After creating 30,000 synthetic spectra with a lower

spectral-resolution, we divided the set into the train-

ing (70%), validation (20%), and test (10%) sets. Af-

ter training and validating our convolutional neural net-

work, we applied it on our test data. We report a nom-

inal accuracy of both predictors (velocity and broad-

ening) of 92% compared to 95% in the case of R∼5000.

The standard deviation of the errors for the velocity and

broadening are 75 and 12 km s−1 , respectively. We ran

both k-fold cross-validation algorithms and again found

consistency across the accuracy predictors. The re-

sults are coherent with our supposition that the method

would extend well to relatively low resolution spectra

since, even at R∼2000, we are able to reasonably resolve

the emission lines. The reduced accuracy is reasonable

since the emission lines are less well-resolved.

We attempted to use the network to predict low res-

olution SITELLE spectra (R∼1000); however, at this

resolution, the lines are often indistinguishable and the

algorithm fails to achieve high-fidelity results. Typ-

ical SITELLE’s observing strategy for targets in the

local Universe and for the SIGNALS project, have an

increased spectral resolution for the Hα filter (SN3)

and often a lower resolution for other filters (typically

R∼1000). The dynamical priors (velocity and broad-
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ening) can then be estimated using the higher resolu-

tion SN3 filter and applied on the other observations of

the same field with the other filters. Overall, our re-

sults demonstrate that a CNN network is capable of

reliably estimating spectral parameters (velocity and

broadening) in SITELLE synthetic observations at high

(R=5000) and low (R=2000) resolution, but that be-

yond R = 1000-1500, it fails because of the poor quality

of observations. In other words, these results not only

demonstrate that machine learning algorithms can be

used to estimate kinematic parameters, but they also

demonstrate the techniques limitations.

4.2. Validation on a real data-set: the case of M33

With the ability of the CNN to predict velocity and

broadening parameters accurately for synthetic data, we

apply our methodology to an emission region of M33’s

South-East field (figure 7). This region is an excellent

test-bed for our algorithm since it contains several types

of emission regions (i.e. HII region, planetary nebulae,

etc.) and is part of the SIGNALS survey.

Figure 7. Deep, co-added SITELLE observation (4hr) of
M33 Field 7 using the SN3 filter. The image illustrates the
density of emission-line regions in the outskirts of M33.

Fits were calculated using the ORCS

fit lines in region() command centered on our

five lines. Each grouping ([SII]λ6713/[SII]λ6731,

[NII]λ6548/[NII]λ6584, and Hα) was fit simultaneously

with a Gaussian convolved with a sinc function fol-

lowing the standard SITELLE procedure (Martin &

Drissen 2017); All lines were tied together with respect

to the velocity and broadening. Fits were optimized

using the Levenberg-Marquardt least-squares minimiza-

tion algorithm. In order to execute a fit in ORCS, the

user is required to input an initial guess for the velocity

and broadening parameters; this is due to the nature of

the minimization algorithm. The first set of priors were

created by initially binning our cube into spatial bins

of 8x8 followed by the standard ORCS fitting procedure.

This standard method still requires an initial guess that

the user must input. However, the machine learning

method for determining priors does not require any

user input and can be applied directly on the unbinned

data. All fits were run using a computing server located

at the CFHT headquarters in Waimea, Hawaii named

iolani. The server has 2 Intel XEON E5-2630 v3 CPUs

operating at 2.40GHz with 8 cores each. The configu-

ration also has 64 GB of RAM available for computing

purposes.

A key benefit of the machine learning prior fits over

the standard procedure is the economy of time asso-

ciated with the machine learning algorithm. Since no

fitting and iterating is necessary, the calculation time

scales approximately linearly with the number of spec-

tra. Using a coarse initial binning, 8x8, the standard

algorithm to calculate the priors takes approximately 4

hours in order to cover the entire cube. However, the un-

parallelized machine learning algorithm takes only 180

seconds3 to cover the same binned cube. Hence the ma-

chine learning algorithm calculates the priors more than

100 times faster than the standard algorithm. We also

calculate the time the machine learning algorithm takes

to estimate the velocity and broadening parameters for

an unbinned cube; this takes approximately 4 hours –

the same amount of time to calculate the standard priors

on an binned (8x8) cube.

In addition to being considerably faster when esti-

mating the priors, the machine learning algorithm also

obtains accurate estimates. In order to quantify this

notion, we calculate the residual values over the cube

between the unbinned final fits – using an 8x8 machine

learning prior – and the unbinned machine learning esti-

mates. We only retained pixels for the residual analysis

which demonstrated a flux value above our threshold of

2 × 10−17 ergs/s. This threshold was chosen since it

masks out all nan values and maintains the regions with

clear emission. Figure 8 demonstrates that the residuals

are low in central parts of the emission regions, where

the signal-to-noise is high, while the residuals are higher

in the outskirts where the signal-to-noise is low. This is

likely due to the fact that our synthetic data was created

using a high signal-to-noise ratio of 50; we will explore

3 assuming a near-perfect speedup, we expect the parallelized al-
gorithm to take approximately 25 seconds to run on iolani.
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Figure 8. Left: Residual map of the velocity calculated from the absolute difference between the final ORCS fit and the machine
learning priors calculated on an unbinned cube. Right: Residual map of the broadening calculated from the absolute difference
between the final ORCS fit and the machine learning priors calculated on an unbinned cube. Both maps were smoothed using a
2-dimensional Gaussian kernel with a sigma value equal to 2 pixels.

the effects of the SNR ratio in a future paper. While it

is often desirable to study the emission in the outskirts

in addition to the central emission, the low-residual re-

gions outline locations of high-fidelity fits. In order to

recover the velocity and broadening parameters in these

regions, the machine learning estimates on either the

binned or unbinned cube can be used as priors for a

standard ORCS fit. Moreover, since the standard prior

calculation requires binning spatially, substructure in-

formation is inherently lost in these priors. On the other

hand, the convolutional neural network priors do not re-

quire any binning and thus retain all structural spatial

information.

Figure 9. Proxy signal-to-noise ratio versus mean absolute
velocity residual (km s−1 ) for the South West field of M33.
For each SNR bin, we excluded outliers before calculating the
mean absolute residual and standard deviation (grey y-axis
error bars). Each SNR bin has a width of 1.

Figure 10. Proxy signal-to-noise ratio versus mean abso-
lute broadening residual (km s−1 ) for the South West field
of M33. For each SNR bin, we excluded outliers before cal-
culating the mean absolute residual and standard deviation
(grey y-axis error bars). Each SNR bin has a width of 1.

Although we do not study all the complexities of the

SNR impact on our CNN in this article, we include a

short discussion on it here. We calculate the SNR by di-

viding the Hα flux by its fit uncertainty as calculated in

our final ORCS fit. Although this is not exactly the SNR,

it acts as a proxy value. With the residual maps and the

SNR proxy map, we have the residual and signal-to-noise

information for each pixel. We then binned residuals by

signal-to-noise ratio with a step size of 1 between 5 and

20. Twenty is the maximum value of the SNR proxy

and below 5 we do not see any coherent structure in

the spectra. We culled outliers that were outside of the

3-σ range. Finally, we calculated the median absolute

residual and standard deviation in each SNR bin. As ev-

idenced by figure 9, the accuracy of the CNN increases as
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the signal-to-noise ratio rises, an expected trend. Figure

10 demonstrates that the broadening residual plateaus

at a SNR of approximately 12; moreover, the figure indi-

cates a discordance between the CNN’s estimations and

those obtained from ORCS fits. We believe this behav-

ior is due to the presence of multiple emission compo-

nents serendipitously located in high SNR regions (see

appendix for discussion). Multiple components affect

the broadening parameter stronger than the velocity es-

timates. Even in standard fitting procedures, this poses

a serious issue.

4.3. Universal Applicability

The methodology described in this paper is not lim-

ited to SITELLE data cubes. Indeed, the methodology

naturally lends itself to any IFU-like data cube in which

the observer has access to high-resolution spectral data

such as the K-band Multi Object Spectrograph, KMOS

(e.g. Sharples et al. 2013), or the Multi Unit Spectro-

scopic Explorer, MUSE (e.g. Bacon et al. 2010). Since

the machine learning algorithm is able to achieve reason-

able estimations of the kinetic parameters (velocity and

broadening) in a fraction of the time the standard fitting

procedures take, it will play a crucial role in upcoming

missions aimed at completing large-scale surveys using

IFUs such as the Near-Infrared Spectrograph, NIRSpec

(e.g. de Oliveira et al. 2018), on the James Webb Space

Telescope and the MEGARA – Multi-Espectrgrafo en

GTC de Alta Resolucin para Astronoma – instrument

on the Gran Telescopio Canarias (e.g. Paz et al. 2012).

5. CONCLUSIONS

A convolution neural network has been exploited in

several astronomical applications ranging from dynamic

mass estimates of galaxy clusters (e.g. Ntampaka et al.

2019) to the extraction of spectral parameters (e.g.

Fabbro et al. 2018). This work applies a modified

STARNET architecture (Fabbro et al. 2018) to high reso-

lution (R>2000) SITELLE observations of HII regions

in order to estimate the velocity and broadening pa-

rameters. Training, validation, and testing the machine

learning algorithm with synthetic data integrating the

3Mdb database (Morisset et al. 2015) demonstrates the

feasibility of the method. We demonstrate that the al-

gorithm fails to predict the spectral parameters for low

resolution (R'1000) observations. We believe this is

due to the lack of resolved spectral information result-

ing in partial blending of the main emission lines. How-

ever, above R∼2000, we are able to disentangle the lines

better. We apply the convolutional neural network to

the Southwest field of M33 to calculate the velocity and

broadening priors. Compared to the standard method

for computing the priors, our method is over 100 times

faster. Additionally, the machine learning algorithm can

reliably estimate the emission-line parameters for the en-

tire unbinned cube in roughly the same amount of time

it takes the standard algorithm to calculate the priors

on an 8x8 binned cube.

The work presented here represents the first in a se-

ries of articles on the applications of machine learning

to SITELLE spectra. In a subsequent article, we will

present our work on the effects of the signal-to-noise ra-

tio on convolution neural networks and how to mitigate

the negative impacts.

We will also demonstrate the applicability of our

methodology to calculate the fluxes (and ratios thereof)

of emission lines, which will allow for the rapid clas-

sification of emission regions through grids of photo-

ionization models (e.g. 3MdB). In the third proposed

paper of the series, we will describe a machine learn-

ing methodology to identify possible multiple, blended

components within emission lines.
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A. SNR AND THE RESIDUAL

As noted in §4.2, the broadening parameter (and the velocity parameter to a much lesser extent) exhibits an

unexpected trend in its SNR vs residual plot (figure 10). In this section, we explore potential reasons for this behavior:

a dependence on the SNR of the training set, or an effect from multiple line components in high SNR regions. In

order to determine whether or not the SNR of the training set has a negative impact on high SNR regions, we create

a set of 1,000 synthetic data following the same prescription described before (§2); however, we allow the SNR to vary

between 20 and 80 instead of stopping at 30. Because we are only created 1,000 synthetic spectra, we reduce the

sampling rate of the velocity and broadening. This is not expected to have any effect on the results. We then apply

our already trained network on the synthetic data. Figure 11 demonstrates that the network performs well for high

Figure 11. Left: Proxy signal-to-noise ratio versus mean absolute broadening residual (km s−1 ) for synthetic data created to
simulate a range of SNR values. For each SNR bin, we excluded outliers before calculating the mean absolute residual and
standard deviation (grey y-axis error bars). Each SNR bin has a width of 1. Right: Ratio of double vs single component AIC
parameters for the masked region of interested.

SNR values. Thus the network is not biased for high SNR regions. Note that the SNR value used in this section is the

true signal-to-noise ratio as compared to that used in §4.2 which is a proxy value calculated by dividing the Hα flux

by its fit uncertainty.

In order to determine whether or not the regions of high SNR in the South West field of M33 have single or double

emission components, we turn to the standard ORCS fitting procedure. We chose a small region (2x2 pixels) in a
high SNR region that also has a large broadening residual (01:32:16.03, +30:48:00.71 ). We selected pixels which fit

the following prescription: have a broadening residual higher than 10 kms−1 and a signal-to-noise ratio over 12. We

fit the Hα and NII doublet assuming a single emission component and a double emission component. The double

emission fit resulted in a statistically significantly better fit statistic. This is a strong indication that the region is best

described by a double emission component rather than a single emission component. Moreover, we computed the AIC

parameter for each region defined by AIC = 2n− ln(L), where n is the number of fit parameters and L is the Gaussian

likelihood function (e.g. Akaike 1987; Liddle 2007; Kieseppa 1997). In our case, the likelihood is Gaussian, therefore

the log-likelihood function reduces to the usual half χ-squared. The right hand-size of figure 11 shows the ratio of the

double component AIC parameter vs the single component AIC parameter defined as exp(−(AIC1−AIC0)/2). Since

the ratio is consistently below one, the double component model is favored over the single component model. We thus

conclude that, at least in these regions, the rise in the residual value is due to the existence of double component

emission. Therefore, we believe that figure 10 does not reflect a failure of the network in high SNR regions, but rather

a failure of the network in regions with double emission components that serendipitously appear in regions of high

SNR in the South West field of M33. Future work will explore the applicability of a modified network to estimate the

broadening and velocity parameter in such regions.
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